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We provide the general arguments that quantum atomic gases of interacting high-spin atoms represent a phys-
ical system in which the multipole (hidden) degrees of freedom may be manifested. Their manifestation occurs 
when the interatomic interaction is of non-local type. For a local interaction described by the s-wave scattering 
length, the multipole degrees of freedom do not reveal themselves. To illustrate our findings, we theoretically 
examine the phenomenon of Bose–Einstein condensation in an interacting gas of spin-1 atoms in an external 
magnetic field. This study is based on the SU(2) invariant Hamiltonian, which has a bilinear structure in the spin 
and quadrupole operators along with the scalar term. It is shown that depending on the conditions imposed on 
the interaction amplitudes (stability conditions), the ground state of the system may exhibit three different phas-
es: quadrupolar, ferromagnetic, and paramagnetic. The basic thermodynamic characteristics affected by hidden 
degrees of freedom are found for all phases. 
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1. Introduction

The spin degrees of freedom of the structural units of 
matter and their interaction significantly affect the collec-
tive properties of many-body systems giving rise to differ-
ent magnetic states such as traditional ferromagnetic and 
antiferromagnetic [1, 2] phases in the simplest spin-1/2 
systems, as well as nematic and other orderings [3–14] in 
high-spin systems. This fully applies ultracold atomic gas-
es, especially since the connection between the spin and 
statistics is manifested exactly at low temperatures divid-
ing the atoms into the bosons and fermions. 

In particular, dilute Bose gases of alkali atoms undergo 
Bose–Einstein condensation (BEC) below some critical 
temperature. This unique phenomenon, consisting in ac-
cumulation of a macroscopic number of bosonic atoms in a 
single state, was experimentally proved [15–17] seventy 
years after its theoretical prediction [18]. Somewhat later, 
it was theoretically demonstrated that the spin degrees of 
freedom of atoms and their interaction lead to a number of 
features in the formation of BEC in ultracold spin-1 gases 
[19–22] including ferromagnetic and antiferromagnetic 
(polar) phases. The number of possible magnetically-ordered 
ground states increases as the atomic spin grows [23]. Spi-
nor gases with BEC are unique in that they simultaneously 

manifest two different phenomena such as superfluidity 
and magnetism, both of which are associated with sponta-
neous symmetry breaking. Moreover, they can be used to 
observe a number of interesting phenomena. One can indi-
cate, for example, the ability to control the speed of elec-
tromagnetic waves in ultracold gases with BEC applying 
an external magnetic field [24–26], including encryption 
and filtering of a useful electromagnetic signal [27]. The 
high-spin atomic Fermi gases ( > 1/ 2S ) also provide the 
possibility to study new spin-dependent phenomena. In 
particular, being loaded to an optical lattice, they represent 
the effective simulator of superfluid and magnetic phenom-
ena, which are difficult to probe in real materials [28–30]. 

Usually, the interaction effects in ultracold quantum 
atomic gases with low-energy collisions of atoms are de-
scribed by the s-wave scattering lengths. In this case, for 
spin-1 atoms, it is sufficient to consider two terms in the 
many-body interaction Hamiltonian with the corresponding 
coupling constants expressed through the scattering lengths 
[19, 21, 23]. The first one does not contain the spin opera-
tors at all, while the second term, bilinear in them, is of the 
Heisenberg form. At the same time, it is well known that in 
high-spin systems ( 1S ), such as solid-state magnets, the 
spin-spin interaction has a more complicated character that 
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goes beyond the usual Heisenberg form [4]. In addition, 
their description requires to introducing the multipole de-
grees of freedom (quadrupole for S = 1, octupole for S = 3/2, 
and so on). To the best of our knowledge, although the 
multipole degrees of freedom were theoretically predicted 
for the solid-state magnets, there is still no strong experi-
mental evidence of their manifestation despite attempts to 
detect them [31, 32]. 

Since the ultracold gases of high-spin atoms exhibit a 
very high control of the relevant physical parameters, a natu-
ral question arises as to under what conditions the multipole 
degrees of freedom are manifested in this kind of systems. 
This motivates us to examine a many-body Hamiltonian 
of pairwise interaction for spin-S atoms and apply it to 
study spin-1 BEC with quadrupole degrees of freedom in 
the framework of the Bogoliubov model for a weakly in-
teracting Bose gas [33]. We show that the well-known 
scattering length approximation [34, 35] (local interaction) 
is insufficient to consider the interaction effects associated 
with quadrupole degrees of freedom. In order to study their 
manifestation, the interaction must be of the finite-range 
(non-local interaction) [36]. Even though the scattering-
length approximation well describes the interaction effects 
in ultracold gases, it also has some disadvantages. In par-
ticular, it leads to divergences of the ground state energy or 
chemical potential computed within the Bogoliubov model 
for a weakly interacting Bose gas, so that some artificial 
renormalization procedure for the coupling constant is nec-
essary to remove them [34, 35, 37]. For spinor conden-
sates, the scattering length approximation does not repro-
duce the complete structure of the single-particle excitation 
spectra, making some of them independent of the interac-
tion parameters [36]. The issue of non-local interaction has 
been recently discussed both for ultracold Bose [38, 39] 
and Fermi [40–42] gases. 

2. Single-particle density matrix and multipole degrees 
of freedom 

Let us consider the emergence of multipole description 
parameters by studying the single-particle density matrix 
of spin-S  atoms,  

 †( , ) = Tr .f a aαβ α′β′ ρ ppp p  (1) 

Here †a αp  and a αp  are the creation and annihilation opera-
tors, where the momentum p and spin projection α specify 
the individual single-particle state. Depending on the sta-
tistics, these operators satisfy the bosonic commutation (in 
case of integer spin) or fermionic anticommutation (in case 
of half-integer spin) relations,  

 †[ , ] = , [ , ] = 0,B Ba a a a′ ′ ′α αβ α α′β δ δp pp p pp  (2) 

 †{ , } = , { , } = 0.F Fa a a a′ ′ ′α αβ α α′β δ δp pp p pp  (3) 

For non-equilibrium systems, the statistical operator  = ( )tρ ρ  
satisfies the Liouville equation,  

 ( ) = [ , ( )],ti H t
t

∂ρ
ρ

∂
   

where H  is the system Hamiltonian. If the system is in the 
equilibrium state, then ρ is replaced by the Gibbs statistical 
operator w  defined by Eq. (11) (see below). Therefore, 
Eq. (1) provides a general definition of the single-particle 
density matrix, which is independent of statistics and is 
valid for both equilibrium and non-equilibrium systems. 

The single-particle density matrix ( , )fαβ ′p p  represent-
ing the square n n×  matrix with 2 1n S= +  can be decom-
posed over the complete set of 2n  independent n n×  matri-
ces. As such basis matrices, one can choose the identity 
matrix I αβ≡ δ  and 2 1n −  generators aT  of the SU(n) group. 
Therefore, we can write  

 
2(2 1) 1

0

=1
( , ) = ( , ) ( , ) .

