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This paper reviews the quasiparticle model of superfluid helium and its application to describe heat transfer 
between a heated solid and superfluid helium. In this case, a problem is considered in which the surface of the 
heater is flat and the helium is at practically zero temperature. Under these conditions, heat transfer between so-
lid and superfluid helium is determined by the transformation of the phonons of the solid into helium phonons. 
The work considers certain types of such transformation — elastic processes of phonon transformation, in which 
the number of phonons is conserved, and inelastic processes, in which the number of phonons changes. The main 
attention in this work is paid to the development of a quantum-mechanical approach for calculating the contribu-
tion of various polarizations phonons of solid to the heat flux formation, its magnitude, and angular distribution. 
The results of the work are used to explain the experimentally observed features of heat transfer from a heated 
solid to superfluid helium. 
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1. Quasiparticle model of heat transfer in superfluid
helium 

Superfluid 4He and solutions of its isotopes are systems 
in which quantum laws are most clearly manifested on a 
macroscopic scale. The theory of superfluidity of He II was 
developed by L. D. Landau [1]. Landau’s theory is based on 
the quasiparticle method, according to which certain pro-
perties of superfluid are completely determined by the cor-
responding properties of a gas of quasiparticles. This 
quasiparticle approach has proven to be very productive 
for the description of condensed matter. Landau’s theory of 
superfluidity, in particular, allows one to go from a system 
of strongly interacting particles to a system of weakly in-
teracting quasiparticles, the thermodynamic parameters of 
which can be calculated in the ideal gas model, and the 
kinetic properties — using the perturbation theory. More-
over, the quasiparticle approach to the description of superflu-
id helium turned out to be one of the examples of a successful 

theoretical model, which not only described the phenome-
na for the explanation of which it was created [1]. The ap-
plication of this model made it possible to explain unex-
pected phenomena observed in subsequent experiments, as 
well as to predict new properties of superfluid helium and 
its solutions. 

In pure superfluid helium, quasiparticles are phonons 
and rotons — thermal excitations of a quantum liquid with 
definite dispersion laws. Taking these quasiparticles into 
account made it possible to explain the thermodynamic 
properties of He II, in the region up to 2 K, when the gases 
of quasiparticles can be considered practically ideal. Also, 
the quasiparticle model explains the physical nature of such 
phenomena as second sound, thermal expansion of helium, 
fountain effect, etc. The use of physical kinetic methods for 
a gas mixture of quasiparticles made it possible to calculate 
the main dissipative parameters of He II — the coefficients 
of the first and second viscosities, the coefficient of thermal 
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conductivity, the absorption coefficients of the first, se-
cond, and other sounds. In the model of quasiparticles, it 
was possible to construct a kinetic theory of superfluid 
solutions of 3He–4He. The theoretical description of these 
solutions was made in a three-component system of quasi-
particles — phonons and rotons (thermal excitations of 
He II), as well as impuritons (quasiparticles of 3He). This 
theory has successfully explained the unusual properties of 
superfluid 3He–4He solutions and provided explanations 
for a large number of thermodynamic, hydrodynamic, and 
kinetic properties of these quantum fluids. 

One example of the application of the quasiparticle mod-
el is the description of heat transfer processes between solids 
and superfluid helium, in particular, the so-called Kapitsa 
jump. P. L. Kapitsa [2] found that when heat is radiated by a 
solid that is in contact with liquid He II, a constant tempera-
ture difference arises between the solid and liquid helium 
(Kapitsa jump). This difference turned out to be proportional 
to the radiated heat flux, and the value of the thermal re-
sistance, equal to the ratio of the temperature difference to 
the heat flux, in Kapitsa’s experiments increased with de-
creasing temperature according to the cubic law. 

