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A semi-phenomenological model of a many-particle system of *He atoms is proposed, in which a helium atom is

considered as a complex consisting of a nucleus and a bound pair of electrons in the singlet state. At zero temperature,

there are two Bose—Einstein condensates of particles with opposite charges, namely, a condensate of positively charged

nuclei and a condensate of negatively charged electron pairs. It is shown that in such a system there exist two excitation

branches: sound and optical. On the basis of this model an interpretation of experiments on the study of the electrical

activity of superfluid helium is proposed. The frequency at which the resonant absorption of a microwave radiation is

observed is interpreted as a gap in the optical branch. It is shown that the distribution of the electric potential in a stand-

ing wave in a resonator is similar to that observed experimentally.
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1. Introduction

In the experiments of Rybalko [1-7] with superfluid he-
lium, there were registered effects which demonstrate an
increased electrical activity of this neutral medium. The
activity manifests itself both at low frequencies in sound
and torsion experiments [1, 2] and at high frequencies in
the interaction with a microwave radiation [3—7]. In one
group of effects, the electrical oscillations were observed
under fluctuations of temperature 7" [1] and under oscilla-
tions of the difference of the superfluid and normal veloci-
ties w=v, —v, [2]. In experiments of another type, the
resonant absorption of a microwave radiation was found
[3-7] at a frequency close to 180 GHz. These results were
mainly confirmed in later experiments [8—12].

Until now there have been carried out a significant number
of theoretical works where attempts have been made to ex-
plain the observed effects. However, it seems unlikely that
such effects can be explained while remaining within the
framework of the traditional theory of superfluidity, where the
internal structure of atoms is not taken into account. The in-
ternal structure was taken into account in theoretical works
[13, 14], in which particles were considered as hydrogen-like
atoms. In this work, we propose a semi-phenomenological
model of a superfluid system of particles whose structure is
closer to the real structure of the helium atom.
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Before experiments in which the electrical activity was
discovered, in the theoretical study of the superfluid properties
of liquid helium atoms were usually considered as
structureless particles with zero spin. At zero temperature, a
system of NV atoms obeying the Bose statistics is described by
the wave function ¥(r,r,,...,ry) being symmetric with
respect to the permutations of position vectors r;. In a low-
density system, when all particles are in the same state, the
total wave function can be represented as a product of identi-
cal functions y(r,)y(r,)...y(ry) characterizing the state of
an individual particle in the condensate. The function y(r)
obeys the well-known Gross—Pitacvskii equation [15, 16].
Such state is coherent [13]. For dense systems the structure of
the symmetric wave function proves to be more complex, and
in this case an important role is also played by pair correla-
tions and correlations of a larger number of particles [17, 18].
In this work we will not touch upon the question of the role of
higher correlations. Thus, in contrast to the model of an ideal
Bose gas where the condensate particles actually fall out of
consideration, when taking into account the interparticle inter-
action the condensate particles are described by some effec-
tive complex wave function y(r). We will call the conden-
sate of interacting particles as the coherent Bose—Einstein
condensate. The concept of the superfluid component of He 11
as a superposition of oppositely charged coherent boson
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condensates (nuclear and electron) was considered in work
[19], where the cause of generation of an electric field was
associated with the acceleration of electrons and nuclei
which have very different masses.

A helium atom consists of a nucleus (alpha particle)
with zero spin and a pair of electrons. In the ground state
the spins of electrons are directed oppositely, so that the
total spin of a pair is zero (parahelium). A pair of electrons
in such a singlet state is a very strong formation. In order
to transfer a pair of electrons from the singlet state to the
triplet state with the total spin equal to unity (orthohelium),
an energy of 19.8 eV should be spent, and the energy of
the first excited state of parahelium is 20.6 eV higher than
that of the ground state. This makes it possible to consider
a pair of electrons in the ground state of the helium atom as
a single object resembling a Cooper pair localized near a
nucleus. On this basis, in the proposed model the helium
atom will be considered as a complex consisting of a
spinless nucleus with charge 2 |e| and a particle with zero
spin and charge -2 | e]|.