S
a a

a
f f f T

+ −

αβ αβ αβ′ ′ ′δ + ∑p p p p p p  (4) 

The generators aT , being independent Hermitian ( †=a aT T ) 
and traceless (Tr = 0a aT Tαα≡ ; here and below, summation 
over repeated indices is assumed) matrices meet the fol-
lowing commutation relations (see, e.g., [1]):  

 [ , ] = , = = ,a b abc c abc bac bcaT T if T f f f−  (5) 

where abcf  are the structure constants. Taking into ac-
count the following property of aT :  

 21= , , = 1, (2 1) 1,
2

a b
abT T a b Sαβ βα δ + −  (6) 

one finds the coefficients 0 ( , )f ′p p  and ( , )af ′p p  in Eq. (4),  

 0 1( , ) = ( , ), ( , ) = 2 ( , ).
2 1

a af f f T f
S αα αβ βα′ ′ ′ ′
+

p p p p p p p p   

Equation (1) allows to represent the scalar 0 ( , )f ′p p  and 
vectorial ( , )af ′p p  parts of the single-particle density ma-
trix in the form  

 †0 1( , ) = Sp ,
2 1

f a a
S α′α′ ρ
+ ppp p   

 †( , ) = 2Sp .a af a T aαβ β′α′ ρ ppp p  (7) 

It is worth noting that the vectorial parameter ( , )af ′p p  of 
dimension 2(2 1) 1S + −  appear in a natural way, from pure-
ly mathematical considerations. This parameter is induced 
by the spin of the structural units of matter and it specifies 
the macroscopic state of a many-body system. For spatially 
homogeneous states, Eqs. (7) read  

 0 0 †1( , ) = ( ) = Sp ,
2 1

f f a a
S′ ′α α′ δ ρ δ
+pp p p ppp p p   

 †( , ) = ( ) = 2Sp .a a af f a T a′ ′α αβ β′ δ ρ δpp p p ppp p p  (8) 
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Note that the quantity  

 †= 2a aa T aα αβ βΣ ∑ p p
p

 (9) 

represents the generalization of the total spin operator 
†= .a aα αβ β∑ p p

p
S S  

From the above point of view, the many-body system of 
spin-1/2 particles is very specific. Indeed, in this case, three 
Pauli matrices  

 1 20 1 0
= , = ,

1 0 0
x y i

i
−   

σ ≡ σ σ ≡ σ   
   

  

 3 1 0
=

0 1
z  

σ ≡ σ  − 
 (10) 

can be chosen to be the generators of the SU(2) group, 
(1/ 2)a iTαβ αβ≡ σ  ( = = 1, 2, 3a i ). Therefore, according to 

Eq. (9), the system is completely described by a three 
component vector aΣ  related to the total spin by 2a iSΣ ≡  

= (1/ 2) .i iSαβ αβσ  The latter determines the physically ob-
servable magnetization vector. Note that no additional de-
scription parameters emerge in this case. 

The situation becomes completely different for macro-
scopic systems of high-spin atoms ( 1S ). In the simplest 
spin-1 case, according to Eq. (4), we should consider eight 
generators of the SU(3) group with the properties given by 
Eqs. (5), (6). These generators can be realized by a set of 
eight 3×3 Gell–Mann matrices = 2a aTλ  ( = 1, , 8a  ), 
which are Hermitian and traceless (see Eqs. (15) below). 
Now the macroscopic description parameter aΣ  of the sys-
tem represents the eight-component vector. As we see be-
low, its three components can be related with the total spin 
of the system or magnetization vector, while the remaining 
five components can be interpreted as the quadrupole op-
erators associated with the quadrupole matrix. 

It is evident that the number of operators associated 
with the internal symmetry increases as the spin of the 
structural units of matter grows. In particular, for spin-3/2 
atoms (SU(4) group), we have 2(2 1) 1 = 15 = 3 5 7S + − + +  
operators. Three of them should be associated with the spin 
components, other five and seven operators with quadru-
pole and octupole degrees of freedom, respectively. 

Before studying the system with interatomic interaction, 
we consider an ideal gas of spin-1 atoms in equilibrium by 
performing calculation of the single-particle density matrix 
and by giving a physical interpretation of the Gell–Mann 
generators. The equilibrium state of a many-body system is 
completely described by the Gibbs statistical operator,  

 ( )= exp ,w H NΩ−β −µ    (11) 

where H is the Hamiltonian of the system (it may include 
the interaction terms) and N is the particle number operator 
representing the additive integral of motion given by  

 †= .N a aα α∑ p p
p

 (12) 

The grand thermodynamic potential Ω  as a function 
of reciprocal temperature = 1/ Tβ  and chemical potential 
µ is found from the normalization condition Sp = 1w , 
which gives  

 ( )= lnSpexp .H NΩ − −β −µ    (13) 

The system is supposed to be at rest so that its translational 
and angular velocities are zero. Otherwise, two other inte-
grals of motion such as the operators of total momentum 
and angular momentum should be introduced into the 
Gibbs exponent. Moreover, since the operators of the total 
momentum and angular momentum do not commute, the 
rotating system is inhomogeneous. Note that the statistical 
operator in the form of Eq. (11) describes only the normal 
equilibrium states. If the symmetry is spontaneously bro-
ken, then one should apply the Bogoliubov quasiaverage 
concept [44–48], which consists in adding infinitely small 
symmetry breaking terms in Eq. (11). In particular, for 
Bose condensed systems studied below, the method of 
quasiaverages and principle of spatial correlation weaken-
ing allow to justify the replacement of creation and annihi-
lation operators by c-numbers. 

Since the spin of an atom reveals in a magnetic field, let 
us find the single-particle density matrix for a homogene-
ous ideal gas in an external magnetic field B directed along 
z-axis, B = (0, 0, B). The Hamiltonian of such a system 
reads,  

 † †= ,z
BH a a g B a S aα α α αβ βε + µ∑ ∑p p p p p

p p
 (14) 

where 2= / 2p mεp  is the kinetic energy of an atom with 
mass m, g is the Landè hyperfine factor, = / 2B ee mµ   is 
the Bohr magneton (e is the elementary charge and em  is 
the electron rest mass), and zS  is the z-component of the 
spin operator. 

In the simplest case of spin-1/2 atoms, the equilibrium 
single-particle density matrix is determined by Eqs. (8), 
where ρ and aT  are replaced by the Gibbs statistical opera-
tor w  and Pauli matrices / 2,iσ  respectively. Then, the 
standard technique (see, e.g., [4]) for computing the corre-
sponding quantities yields,  

 

0 1 1 1( ) = ,
2 exp[ ( ) ] 1 exp[ ( ) ] 1B B

f
B B

 
+ ε −µ−µ + ε −µ+µ + 

p
p p

 

1 1( ) = .
exp[ ( ) ] 1 exp[ ( ) ] 1

i
iz

B B
f

B p B
 

δ − ε −µ−µ + ε −µ+µ + 
p

p
 

Therefore, an external applied magnetic field induces 
magnetization = ( / 2) ( )i i

BM g fµ ∑
p

p  which turns to zero 

when 0B = . 
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Now we address the description of an ideal gas of spin-1 
atoms in a magnetic field using the Hamiltonian determined 
by Eq. (14). In this case, the single-particle density matrix is 
decomposed over the complete set of 3×3 matrices. As such 
a basis, one can choose the identity matrix and eight linearly 
independent Gell–Mann matrices = 2a aTλ     ( = 1, 8a  ). 
The latter represent the generators of the SU(3) group and 
given by  

 1 2
0 1 0 0 0

= 1 0 0 , = 0 0 ,
0 0 0 0 0 0

i
i

−   
   λ λ   
   
   

  

 3 4
1 0 0 0 0 1

= 0 1 0 , = 0 0 0 ,
0 0 0 1 0 0

   
   λ − λ   
   
   

  

 5 6
0 0 0 0 0

= 0 0 0 , = 0 0 1 ,
0 0 0 1 0

i

i

−   
   λ λ   
   
   

  

 7 8
0 0 0 1 0 0

1= 0 0 , = 0 1 0 .
30 0 0 0 2

i
i

   
   λ − λ   
   −   

 (15) 

According to Eq. (8), the scalar and vectorial part of the 
single-particle density matrix become,  

0 † †1( ) = Tr , ( ) = Tr .
3

a af wa a f wa aα α α αβ βλp p p pp p  (16) 

The spin-1 operators entering the Gibbs exponent through 
the Hamiltonian [see Eq. (14)] are expressed in terms of 
the Gell–Mann matrices as follows:  

 1 6
0 1 0

1 1= ( ) = 1 0 1 ,
2 2 0 1 0

xS
 
 λ + λ  
 
 

  

 2 7
0 0

1 1= ( ) = 0 ,
2 2 0 0

y
i

S i i
i

− 
 λ + λ − 
 
 

  

 3 8
1 0 0

1= ( 3 ) = 0 0 0 .
2

0 0 1

zS
 
 λ + λ  
 − 

 (17) 

Again, applying the standard procedure to compute traces 
in Eq. (16), one obtains the following expression for the 
single-particle density matrix:  

 

[ ]

[ ]

[ ]

1 0 1

3
1 0

8
1 0 1

1( ) = ( ) ( ) ( )
3
1 ( ) ( )
2

1 ( ) ( ) 2 ( ) ,
2 3

f f f f

f f

f f f

αβ − αβ

− αβ

− αβ

+ + δ +

+ − λ +

+ + − λ

p p p p

p p

p p p

  

where 

 –1
1( ) = ,

exp[ ( ) ] 1B
f

Bε −µ −µ −
p

p
  

 0
1( ) = ,

exp[ ( ) ] 1
f

ε −µ −
p

p
  

 1
1( ) = .

exp[ ( ) ] 1B
f

Bε −µ +µ −
p

p
  

Finally, taking into account Eqs. (17), we arrive at  

 

[ ]

[ ]

[ ]

1 0 1

1 1

3 8
1 0 1

1( ) = ( ) ( ) ( )
3
1 ( ) ( )
2

1 1( ) 2 ( ) ( ) .
4 3

z

f f f f

f f S

f f f

αβ − αβ

− αβ

− αβ αβ

+ + δ +

+ − +

 
+ − + λ − λ 

 

p p p p

p p

p p p

 (18) 

The first two terms in Eq. (18) determine the atomic densi-
ty and magnetization respectively, while the third term 
indicates the emergence of additional degrees of freedom 
induced in a many-body system by the spin of atoms. 
Therefore, a natural question arises as to what physical 
characteristics are sensitive to these additional parameters. 
It is clear that the single-particle density matrix itself can-
not be measured experimentally. The only measurable 
physical quantity associated with internal degrees of free-
dom is the magnetization vector of the system. The latter is 
found to be  

 1 1= ( ) = ( ( ) ( )).z z
B BM g S f g f fαβ βα −µ µ −∑ ∑

p p
p p p   

However, this quantity is determined purely by the atomic 
spin and the mentioned additional parameters do not affect 
its structure. One can show that they also do not modify 
the heat capacity, pressure, and other characteristics of an 
ideal gas. Therefore, in order to predict the physical charac-
teristics that might reveal additional degrees of freedom it is 
necessary, first of all, to take into account properly the intera-
tomic interaction that involves these degrees of freedom. 

Before starting to solve the declared problem, let us 
find out, at least in spin-1 case, the physical interpretation 
of all operators aλ  required to describe a many-body sys-
tem. To this end, we take the realization of spin-1 opera-
tors in the vector (Cartesian) basis x , y , z ,  

 | = , | = | ,i
ik ikli k S k i l〈 〉 δ 〉 ε 〉  (19) 

so that iS  meet the commutation relations for spin opera-
tors [ , ] =i k l

iklS S i Sε  and 2 = ( 1) .S S S I+  Then, Eq. (19) 
gives  

 | | ( ) = ,i i
kl iklk S l S i〈 〉 ≡ − ε   

wherefrom  
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0 0 0 0 0 0 0

= 0 0 , = 0 0 0 , = 0 0 .
0 0 0 0 0 0 0

x y z
i i

S i S S i
i i

−     
     −     
     −     

  

  (20) 

Performing the comparison of Eqs. (20) with Eqs. (15) we 
have 7xS ≡ λ , 5yS ≡ −λ , and 2.zS ≡ λ  The other five Gell–
Mann operators are found to be  

 1 3 2 2 4= { , }, = ( ) ( ) , = { , },x y y x x zS S S S S Sλ − λ − λ −  

 6 8 2 2= { , }, = 3( ) ,
3

y z zS S S Iλ − λ −  (21) 

where { , } =a b ab ba+  and I  is the unit 3×3 matrix. As the 
next step, consider the traceless quadrupole matrix, 

(4 / 3)ik i k k i
ikS S S S≡ + − δ  (see, e.g., [40]). In this way, 

one can easily seen that it is completely specified by the 
above five Gell–Mann operators,  

 

3 8 1 4

1 3 8 6

4 6 8

/ 3

= / 3 .

2 / 3

ik

 −λ −λ −λ −λ
 
 −λ λ −λ −λ
 
 −λ −λ λ 

  (22) 

For this reason, operators given by Eq. (21) are interpreted 
as quadrupole operators. These five quantities can be orga-
nized to form a five-component vector 

1 3 4 6 8= ( , , , , )bq −λ −λ −λ −λ λ . 

Hence, in case of spin-1 system, there are eight many-body 
operators associated with internal symmetry [compare to 
Eq. (9)],  

 †= , = 1, 8.a aa a aα αβ βΛ λ∑ p p
p


 (23) 

They can be split into the total spin operator of the system,  

 † 7 5 2= , = ( = , = , = ),i i i x y zS a S a S S S Sα αβ β λ −λ λ∑ p p
p

  

  (24) 

and quadrupole operator,  

 † 1 3 4 6 8= , = ( , , , , ).b b bQ a q a qα αβ β −λ −λ −λ −λ λ∑ p p
p

  

  (25) 

Note that the multipole (quadrupole) operators are unique-
ly determined by the spin operator of the quantum system. 

3. Many-body Hamiltonian of pairwise interaction 

SU(2) invariant Hamiltonian. To understand the struc-
ture of a many-body Hamiltonian of pairwise interaction, 
which would include both spin and quadrupole operators, 
consider a collision of two identical atoms with spin 1S = . 
In general case, when colliding, two bosonic atoms can 

couple to form the states with total spin = 0, 1, 2.  Let g  
be the coupling constants corresponding to three-channel 
scattering. Following [28], we write the interaction Hamil-
tonian in the form 0 0 1 1 2 2=V g P g P g P+ + , where P  is 
the projection operator onto a two-body state with the total 
spin angular momentum  , which has the following prop-
erties: =P P ′ ′δ    and 2 = 1.P  The projection operators 
are found from the following system of coupled equations:  

1 2 0 1 2= 2 ,P P P⋅ − − +S S    2
1 2 2 1 0( ) = 4 ,P P P⋅ + +S S  

 0 1 2 = 1.P P P+ +  (26) 

The first two equations follow from the relation: 
2

1 2
=0

= P⋅ λ∑S S  


, where [ ]1= ( 1) 2 ( 1)
2

S Sλ + − +   , 

while the third equation represents the completeness condi-
tion for the projection operator. The solution of Eqs. (26) is 
found to be  

2
0 1 2

1= ( ) 1 ,
3

P  ⋅ − S S   2
1 1 2 1 2

1= 1 ( ) ( ) ,
2

P  − ⋅ + ⋅ S S S S   

 2
2 1 2 1 2

1 1 1= ( ) ( ) .
3 2 6

P + ⋅ + ⋅S S S S   

Therefore, the interaction Hamiltonian under consideration 
becomes [46],  

 2
0 1 1 2 2 1 2= ( ) ( ) ,V c c c+ ⋅ + ⋅S S S S  (27) 

with  

 ( ) ( )0 1 2 0 1 2 1
1 1= , = ,
3 2

c g g g c g g+ − −   

 1 2
2 0

31= .
3 2 2

g gc g − + 
 

 (28) 

As we see, for three-channel scattering characterized by 
the total spin = 0,1, 2 , the interaction Hamiltonian is 
specified by both bilinear and biquadratic terms in the spin 
operators. 