When taking into account the internal structure of the
atom, both nuclei and pairs of bound electrons pass into the
condensate. Thus, this model considers a neutral system of
two Bose—FEinstein condensates of nuclei and electron pairs
with opposite charges. The fluctuations of the densities of
the number of particles in condensates are accompanied by
the fluctuations of the densities of charge, current and elec-
tric potential. This article studies small oscillations of such
a system of two condensates and shows that there exist two
branches of elementary excitations: the sound branch and
the optical branch. It is also shown that the distribution of
the electric potential in a standing wave in a resonator coin-
cides with the distribution observed in the experiment [20].

Based on the analysis of the proposed model, it was
concluded that the electrical effects observed in superfluid
helium are a consequence of the perturbation of its coher-
ent system determining the value of the superfluid density.
There are three parameters that lead to a change in the su-
perfluid density: temperature, superfluid flow and pressure.
Estimates show that the largest perturbation of the coherent
system is induced by the temperature fluctuations. A some-
what smaller effect is caused by the fluctuations of the
superfluid flow. The least influence on the coherent system
is exerted by the pressure fluctuations.

2. Dynamical equations of the coherent system of nuclei
and electron pairs

In the secondary quantization representation, the system
of nuclei will be described by the field operator v (r,)
and the system of pairs of bound electrons by the field op-
erator y,(r,?). These operators obey the usual commuta-
tion relations

(Vo (00,96 (F,0]1=8(r—1"), [y, (r,0,y, (r,0]=0,

1
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and commute with each other. The Hamiltonian has the
form H=Hy +H; + Hy , where
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Here M, m are the effective masses of a nucleus and an
electron pair, e is the electron charge. Note that the effec-
tive masses in a many-particle system of interacting parti-
cles do not have to coincide with the mass of a helium nu-
cleus M, and the mass of a pair of free electrons 2m,, but
they are phenomenological parameters. For definiteness we
will assume that M >m. The electric field is taken into
account in the nonrelativistic approximation through the
scalar potential ¢(r). For simplicity, in the following we
choose the interaction potentials in the delta-like form:

Uua (|r - r'|) =g, 00r-r"), U, (|r - r'|) =g,0(r—r’),
Uge(Ir—r') = g,,.8(r —1").

We assume that g, >0, g, >0, g,, <0. The operators of
the number of nuclei and the number of electron pairs, re-
spectively, are

Ny = [drys @, @), N, = [dry;mw,m. ()

In the Heisenberg representation, the operators depend on
time and obey the equations of motion

in YDy o, ),
ot
0
XD~y 0, ) ©)

Using the formulas (1)—(4), we obtain an explicit form of
equations for the field operators. In accordance with the
fact that at temperatures close to zero most Bose particles
are in a single state, by analogy to the Gross—Pitaevskii
approach [15, 16] one can neglect the commutation proper-
ties of the operators and consider them as ordinary func-
tions. As a result, we obtain the equations
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Equating to zero the variation of the energy with respect to
the scalar potential, we arrive at the Poisson equation

Ap=-8nle| (v, > —|w, ). ©)

The chemical potentials entering into (7), (8) can be ex-
pressed in terms of the equilibrium density of the number

of nuclei and electron pairs 1y = |y ,|* = |‘l/eo|2 ;

Ko = (g(x +go¢e>"0’ He = (ge +g(xe)n0' (10)

The flux densities of the number of nuclei and electron
pairs are given by the formulas

Ja = ﬁ(\uav“&x _\'IQVW(X)’

Je :_(\VeV\Ve_\Vevwe)s (11)
2m

and the current densities of positive and negative charges:

Joch =2|elias decn =—2e|J.- Thus, the Egs. (7)~(10) de-

scribe the dynamics of the coherent system of nuclei and

electron pairs and the electric potential in such a system.

3. Small oscillations of the coherent system of nuclei
and electron pairs

Let us consider small oscillations in the spatially homo-
geneous coherent system of nuclei and electron pairs in the
absence of a stationary flux, writing down complex func-
tions in the form

Vo =fno +3Vq, . =fng +3v,.