If the interaction between the atoms is of local character 
and parameterized by the s-wave scattering length a  so 
that 2= 4 /g a mπ  , then the scattering with 1=  is 
forbidden, since in s-state of relative motion the unit angu-
lar momentum is ruled out because the wave function must 
be symmetric under exchange ot two atoms. In this case 

1 0P =  and the biquadratic term in spin operators becomes 
2

1 2 1 2( ) = 2 ( )⋅ − ⋅S S S S  so that the interaction Hamiltoni-
an reduces to the form [21], 0 2 1 2= ( )V c c+ ⋅S S  , where 

0 0 2= 1/ 3( 2 )c g g+  and 2 2 0= 1/ 3( ).c g g−  Therefore, for 
local interaction parameterized by s-wave scattering length, 
the Hamiltonian is of the Heisenberg type: it contains the 
spin-independent term and the term, which is bilinear in the 
spin operators. This is in contrast to Eq. (27), which does 
not employ the scattering-length approximation. 
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Now we formulate a many-body Hamiltonian of pair-
wise interaction constructed from both spin and quadrupole 
operators and show that its structure is consistent with 
Eq. (27). Taking into account Eqs. (24) and (25) and em-
ploying the general rules for constructing two-body opera-
tors in the second quantization method we represent the 
interaction Hamiltonian in the following general form, which 
does not imply parameterization by the scattering length:  

 = ,U J KV V V V+ +  (29) 

with  

 † †
1 3 ,3 4 1 2 3 41 2

,1 4

1= ( ) ,
2UV U a a a aα β + +α β− δ∑ p p p p p pp p

p p
p p




  

  (30) 

† †
1 3 ,3 4 1 2 3 41 2

, ,1 4

=
1= ( ) ,

2

J

i i

V

J a a S S a aαγ βδ γ δ + +α β− δ∑ p p p p p pp p
p p

p p



 

  (31) 
 

† †
1 3 ,3 4 1 2 3 41 2

, ,1 4

=
1= ( ) ,

2

K

b b

V

K a a q q a aαγ βδ γ δ + +α β− δ∑ p p p p p pp p
p p

p p



 

  (32) 

where ( )U p , ( )J p , and ( )K p  are the Fourier transforms of 
the corresponding interaction energies and   is the volume 
of the system. The Hamiltonian given by Eqs. (29)–(32) is 
SU(2) invariant, since [ , ] = 0iV S , where iS  is the total 
spin operator determined by Eq. (24). Next, employing the 
formulae below that relate the Gell–Mann matrices to squares 
and mixed products of the spin components:  

 2 3 81 1 4( ) = ,
2 33

xS  
−λ − λ + 
 

  

 ( )2 3 8 2 81 1 4 1( ) = , ( ) = 3 2
2 3 33

y zS S 
λ − λ + λ + 
 

  

and  

 ( ) ( )1 2 1 21 1= , = ,
2 2

x y y xS S i S S i− λ − λ − λ + λ   

 ( ) ( )4 5 4 51 1= , = ,
2 2

x z z xS S i S S i− λ − λ − λ + λ   

 ( ) ( )6 7 6 71 1= , = ,
2 2

y z z yS S i S S i− λ − λ − λ + λ   

we arrive at following quantity entering the interaction 
Hamiltonian [see Eq. (32)]:  

 1 1 4= .
2 2 3

b b i i k k i iq q S S S S S Sαγ βδ ασ βρ σγ ρδ αγ βδ αγ βδ+ − δ δ   

Therefore, a comparison of Eq. (27) to Eqs. (29)–(32) al-
lows us to conclude that the involvement of the quadrupole 
degrees of freedom specified by the generators of the 
SU(3) group is equivalent to emergence of the biquadratic 
terms in the interaction Hamiltonian. 

SU(3) invariant Hamiltonian. Since for ultracold gases 
the interaction parameters can be adjusted using the 
Feshbach resonance [49, 50], one can achieve the equality, 

( ) = ( )J Kp p , so that the interaction Hamiltonian takes the 
form,  

 
† †

S (3) 1 3 ,3 4 1 2 3 41 2
, ,1 4

1= ( )
2UV U a a a aα β + +α β− δ +∑ p p p p p pp p

p p
p p




  

 
† †

1 3 ,3 4 1 2 3 41 2
, ,1 4

1 ( ) .
2

a aJ a a a aαγ βδ γ δ + +α β+ − λ λ δ∑ p p p p p pp p
p p

p p




  (33) 

This Hamiltonian is SU(3) invariant since S (3)[ , ] = 0,a
UV Λ  

where aΛ  is determined by Eq. (23) [this becomes obvious 
if we use Eqs. (2) and (5)]. 

The structure of a more general SU(n) invariant Hamil-
tonian can also be understand in the framework of the phe-
nomenological quasiparticle approach in which the energy 
of the system is considered to be a functional of the single-
particle density matrix, like in the normal Fermi-liquid 
theory [51, 52]. In the case of low density systems, we can 
take the energy functional quadratic in the single-particle 
density matrix,  

 0 int( ) = ( ) ( ),E f E f E f+  (34) 

with  

 0 1 2 2 11 2 2 1
,1 2

( ) = ( , ) ( , ),E f fα α α αε∑
p p

p p p p   

 int 1 21 2
, ,1 4

1( ) = ( , )
2

E f fα α ×∑
p p

p p


  

 ; 2 1 4 3 3 42 1 4 3 3 4
( , ; , ) ( , ),F fα α α α α α× p p p p p p  (35) 

where 1 21 2
( , )α αε p p  is the quasiparticle energy representing 

the first variational derivative of the energy functional ( )E f . 
Since the interaction amplitude ; 2 3 4 32 1 4 3

( , ; , )Fα α α α p p p p  
represents the second variational derivative of the energy 
functional with respect to 1 21 2

( , )fα α p p , it has the follow-
ing property:  

; 2 1 4 3 ; 4 3 2 12 1 4 3 4 3 2 1
( , ; , ) = ( , ; , )F Fα α α α α α α αp p p p p p p p . (36) 

If to require the SU(n) symmetry of the interaction term in 
the energy functional, then one can write  

 
4 3 1 2 4 3

(1)
; 1 2 4 3 1 2 4 31 2

( , ; , ) = ( , ; , )F Fα α α α α α α αδ δ +p p p p p p p p  

 ( ) ( )(2)
1 2 4 3 1 2 4 3

( , ; , ) ,a aF T Tα α α α+ p p p p  (37) 
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where the amplitudes (1)
1 2 4 3( , ; , )F p p p p  and 

(2)
1 2 4 3( , ; , )F p p p p , according to Eq. (36), satisfy the fol-

lowing symmetry conditions:  

 (1) (1)
1 2 4 3 4 3 1 2( , ; , ) ( , ; , )F F=p p p p p p p p ,  

 (2) (2)
1 2 4 3 4 3 1 2( , ; , ) ( , ; , )F F=p p p p p p p p  (38) 

and can be expressed in terms of the interaction amplitude 
; 1 2 4 31 2 4 3

( , ; , )Fα α α α p p p p  as follows [see Eq. (6)]:  

 (1)
1 2 4 3 ; 1 2 4 32

1( , ; , ) ( , ; , ),
(2 1)

F F
S αα ββ=
+

p p p p p p p p   

 (2)
1 2 4 3( , ; , )F =p p p p   

 ; 1 2 4 33 4 2 1 1 2 4 3

1 ( , ; , ).
( 1)

a aT T F
S S α α α α α α α α=

+
p p p p  (39) 

On the other hand, the general quantum-mechanical Hamil-
tonian describing the pair interaction of quasiparticles has 
the form [48]:  

 † †
1 1 2 2

1 4

1=
4

V a aΦ α α ×∑ p p
p p

  

 ; 1 2 3 41 2 3 4 3 3 4 4
( , ; , ) .a aα α α α α α× Φ p pp p p p  (40) 

For definiteness, we consider quasiparticles to be bosons. 
Therefore, the interaction amplitude should have the fol-
lowing symmetry properties:  

 ; 1 2 3 4 ; 2 1 3 41 2 3 4 2 1 3 4
( , ; , ) = ( , ; , )α α α α α α α αΦ Φ =p p p p p p p p   

 ; 1 2 4 31 2 4 3
= ( , ; , ).α α α αΦ p p p p  (41) 

The similar properties can also be written for fermions,  

 ; 1 2 3 4 ; 2 1 4 31 2 3 4 3 4 2 1
( , ; , ) = ( , ; , ),α α α α α α α αΦ Φp p p p p p p p   

 ; 2 1 3 4 ; 1 2 4 32 1 3 4 1 2 4 3
( , ; , ) = ( , ; , ) =α α α α α α α αΦ Φp p p p p p p p  

 ; 1 2 3 41 2 3 4
= ( , ; , ).α α α α−Φ p p p p   

Therefore, the choice of bosonic quasiparticles does not 
limit the generality of the further consideration. 