In the following, instead of the complex quantities dy,
Sy, it will be more convenient to use the real functions

(12)

dY, =08y, +dy;, 8D, =i(dy, —dyy),

(13)
8(I)e = i(6‘~|/e _SW:)

3Y, =dy, +dvy;,

The fluctuations of the density of the number of nuclei 6n,,
the density of the number of electron pairs én,, the density
of mass dp,, and charge 5p,, as well as the fluctuations of
the flux densities in terms of the quantities (13) are given
by the expressions

Sny =\ng8¥,, n, =lng Y.,
P =g (M Y o +2m,8Y,),
8pen = 2Je| g (B, —8F,),

- e,
e’

2m
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The linearized system of Egs. (7)—(9) for the real varia-
bles (13) has the form

e
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This system of five equations is equivalent to the system of
two equations for the functions 8%, and 8, :
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Here the plasma frequencies for nuclei o, and electron
pairs ®, are determined by the relations

,  8me’n, ,  8ne’n,
a > W, =

M m

(@)

. (22)

Assuming the dependencies of the quantities 8V, and
8¥, on coordinates and time in the form expi(w?—kr),

we find from (20) and (21) the dispersion equation
o* —2Bw? +C =0, (23)

where
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Thus, there are two branches of excitations
o? =B+~B*-C,

which are shown in Fig. 1. In the short-wavelength limit,
these branches transform into the dispersion laws of free
nuclei and electron pairs

(25)

e

o, =— e (26)

Toom’ T
These limiting relations seem reasonable, but it is physical-
ly correct to consider the dispersion relations in the limit of
long waves. In this case
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Fig. 1. The sound (/) and optical (2) branches of excitations in
the system with two oppositely charged coherent Bose—Einstein

condensates. Here ®=w/w,, k=k/k,, of=o+o?,
2M;

kgzim&,yzm/MZO.l.
M*+m? h

In the system of two neutral condensates, at e=0, we
have two sound branches ®? = cj,k?*, where

2
2 _Nol(8a, 8 ), [(8u, 8 ) 48u8e-ga) |
“ ool m )N\ M om mM

(28)

In the case of charged condensates we are interested in,
there is a single sound branch o_ = ck , where the velocity
is determined by the formula

o2 =108 8 +284.)

(m+M) (29)

For stability of the system, the interaction constants must
satisfy the condition g, + g, +2g,, > 0. The second branch

is optical ®* = > +©? +ak?, where

2 2
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“ —{ﬁ%ﬁwe‘ga{#ﬁﬂ‘

:n—o ﬂ+ ﬂ_z
(M +m) gaM gem 8oe |

The gap in the spectrum ,, is determined by the relation

(30)

2

2 , _ 8mnge

ot = R
M,

0 = (31)
where M.=mM /(m+M) is the reduced mass. When
deriving formulas (29), (30) from the more general formula
(27), it was assumed a fulfillment of the condition

(m+M)2i

k2 <
mM |gi|

, i=(a,e, ae). (32)

The proposed model can pretend to provide quantitative
estimates only in the case of low-density systems, whereas
liquid helium is not such one. Nevertheless, it is of interest
to estimate the value of the reduced mass, assuming that
the formula (31) remains valid in this case and the fre-
quency f, =®,/2n coincides with the resonant frequen-
cy of 180 GHz observed in experiments [3—7]. At the den-
sity ny =10%?cm™, it turns out that the reduced mass is
four orders of magnitude greater than the mass of a helium
atom: M, oc 10* M, . Note that earlier it was drawn atten-
tion to the possibility of the existence of a gap in the ener-
gy spectrum of superfluid Bose systems due to pair correla-
tions in works [13, 17, 18, 21]. The calculation of absorption
of a microwave radiation at the resonant frequency can be
performed in a similar way as in [22].

The fluctuations of the number of pairs 8n£_) and nu-
clei Sn&_) in the sound wave are linked by the relation

k2 (geM_gam+gae(M_m))

) =|1- 5
8me (M +m)

nl?. (33)
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According to (14), the fluctuations of the mass density and
charge density in the sound wave are given by the formulas

2

dpl) = {Mu +2m, —m, o X

x (geM_gam+g(xe(M_m)) Sn((l—)’ (34)
(M +m)
2 _ _
Sp(ci) _ k= (gM-g,m+gy. (M m))f)n((;). (35)

4r|e| (M +m)

From (34) and (35) there follows the relation between the
fluctuations of charge and mass densities

k* (g,M—-g m+g,,(M—m))

50, (36
M (M +m) Pm > (36)

=) =
OPa 4rt|e]
where My, =M +2m, is the mass of a helium atom
*He. As we can see, at k — 0 also Sp;) — 0, so that with
an increase in the length of the sound wave the charge fluc-
tuation in it decreases in comparison to the density fluctua-
tion. It should be noted, however, that the wavelength can-
not exceed the characteristic size of the system, so that
always k>1/L. This is essential, as will be seen below,
when considering oscillations in a resonator. Let us also
give the relation between the current density fluctuation
and the mass density fluctuation:

(37

For the optical branch, the fluctuations of the number of
pairs 87" and nuclei 8n{" are linked by the relation

2 M - M-
e s

(€1

According to (14), the oscillations of the mass and charge
densities in the optical branch are determined by the formulas

X

M 2
Spl) =| M, —2Me py MM K
m m  4ne?

X(geM—gam+gae(M—m)>}6n&+)’ 39)
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X
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m
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(M +m)

}Sn&”. (40)

From (39) and (40) it follows that in this case the relation
between the fluctuations of charge and mass densities is
given by the formula

+) —
o9l -

2|e|(M +m) { k>
1+ X
(mM o —2m,M)| 8|

XM(geM_g(xm+gue(M_m)):|8p(+). (41)
(M +m)? "

In the limit £ — 0, the ratio of the amplitudes of oscilla-
tions of charge and mass densities remains constant. The
current density fluctuation and the mass density fluctuation
are linked by the relation

i)
- + -
_m M) g5

8i) = —nle . 42
e | |(mMa —2m,M) " (42)

Although this work does not consider the states with
stationary flows, we note that since electron pairs compen-
sate for the charge of nuclei, stationary flux densities of the
number of nuclei and pairs should be the same and the sta-
tionary electric current density should be zero in this case.

4. Low frequency oscillations in a capacitor

In the experiment [1], there were studied the standing
waves of the second sound and the potential oscillations in
a resonator filled with superfluid helium. Let us consider,
within the framework of the proposed model, the oscilla-
tions in a capacitor the plates of which are perpendicular to
the x-axis and located at the points x =+ /2. Taking into
account that the flows of particles in the direction perpen-
dicular to the plates should vanish on the plates them-
selves, we find that the fluctuations of the densities of nu-
clei and pairs are given by the formulas

on, =n, sinw,tsink,x, on, =n,sinw,tsink,x, (43)
where o, =ck,, k, =n(2n+1)/L, and the velocity ¢ is
determined by the formula (29). Assuming that the poten-
tial on the right plate at x = L/2 is equal to zero and the
surface charges on the capacitor plates are absent, so that
the normal component of the electric field vanishes on the
plates, we find from the Eq. (19) the potential distribution

S50(x, 1) = %ﬂ[(—l)" —sink, x]sin®, f, (44)

where

2(g,M—-g,m+g,.(M—m))_
(Pm - ng -
le| (M +m)

The potential distribution for the cases when one n =0 and
three n=1 half-waves fit along the resonator length is
shown in Fig. 2.

These distributions coincide with those obtained exper-
imentally in [20].
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Fig. 2. The potential distribution in the capacitor at the moment
t=L/2c: (1) one n=0, (2) three n=1 half-waves fit along the
resonator length.