As the next step, we require the equality between the in-
teraction part of the energy functional given by Eq. (35) 
and the expectation value of the introduced quasiparticle 
Hamiltonian VΦ :  

 int 0( ) = Tr ( ) ,E f f VΦρ  (42) 

where 0 ( )fρ  is the statistical operator of an ideal non-
equilibrium gas of quasiparticles [48],  

 †
0

,
( ) = exp .f a A a′ ′α α β β

′

 
ρ Ω − 

  
∑ p p p p
p p

  

Here the quantities Ω  and A ′α βp p , being the functionals of 
the single-particle density matrix, are determined by the fol-
lowing relations, respectively, 0Sp ( ) = 1fρ  and ( , ) =fαβ ′p p  

†
0= Sp ( )f a a α′βρ pp . The von Neumann entropy 

0 0= Sp ( )ln ( )S f fρ ρ  is in agreement with its combinato-
rial expression, = Tr[ ln (1 ) ln(1 )]S f f f f− − + + , where 
trace is taken over the single-particle states specified by the 
momentum and spin projection. The statistical operator 

0 ( )fρ  satisfies the principle of spatial correlation weaken-
ing and the Bloch–De Dominicis (or Wick’s) theorem is 
applied for it [45]. It was employed to derive the kinetic 
equations and collision integrals for weakly interacting 
quantum gases [48, 53, 54] and was generalized to exam-
ine the superfluid states for both Fermi [55] and Bose sys-
tems [56]. Therefore, application of the Bloch–De Dominicis 
theorem to Eq. (42) gives the following relation between 
the interaction amplitudes :  

____________________________________________________ 

 ; 1 2 4 3 ; 1 3 2 4 ; 2 3 1 41 2 3 4 1 3 2 4 2 3 1 4

1 1( , ; , ) = ( , ; , ) ( , ; , )
2

F Fα α α α α α α α α α α α
 Φ + = p p p p p p p p p p p p


  

 (1) (1)
1 3 2 4 2 3 1 41 3 2 4 2 3 1 4

1= ( , ; , ) ( , ; , )
2

F Fα α α α α α α α
 δ δ + δ δ + p p p p p p p p   

 (2) (2)
1 3 2 4 2 3 1 41 3 2 4 2 3 1 4

1 ( , ; , ) ( , ; , ) .
2

a a a aF T T F T Tα α α α α α α α
 + + p p p p p p p p  (43) 

where we have used Eqs. (41), (37). Therefore, the interaction Hamiltonian given by Eq. (40) can be written in the form,  

 † † † †(1) (2)
1 3 2 4 1 3 2 43 1 4 2 1 3 2 4 3 3 4 41 1 2 2 1 1 2 2

, , , ,1 4 1 4

1 1= ( , ; , ) ( , ; , ) .
4 4

a aV a a F a a a a F T T a aΦ α α α α α α α αα α α α+∑ ∑p p p pp p p p
p p p p

p p p p p p p p
 

 
 

  (44) 
_______________________________________________

Now we require the interaction Hamiltonian (40) to be 
translationally invariant that is equivalent to its commuta-
tion with the total momentum of the system,  

 †[ , ] = 0, = .V a aΦ α α∑ p p
p

P P p   
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The above condition can be satisfied by redefining the 
amplitude ; 1 2 3 41 2 3 4

( , ; , )α α α αΦ p p p p  and, consequently, 

; 2 3 1 42 3 1 4
( , ; , )Fα α α α p p p p  [see Eq. (43)] in the following 

manner:  
 ; 1 2 3 41 2 3 4

( , ; , ) =α α α αΦ p p p p   

 ; 1 2 3 4 ;1 2 3 4 1 4 2 3
= ( , ; , ) ,α α α α + +Φ δp p p pp p p p   

 ; 2 3 1 42 3 1 4
( , ; , ) =Fα α α α p p p p   

 ; 2 3 1 4 ;2 3 1 4 1 4 2 3
= ( , ; , ) ,Fα α α α + +δp p p pp p p p   

where the Kronecker delta ensures the momentum conser-
vation law. Therefore, Eq. (44) takes the form  

 † †
1 1 2 2

, ,1 4

1=
4

V a aΦ α α ×∑ p p
p p


  

 (1)
1 3 2 4 ;3 1 4 2 1 4 2 3

( , ; , )F a aα α + +× δ +p p p p p pp p p p   

 † † (2)
1 3 2 41 1 2 2

, ,1 4

1 ( , ; , )
4

a a Fα α+ ×∑ p p
p p

p p p p





  

 ;1 3 2 4 3 3 4 4 1 4 2 3
,a aT T a aα α α α α α + +× δp p p p p p  (45) 

where the amplitudes (1)
1 3 2 4( , ; , )F p p p p  and 

(2)
1 3 2 4( , ; , )F p p p p  are also determined in accordance with 

Eqs. (39). It is worth noting that, according to Eq. (43), 
the interaction amplitude ; 1 2 3 41 2 3 4

( , ; , )α α α αΦ p p p p  of 

the microscopic Hamiltonian are expressed in terms of 
the different components of the same amplitude 

; 2 3 1 42 3 1 4
( , ; , )Fα α α α p p p p  in the phenomenological expan-

sion of energy in a series of the single-particle density ma-
trix. This indicates one nature of the interaction forces 

(1)
1 3 2 4( , ; , )F p p p p  and (2)

1 3 2 4( , ; , )F p p p p . In the case 
1S ≥ , the latter supplement and generalize the usual spin-

spin interaction. 
It should be noted that in spite of the fact that the Hamil-

tonian must be constructed of the operators of physical 
quantities, it is expressed in terms of abstract, perhaps, non-
physical characteristics representing the generators aT  of 
the SU(n) group. However, their emergence is mathemati-
cally justified, since they (as well as identity operator) repre-
sent a complete set of matrices for the expansion of the sin-
gle-particle density matrix and indicate the necessity to 
introduce additional description parameters along with the 
ordinary spin operator. As we have shown, for spin-1 sys-
tem, all eight Gell–Mann generators of the SU(3) group 
have their physical meaning: three of them are the compo-
nents of the spin operator and the remaining five operators 
specify the quadrupole degrees of freedom. For spin-S sys-
tem, described by the SU(2S+1) group, there is no general 
recipe for extracting both spin operators and other multipole 

degrees of freedom from the generators aT . Therefore, such 
a problem has to be solved for each specific spin-S system. 
However, we can always construct the spin-S matrices 
from the generators aT  and, thereby, to separate the biline-
ar spin-spin (exchange) interaction in the Hamiltonian. 

Finally, the general pairwise interaction Hamiltonian in 
the form of Eq. (45) has a more general form than that giv-
en by Eq. (33). This is due to the fact that the Hamiltonian 
VΦ  describes the interaction between quasiparticles. How-
ever, it can be related to the traditional Hamiltonian of 
pairwise interaction by using the following relations be-
tween the interaction amplitudes:  

 (1)
1 3 2 4( , ; , ) =F p p p p   

[ ]3 1 3 2 4 1 4 2
1= ( ) ( ) ( ) ( ) ,
8

U U U U− + − + − + −p p p p p p p p  

 (2)
1 3 2 4( , ; , ) =F p p p p   

[ ]3 1 3 2 4 1 4 2
1= ( ) ( ) ( ) ( ) ,
8

J J J J− + − + − + −p p p p p p p p  (46) 

where ( )U p  and ( )J p  are the Fourier transforms of the 
corresponding functions 1 2( )U −x x  and 1 2( )U −x x  that 
specify the interaction of two particles at points 1x  and 2x . 
According to the above consideration, these functions can 
be related to phenomenological amplitudes describing the 
“density-density” interaction. Combining Eqs. (45) and (46) 
we arrive at the SU(n) symmetric interaction Hamiltonian 
having the structure of Eq. (33). 