5. Discussion

In the semi-phenomenological model of helium super-
fluidity proposed in this article, atoms are considered as
complexes consisting of a nucleus and a bound pair of
electrons in the singlet state. Since this model contains two
systems of oppositely charged particles obeying the Bose
statistics, there are also two coherent Bose—Einstein con-
densates. In dynamic processes the local fluctuations of the
number of electron pairs and nuclei lead to the fluctuations
of the densities of electric charge, current and potential.
The model is formulated for zero temperature and under
the assumption that the system is rarefied, and therefore
cannot pretend to give a quantitative description of the
effects observed in superfluid helium, like indeed any other
model if it does not contain a set of a sufficient number of
adjustable parameters. Nevertheless, it allows to qualita-
tively understand the cause of the observed electrical phe-
nomena, which consists in the perturbation of the coherent
system of nuclei and electron pairs. In liquid helium the
coherence emerges below the lambda-transition tempera-
ture. A consequence of the emergence of the coherent
Bose—Einstein condensate is the appearance of a new char-
acteristic of the system — the superfluid density. Thus, in
liquid superfluid helium the coherent subsystem of atoms
forms the superfluid density, which depends on tempera-
ture T, pressure p and the difference of the superfluid and
normal velocities w=v, —v,, so that p, =p,(p, T, w?).
As we can see, the oscillations of the superfluid density,
and consequently of the coherent subsystem, in helium can
arise under the influence of the fluctuations of temperature,
pressure and the velocity difference. The intensity of such
oscillations of the coherent subsystem can be characterized
by the dimensionless parameters

(45)

where u, is the velocity of the second sound. Let us esti-
mate the magnitude of these coefficients. Using the data
given in the appendix of the book [23], we find that at
T'=14K the coefficient 4, ~—0.54. With an increase in
temperature, this coefficient increases in absolute magni-
tude, reaching at 7 =2 K the value 4; ~—7.3. In this case,
of course, p, decreases.

Let us also estimate the magnitude of the coefficient 4,
that determines the influence of the oscillations of the su-
perfluid flow on the perturbation of the coherent system of
helium. The derivative of the superfluid density is ex-
pressed in terms of the derivatives of the total p and nor-
mal p, densities: op, | ow* =0p/ow* —dp, / ow*. The
first term can be estimated using the thermodynamic rela-
tion [24]

a_p:ﬁ 0 p_nj (46)

owr 2 opl p

The dependence of the normal density on w? is found from
formulas given in §3 of [24]. As a result, we get

opy

L~ 085107 gs* / em’.

ow

This estimate is consistent with the experimental esti-
mate given in the appendix of the book [23]

p_'|8p,, /6w2| <6107%s? /cm?. Taking into account the
value of the second-sound velocity u, =210%cm/s, we
get A, ~-2.5 1072, And if we take the maximum possible
value p’1|8pn /6w2| =6107%s?/cm? according to the ex-

perimental data, then we get 4,, = —0.25. As seen, the elec-
trical effects caused by the fluctuations of w=v, — v, are

close to those generated by the temperature fluctuations.
The electrical effects caused by the fluctuations of the ve-
locity difference were observed in the experiment with a
torsion oscillator [2].

An estimate of the coefficient that determines the effect
of pressure on the coherent subsystem at saturated vapor
pressure gives A4, ~ 107>, Pressure has the least effect on
the coherent subsystem, so that the electrical effects should
be much less pronounced in experiments with the first
sound. However, as the pressure increases the coefficient
A, also increases. So, at pressure of 5 atm it has an order
of magnitude 4, ~ 1072. Note that in [25] the observation
of the electric effect in the first sound wave was reported,
although this effect was not observed in other works.
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6. Conclusion

The article proposes a qualitative interpretation of the elec-
trical effects observed in superfluid helium [1-12, 20, 25],
based on the analysis of the model which assumes the ex-
istence of two oppositely charged coherent Bose—Einstein
condensates: those of atomic nuclei and singlet electron
pairs. In this approach the electron pairs are considered as
delocalized, so that in nonstationary processes there exists
a probability of a pair transition from atom to atom and,
therefore, the possibility of the local breaking of
electroneutrality, which thus leads to the appearance of the
internal electric field. It is shown that there are two
branches of elementary excitations: sound and optical.

The observed electrical activity in superfluid helium is
explained by the disturbance due to external factors of its
coherent system manifesting itself in the existence of the
superfluid density. Estimates show that the strongest effect
on the coherent system is exerted by the fluctuations of
temperature, then follow the fluctuations of superfluid
flow, and the weakest effect is due to the fluctuations of
pressure. The frequency at which the resonant absorption
of a microwave radiation is observed [3-7] is interpreted as
a gap in the optical branch of the spectrum. The oscilla-
tions in a resonator are considered and it is shown that the
distribution of the electric potential in the standing wave is
consistent with experiment [20].
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AnepHa Ta eneKkTpoHHa KOrepeHTHICTb
Yy HagnAavHHOMY renii

Yu. M. Poluektov

3anponoHoBaHO HamiB()EHOMEHOIOTTYHY MOJeb Oararodac-
THHKOBOT crcTemu atomis “He, B sikiii aToM reiio PO3IISIAETHCS SIK
KOMILIEKC, 10 CKIIAJIAEThCS 3 sIpa Ta 3B’s13aHOI Mapy eJIEKTPOHIB y
cuHrietHoMy crasi. [Ipu HybOBIl TeMmeparypi icHye 1Ba KOH/ICH-
catu bose-EliHmTeiina i3 npoTuiiexkHUMH 3apsiiaMy, a caMe, KOH-
JICHCAT MO3UTUBHO 3apsHKCHHX SJep Ta KOHACHCAT Bil’€MHO 3apsi-
JDKEHHX eNeKTpoHHUX map. [lokaszaHo, mo B Takiif cucremi € JIiBi
rijKu 30y/DKeHb: 3ByKOBa Ta onTuyHa. Ha ocHOBI wiel mozerni 3a-
TIPOIIOHOBAHO IHTEPIIPETAIlI0 EKCIIEPUMEHTIB 13 JTOCIIPKEHHS ele-
KTPUYHOI aKTUBHOCTI HaJIUIMHHOTO renifo. Yacrora, Ha siKii crio-
cTepiraerbCsi pe3oHaHCHe TmOrMHAaHHS HBY-BUNpOMiHIOBaHHS,
TPaKTYEThCS K MIUTHMHA B onThyHii rinui. [Tokaszano, mo po3noit
€NIEKTPHYHOTO TOTEHIIATy B CTOSIN XBHII Yy pE30HATOP] aHAJIOTIY-
HHUH TOMY, 1110 CHIOCTEPIraeThesi KCHEPHUMEHTAIBHO.

Kirouosi ciioBa: aToM rediro, 6030H, 3ByKOBI Ta ONTHYHI KOJMBAHHS,
HaIUIMHHICTD, eICKTPUYHA aKTHBHICTh, KOH/ICH-
cat bose—EiliHmTeiiHa, KOrepeHTHUI! CTaH.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 8 759


https://doi.org/10.1063/1.1820042
https://doi.org/10.1063/1.1820042
https://doi.org/10.1063/1.2001649
https://doi.org/10.1103/PhysRevB.76.140503
https://doi.org/10.1063/1.2911649
https://doi.org/10.1063/1.2957000
https://doi.org/10.1063/1.3266909
https://doi.org/10.1007/s10909-009-0025-6
https://doi.org/10.1063/1.4942758
https://doi.org/10.1063/1.4942758
https://doi.org/10.1016/j.physb.2016.02.008
https://doi.org/10.1063/1.4985984
https://doi.org/10.1063/1.5055857
https://doi.org/10.1063/10.0000361
https://doi.org/10.1063/1.3674269
https://doi.org/10.1063/1.3674269
https://doi.org/10.1063/1.4758763
https://doi.org/10.1007/BF02731494
https://doi.org/10.1007/BF02731494
https://doi.org/10.1063/1.5055845
https://doi.org/10.1063/1.5055845
https://doi.org/10.1063/1.2409628
https://doi.org/10.1063/1.4883893
https://doi.org/10.1063/1.4881395
https://doi.org/10.1063/1.4881395
https://doi.org/10.1007/s10909-017-1746-6

	1. Introduction
	2. Dynamical equations of the coherent system of nuclei and electron pairs
	3. Small oscillations of the coherent system of nuclei and electron pairs
	4. Low frequency oscillations in a capacitor
	5. Discussion
	6. Conclusion