4. Manifestation of quadrupole degrees of freedom 
in magnetic phases of spin-1 condensate 

In this section, we intend to demonstrate the manifesta-
tion of the “hidden“ internal degrees of freedom on the 
physical characteristics of a specific many-body system 
with interatomic interaction. In particular, we study a non-
ideal Bose gas of interacting spin-1 atoms on the basis of 
the obtained interaction Hamiltonian involving both spin 
and quadrupole operators and find the ground-state mag-
netic phases and excitations modified by quadrupole de-
grees of freedom. Therefore, the starting point is the fol-
lowing second-quantized Hamiltonian:  

 †
0 0= , = ( ) ,zV a hS aα αβ αβ β + ε −µ δ − ∑ p p p

p
     

 2 ,zSαβ αβ≡ λ  (47) 

where = Bh g Bµ  and the magnetic field B is chosen to be 
directed along z-axis, = (0, 0, )BB . The interaction Ham-
iltonian   is given by Eqs. (29)–(32). Bose–Einstein con-
densation occurs when a macroscopic number 0N  of 
ultracold bosons accumulates in the lowest quantum state 
with zero momentum ( 0 /N N  tends to non-zero value 
when both N and V go to infinity so that the density /N V  
is kept fixed). To describe such a phenomenon, we use the 
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Bogoliubov model [33] for a non-ideal Bose gas with con-
densate in which the creation and annihilation operators of 
atoms with zero momentum are considered to be c-numbers, 

† *
0a α→ Ψ  and 0a α→ Ψ , where αΨ  is called the 

order parameter or the condensate wave function. The above 
c-number replacement is associated with U(1) symmetry 
breaking and can be validated in the framework of 
quasiaverage concept attracting the principle of the spatial 
weakening of correlations [45, 48]. It has also been proved 
to be exact in the thermodynamic limit [57]. Within the 
Bogoliubov approach, the Hamiltonian is truncated by the c-
number terms and quadratic terms in creation and annihila-
tion operators with non-zero momentum (the higher order 
terms are neglected since their contribution is considered to 

be small; they are associated with the quasiparticle interac-
tion). Therefore, the Hamiltonian given by Eq. (47) becomes  

 (0) (2)( ) ( ) ( ),Ψ ≈ Ψ + Ψ    (48) 

where  

 (0) * 2 * 21 (0) (0)( ) = ( ) ( )
2 2

iU J SΨ Ψ Ψ + Ψ Ψ +


  

 * 2 * *(0) ( ) ( ) ( )
2

b zK q h S+ Ψ Ψ − Ψ Ψ −µ Ψ Ψ  (49) 

and 

____________________________________________________ 

 (2) † * † † * † †

0 0 0

1( ) = ( ) (0) ( )( ) ( ) ( )( ) ( )( ) h.c.
2

za hS a U a a U a a a aα αβ αβ β −
≠ ≠ ≠

   Ψ ε −µ δ − + Ψ Ψ + Ψ Ψ + Ψ Ψ + +   ∑ ∑ ∑p p p p p p p p p
p p p

p  

 * † † * † †

0 0

1(0) ( )( ) ( ) ( )( ) ( )( ) h.c.
2

i i i i i iJ S a S a J a S S a a S a S−
≠ ≠

 + Ψ Ψ + Ψ Ψ + Ψ Ψ + + ∑ ∑p p p p p p
p p

p   

 * † † * † †

0 0

1(0) ( )( ) ( ) ( )( ) ( )( ) h.c. .
2

b b b b b b
p pK q a q a K a q q a a q a q−

≠ ≠

 + Ψ Ψ + Ψ Ψ + Ψ Ψ + ∑ ∑ p p p p
p p

p  (50) 

_______________________________________________

The Hamiltonian defined by Eq. (49) is expressed in terms 
of the condensate wave function and does not include the 
creation and annihilation operators of atoms, whereas the 
Hamiltonian (2) ( )Ψ  represents the quadratic form in 
creation and annihilation operators of atoms with non-zero 
momentum. Here and below we omit the summation over the 
repeated indices assuming matrix multiplication law, e.g., 

* *( ) α αΨ Ψ ≡ Ψ Ψ , † †( )a a a aα α≡p p p p , * *( )a a
α αβ βΨ λ Ψ ≡ Ψ λ Ψ , 

and so on. The Gibbs statistical operator determined by 
Eq. (11) is then replaced by  

 ( )(0) (2)( ) exp ( ) ( ) .w  Ψ Ω−β Ψ + Ψ    (51) 

According to Eq. (13) the grand thermodynamic potential 
is found to be  

 (0) (2)( ) = ( ) ln Tr exp ( ( )) . Ω Ψ β Ψ − −β Ψ    (52) 

Following the Bogoliubov approach [45], in the main ap-
proximation (low temperatures and weak interatomic in-
teraction), (0)( ) ( )Ω Ψ ≈ β Ψ . This approximation guaran-
tees the gapless structure of the single-particle excitation 
spectrum. Next, it is convenient to introduce the density 
of the thermodynamic potential = /ϖ Ω β , which, up to 
a sign, coincides with pressure P , = Pϖ − . Then, the 
minimization of  

 
(0)

* 2 * 2( ) (0) (0)= ( ) ( )
2 2

iU J S
V
Ψ

ϖ ≈ Ψ Ψ + Ψ Ψ +
   

 * 2 * *(0) ( ) ( ) ( ),
2

b zK q h S+ Ψ Ψ − Ψ Ψ −µ Ψ Ψ  (53) 

over *
αΨ  results in the following equation for determining 

the condensate wave function αΨ  as a function of chemi-
cal potential and interaction parameters:  

 * *(0)( ) (0)( )i iU J S Sα α αβ βµΨ − Ψ Ψ Ψ − Ψ Ψ Ψ −   

 *(0)( ) = 0.b b zK q q hSαβ β αβ β− Ψ Ψ Ψ + Ψ  (54) 

To study the possible solutions of Eq. (54), it is convenient 
to introduce the condensate density 0n ,  

 * *
0= , ( ) = 1,nα α α αΨ ζ ζ ζ ≡ ζ ζ  (55) 

where αζ  is the normalized state vector. Then Eq. (54) 
can be recast as  

 *
0 0(0) (0)( )i in U n J S Sα α αβ βµζ − ζ − ζ ζ ζ −   

 *
0 (0)( ) = 0.b b zn K q q hSαβ β αβ β− ζ ζ ζ + ζ  (56) 

Equation (56) determines the ground-state structure of a 
weakly interacting Bose gas of spin-1 atoms with conden-
sate and quadrupole degrees of freedom. It has three solu-
tions corresponding to the different magnetic phases [58]. 

(1) The first solution of Eq. (56) is of the form  

 ( ) 0 0
4= 0, 0, 1 with = (0) (0).
3

n U n Kζ µ +  (57) 

Such a state vector vanishes the magnetization =iS〈 〉  
*= ( ) = 0iSΨ Ψ  and breaks the spin-rotation symmetry since 
2( ) = 0zS〈 〉 , whereas 2 2

0( ) = ( ) =x yS S n〈 〉 〈 〉 . This shows 
that the spin vector fluctuates in the xy plane. Therefore, 
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the state determined by Eq. (57) describes the quadrupolar 
phase [10]. For the expectation value of the quadrupole 
matrix, one obtains  

 *
0

2= ( ) = 2 ,
3 ik i kQ Q n e e 〈 〉 Ψ Ψ δ − 

 
  

where = 1ze ±  is a unit vector perpendicular to the plane 
of fluctuations called a director. Taking into account 
Eqs. (53), (55), and (57), one finds the density of the ther-
modynamic potential,  

 
21= .

2 (0) 4 / 3 (0)U K
µ

ϖ −
+

 (58) 

For the stability of the state under study, the density of the 
thermodynamic potential must be negative (the pressure 
must be positive, = Pϖ − ). This requirement gives the fol-
lowing stability condition:  

 
4(0) (0) > 0.
3

U K+  (59) 

Now we obtain the single-particle excitation spectrum for 
the quadrupolar ground state. To this end, we turn to Eq. (50) 
for the quadratic part (in creation and annihilation opera-
tors) of the truncated Hamiltonian. Using Eq. (57) to elim-
inate the chemical potential and performing some algebraic 
transformations with the entering 3×3 matrices, we come 
to the Hamiltonian consisting of two commuting parts,  

 (2) (2)(2)
0 0 01 2( ) = ( ) ( ),n n n+    (60) 

where  

 (2) † † †
01

0 0

1( ) =
2z z z z z z z zn a a a a a a− −

≠ ≠

 α + β + ∑ ∑p p p p p p p p
p p

   

  (61) 
with  

 0
4= , = ( ) ( ) .
3z z z n U K α ε +β β + 

 
p p p p p p   

As for the second part (2)
02 ( )n , it can be written as the gen-

eral quadratic form in creation and annihilation operators [45],  

 (2) †† †
02

0 0

1( ) =
2

n a A a a B aα αβ β α αβ − β
≠ ≠

+ +∑ ∑p p p p
p p

   

 *

0

1 , , = , .
2

a B a x yα αβ − β
≠

+ α β∑ p p
p

 (62) 

In our case, the Hermitian ( †=A A ) and symmetric ( = TB B ) 
matrices are specified by the following matrix elements:  

 0 0 0= = ( ) 2 (0) ( ),xx yyA A n J n K n Kε + − +p p p   

 *= =xy yxA A ih   

and  
 0 0= = ( ) ( ), = = 0.xx yy xy yxB B n K n J B B−p p   

It is clear that since both parts of the Hamiltonian (2)
01 ( )n  

and (2)
02 ( )n  commute, they can be diagonalized separately. 

The Hamiltonian (2)
01 ( )n  has the same form as in the origi-

nal Bogoliubov theory for spinless atoms. Its standard 
diagonalization by the canonical unitary transformation gives 
the following dispersion law of quasiparticles (see, e.g., [48]):  

 
1/2

2 2 1/2 2
0

4= ( ) = 2 ( ) ( ) .
3z z z n U K  ω α −β ε + ε +    

p p p p p p p   

  (63) 

It is clear that here and below the quasiparticle energies 
must be real. This imposes a corresponding restriction on 
the Fourier transforms of the interaction energies. The se-
cond part of the Hamiltonian (2)

02 ( )n  can be also re-
duced to the diagonal form by the canonical unitary trans-
formation U ( † = 1UU )  

 (2) † †
0 02

0 = ,
( ) = ,

x y
U n U a aγ γ γ

≠ γ

ω +∑ ∑ p p p
p

   (64) 

where γωp  are the energies of the single-particle excita-
tions and 0  determines the ground state energy or the 
grand thermodynamic potential up to the contribution from 
the quadratic terms in the second quantized operators. The 
above unitary transformation “mixes” the creation and an-
nihilation operators of atoms as follows:  

 † †*

= ,
= ( ) ( ) ,

x y
Ua U u a aα αγ γ αγ − γ

γ

 + ∑p p pp pv   

 † † †*

= ,
= ( ) ( ) .

x y
Ua U u a aα αγ γ αγ − γ

γ

 + ∑p p pp pv   

The requirement for the operators † †Ua Uαp  and †Ua Uαp  to 
meet the bosonic commutation relations gives the normali-
zation and orthogonality conditions for the parameters 

( )uαγ p  and ( )αγ pv :  

 * *

= ,
( ) ( ) ( ) ( ) = ,

x y
u p uαγ βγ αγ βγ αβ

γ

 − δ ∑ p p pv v   

 * *

= ,
( ) ( ) ( ) ( ) = 0.

x y
u uαγ βγ αγ βγ

γ

 − ∑ p p p pv v   

The energies of the single-particle excitations γωp  entering 
Eq. (64) satisfy the following eigenvalue equations [45]:  

 
= ,

( ) ( ) ( ) ( ) = ( ),
x y

A u B uαγ γσ αγ γσ σ ασ
γ

 + ω ∑ pp p p p pv   

 * *

= ,
( ) ( ) ( ) ( ) = ( ).

x y
A B uαγ γσ αγ γσ σ ασ

γ

 + −ω ∑ pp p p p pv v   

This system of homogeneous liner equations has non-zero 
solution when the corresponding determinant turns to zero. 
This yields,  
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 ( )2
, 0 0 0= ( ) ( ) 2 (0)x y n J n K n Kω ε + + − −p p p p   

 ( )
1/22

0 0( ) ( ) .n J n K h− − ±
p p  (65) 

The obtained two modes of excitations ,x yωp  differ only in 
the sign of the magnetic field and do not depend on the inter-
action amplitude ( )U p . They describe the spin-quadrupole 
waves. In the absence of a magnetic field, they become de-
generate and gapless. The third branch of excitations, given 
by Eq. (63), is independent of the external magnetic field and 
represents the Bogoliubov mode modified by the interaction 
of quadrupole degrees of freedom. It is always gapless and 
becomes a phonon (sound-like) mode for small momenta, 

z spω ≈p , where the speed of sound is of the form  

 0 4= (0) (0) .
3

n
s U K

m
 + 
 

 (66) 

The requirement for the speed of sound to be real leads to the 
stability condition given by Eq. (59). Finally note that the 
obtained expression for the speed of sound corresponds to its 
hydrodynamic definition, 0= /s P∂ ∂ρ , where 0 0= mnρ  is 
the mass density and =P −ϖ (see. Eq. (58) for ϖ). 

(2) The second solution of Eq. (56) has the form  

 1= (1, , 0),
2

iζ   

 0 0 0
1with = (0) (0) (0) .
3

n U n J n K hµ + + −  (67) 

This solution describes the ferromagnetic state of a weakly 
interacting Bose gas with condensate because it generate the 
magnetization independent of the external magnetic field,  

 *
0= ( ) = .i i

izS S n〈 〉 Ψ Ψ δ   

Note that the emergence of BEC due to U(1) (or global 
phase) symmetry breaking leads to the spin anisotropy. The 
expectation value for the quadrupole matrix [see Eq. (22)] is  

 *
0

1/ 3 0 0
= ( ) = 0 1/ 3 0 .

0 0 2 / 3
n

− 
 〈 〉 Ψ Ψ − 
 
 

    

Here, =xx yy〈 〉 〈 〉   indicates that the order parameter has 
rotational symmetry about the z  axis. The density for the 
thermodynamic potential, according to Eqs. (53), (55), and 
(67), reads  

 
21 ( )= .

2 (0) (0) (1/ 3) (0)
h

U J K
µ +

ϖ −
+ +

 (68) 

Therefore, the ferromagnetic state is thermodynamically 
stable under the following condition:  

 1(0) (0) (0) > 0.
3

U J K+ +  (69) 

In order to find the single-particle excitation spectrum for 
the ferromagnetic phase, we turn to the quadratic Hamilto-
nian given by Eq. (50). Using Eqs. (67), it can be again 
represented as the sum of two commuting operators, which 
can be diagonalized independently of each other. The first 
one, (2)

01 ( )n , now reads,  

 [ ]((2)
0 01

0
( ) = ( ) (0)n h n J J

≠

ε + + − +∑ p
p

p   

 [ ]) †
0 ( ) (0) .z zn K K a a+ − p pp  (70) 

The second operator, (2)
02 ( )n , is formally determined by 

Eq. (62); however, the 2×2 matrices in it have the follow-
ing matrix elements:  

 0 0
1= = ( ) (0)
2xx yyA A h n U n Jε + + − +p p   

 0 0
1 7( ) ( ),
2 6

n J n K+ +p p   

 *= =xy yxA A   

 0 0 0 0
1 1 5= ( ) (0) ( ) ( ) ,
2 2 6

i h n U n J n J n K − − − +  
p p p   

and  

 0 0 0
1 1 1= = ( ) ( ) ( ),
2 2 6xx yyB B n U n J n K− − +p p p   

 = = .xy yx xxB B iB   

While (2)
01 ( )n  is diagonal in creation and annihilation 

operators with the following quasiparticle energy:  

[ ] [ ]0 0= ( ) (0) ( ) (0) ,z h n J J n K Kω ε + + − + −p p p p  (71) 

the second operator, (2)
02 ( )n , must be diagonalized by 

applying to it the general method, briefly described above. 
As a result, we get two other types of excitations character-
ized by the following dispersion laws:  

 [ ]0= 2 2 ( ) (0)x h n K Jω ε + + −p p p  (72) 

and  

 
1/2

2
0

1= 2 ( ) ( ) ( ) .
3y n U J K  ω ε + ε + +    

p p p p p p  (73) 

Similar to the quadrupolar phase, the single-particle excita-
tion spectrum of the ferromagnetic state has a three-branch 
structure. Two gapful modes determined by Eqs. (71) and 
(72) describe the spin-quadrupole waves. The gapless 
mode given by Eq. (73) represents the generalization of the 
well-known Bogoliubov mode to the case of involving the 
spin-spin and quadrupole-quadrupole interactions. It has a 
phonon character at low momenta,  
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 0 1= , = (0) (0) (0) .
3y

n
sp s U J K

m
 ω + + 
 

p  (74) 

As in previuos case, the speed of sound agrees with its 
hydrodynamic expression, 0= /s P∂ ∂ρ  and the require-
ment for it to be real leads to the stability condition deter-
mined by Eq. (69). 

(3) Finally, the third solution of Eq. (56) is of the form  

 0 0
1 4= ( , , 0) with = (0) (0),
2 3

a ib n U n Kζ µ +  (75) 

where  

 = exp ( ) 1 exp ( ) 1 ,h ha i i
c c+ −ϕ + + ϕ −   

 = exp ( ) 1 exp ( ) 1 .h hb i i
c c+ −ϕ + − ϕ −  (76) 

Here 0= ( (0) (0))c n J K−  and ±φ  are the arbitrary real 
numbers. The state vector in the form of Eq. (75) describes 
the paramagnetic phase of a weakly interacting Bose gas 
with BEC. The magnetization of such a phase occurs only 
in the presence of an external magnetic field,  

 *= ( ) = .
(0) (0)

i i
iz

hS S
J K

〈 〉 Ψ Ψ δ
−

  

The expectation value of the quadrupole matrix, according 
Eq. (22), is found to be  

 *= ( ) =〈 〉 Ψ Ψ    

 0

1/ 3 cos( ) sin( ) 0
= sin( ) 1/ 3 cos( ) 0 ,

0 0 2 / 3
n

+ − + −

+ − + −

− − γ φ − φ γ φ − φ 
 γ φ − φ − + γ φ − φ 
 
 

  

where 2= 1 ( / )h cγ − . The arbitrary phases ±φ  can be 
turn to zero without loss of generality (all physical quanti-
ties including pressure, magnetization, excitation energies 
do not depend on them). In this case, the non-diagonal ma-
trix elements vanish and the structure of the quadrupole 
matrix shows that the spin fluctuations are anisotropic in 
the xy plane because xx yy〈 〉 ≠ 〈 〉  . In accordance with 
Eqs. (53), (55), and (75), the density of the thermodynamic 
potential is given by  

 
2 21= .

2 (0) (0) (0) (4 / 3) (0)
h

J K U K
 µ

ϖ − + 
− + 

 (77) 

It is easy to see that for the thermodynamic stability of the 
paramagnetic phase, at least one of the conditions below 
must be satisfied,  

 (0) > (0), (0) (4 / 3) (0) > 0.J K U K+  (78) 

The third condition involving a magnetic field follows 
from Eq. (76),  

 0 | (0) (0) | .h n J K≤ −  (79) 

The three branches of the single-particle excitation spec-
trum are obtained in the same way as described above. The 
result is  

 ( )2
0 0 0= ( ) ( ) 2 (0)z n J n K n Kω ε + + − −p p p p   

 ( )
1/222

0 0( ) ( ) .n J n K − γ − p p  (80) 

and  

 ( )1/2
2 2 2

, = .x y D F G L Fω ε + ε + ± ε + ε +p p p p p  (81) 

The coefficients in Eq. (81) are determined by  

 0
7= ( ) ( ) ( ) 2 (0) ,
3

D n U J K K + + − 
 

p p p   

 ( )22 2
0

( ) ( )= 2 ( ) (0) 1 ,
( ) (0)

J KF n K K
K K

 −
− γ + − 

p pp
p

  

 
2

2
0

1= ( ) ( ) ( ) 2 (0)
3

G n U J K K − + + + 
 

p p p   

 ( )
2

2
0 2

24 ( ) ( ) ( ) ( ) 2 (0) ,
3

hn J K U K K
c

 + − − + 
 

p p p p   

 ( )23
0

5= 4 ( ) (0) ( ) ( ) ( ) 2 (0)
3

L n K K U J K K− − + − + +
p p p p   

 2 ( ) ( ) 5( ) ( ) ( ) 4 (0) .
( ) (0) 3

J K U J K K
K K

−  +γ − − + −  

p p p p p
p

  

The density and spin-quadrupole excitations are hybridized 
in the modes given by Eqs. (81). This becomes clear from 
the fact that in the linear approximation in momentum, the 
corresponding modes do not reproduce the coefficient con-
sistent with the hydrodynamic speed of sound 0= /s P∂ ∂ρ , 
where =P −ϖ. Another type of excitations that does not con-
tain the interaction amplitude ( )U p  [see Eq. (80)] is gapful in 
the presence of the external field. 

5. Discussion of results 

We have demonstrated that quantum atomic gases of in-
teracting high-spin atoms represent a physical system in 
which the multipole degrees of freedom are manifested. 
They emerge in the description when the interatomic inter-
action is of non-local type. For a local interaction de-
scribed by the s-wave scattering length, the multipole de-
grees of freedom do not reveal themselves. To illustrate 
our findings, we theoretically examine the phenomenon of 
Bose–Einstein condensation in an interacting gas of spin-1 
atoms in an external magnetic field. This study is based on 
the SU(2) invariant Hamiltonian, which has a bilinear 
structure in the spin and quadrupole operators along with 
the scalar term. It was shown that depending on the condi-
tions imposed on the interaction amplitudes (stability con-
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ditions), the ground state may exhibit three different phas-
es: quadrupolar, ferromagnetic, and paramagnetic. The 
basic thermodynamic characteristics such as ground state 
thermodynamic potential, pressure, magnetization, single-
particle excitation energies are analyzed for all phases. For 
SU(3) invariant interaction Hamiltonian, ( ( ) = ( )J Kp p ), 
the computed physical quantities reproduce the results of 
Ref. 36. It is worth noting that in this case, Eq. (56) has no 
solution corresponding to the paramagnetic phase. If the 
interaction Hamiltonian is SU(2) invariant but does not 
involve the quadrupole operators ( ( ) = 0K p ), then our re-
sults agree with the corresponding studies for non-local 
interaction [20, 22]. For local interaction,  

 
2

0 2( 2 )4( ) = (0) = ,
3

a a
U U

m
+πp    

 
2

2 0( )4( ) = (0) = ,
3

a a
J J

m
−πp    

where 0a  and 2a  are the s-wave scattering lengths in the 
total spin 0=  and 2=  channels, respectively [see the 
explanation below Eqs. (28)], our findings cover the results 
of Refs. 19, 21, and 23. 
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Мультипольні ступені свободи у фізиці 
високоспінових квантових атомних газів 

M. S. Bulakhov, A. S. Peletminskii, 
Yu. V. Slyusarenko 

Наведено загальні аргументи на користь того, що квантові 
атомні гази взаємодійних високоспінових атомів є фізичною 
системою, в якій можуть проявлятися мультипольні (прихова-
ні) ступені свободи. Їх прояв відбувається при нелокальній 
міжатомній взаємодії. Для локальної взаємодії, що описується 
завдовжки розсіяння s-хвилі, мультипольні ступені свободи не 
проявляються. Щоб проілюструвати наші результати, теорети-
чно досліджено явище конденсації Бозе–Ейнштейна у взаємо-
дійному газі атомів зі спіном-1 у зовнішньому магнітному 
полі. Це дослідження засновано на інваріантному гамільтоніа-
ні SU (2), який має білінійну структуру в спінових та квадру-
польних операторах разом зі скалярним членом. Показано, що 
залежно від умов, що накладаються на амплітуди взаємодії 
(умов стійкості), основний стан системи може мати три різні 
фази: квадрупольну, феромагнітну та парамагнітну. Основні 
термодинамічні характеристики, на які впливає прихований 
ступінь свободи, знайдено для всіх фаз.  

Ключові слова: високоспінові атоми, квантові атомні гази, 
конденсація Бозе–Ейнштейна.
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