Since then, the phenomenon of heat transfer between 
superfluid helium and a solid has been intensively studied 
both experimentally and theoretically. There are at least 
three reasons that stimulate this research. At the first, the 
unusual phenomenon is observed not only at the superfluid 
helium–solid interface, but also at the interfaces of another 
quantum continuous media. At the second, the need to take 
into account the Kapitsa jump in all low-temperature ex-
periments, since the presence of a Kapitsa jump at ultralow 
temperatures significantly reduces the efficiency of heat 
exchangers in superfluid helium. And, at the third, despite 
the progress achieved over the years in understanding the 
physics of heat transfer between two quantum continuous 
media, several issues have remained unresolved to this day. 

The first theoretical explanation of the Kapitsa jump 
was proposed by Khalatnikov in the quasiparticle model 
[3]. According to this theory, heat transfer between two 
quantum continuous media is due to the transition of pho-
nons from one medium to another. Heat transfer, in this 
case, is strongly limited due to the inconsistency of the 
acoustic impedance of the media and the smallness of the 
critical angle of incidence for phonons in liquid helium, 
above which total internal reflection occurs. 

Further experiments, carried out in different years for vari-
ous solids, gave results that sometimes differed significantly 
for different authors, even for the boundaries of the same sol-
ids with superfluid helium. In this case, both the temperature 
dependence and the numerical value of the heat transfer coef-
ficient were observed to differ from the results of the 
Khalatnikov theory by one or two orders of magnitude. 

A significant contribution to the study of heat transfer 
was made by direct experiments by Adrian Wyatt, in which 
the energy and angle distribution of phonons that were 

emitted by a heated solid into cold (T < 100 mK) super-
fluid helium were measured. These direct experiments, 
carried out on various ideal crystal surfaces, showed the 
presence of two separated channels of phonon emission. 

The first channel formed a sharp peak of phonons, which 
radiated into a narrow cone of angles, the axis of which was 
normal to the surface of the solid. The solid angle of this 
cone for various solids coincided with the results of the clas-
sical acoustic theory, on which Khalatnikov’s theory was 
based [3–5]. This radiation channel was called acoustic. 

Along with phonons, emitted into a narrow cone, they 
observed the phonons emitted in all directions with a co-
sine-like angular distribution. This channel of phonon 
emission is called background radiation. In this case, the 
total phonon energy contained in the background radiation 
was an order of magnitude higher than the phonon energy 
that was emitted into the acoustic channel. 

According to the acoustic theory [3–5], the phonons of 
solid falling on the interface between a solid and superfluid 
helium are transformed with a certain probability into pho-
nons of a liquid. In this case, the energy of the incident 
solid-state phonon is equal to the energy of the liquid pho-
non. This process of phonon transition from one medium 
to another can be called elastic because energy and number 
of phonons are conserved. 

The existence of background radiation was tried to be 
explained by the inelastic processes when the number of 
phonons in the initial and final states is different. Experi-
mental work [6] shows a diagram of an inelastic process in 
which one solid phonon transforms into two liquid pho-
nons, which can move at any angle to the interface. In this 
case, the average phonon energy of the liquid turns out to 
be less than the energy of the solid-state phonon. As noted 
in [6], the possibility of inelastic processes contributing to 
the background radiation was indicated by the fact that the 
phonons generating the background radiation have lower 
energy than phonons and are concentrated in a narrow 
acoustic peak. 

In this regard, theoretical studies of inelastic processes 
were carried out, and their contribution to the energy flux 
through the solid-superfluid helium interface. One of the 
possible inelastic processes, which differed from the pro-
cess depicted in [6], was considered by Khalatnikov in [3], 
who showed that the contribution of this process to the 
Kapitsa jump is relatively small. 

In [7], an attempt was made for the first time to create a 
microscopic theory that would describe both elastic and 
inelastic processes in a unified manner. Work [8] develop-
ped the approach proposed in work [7]. However, in [7, 8], 
it was not possible to create a self-consistent approach that 
would allow obtaining results that coincide with the results 
of Khalatnikov for the elastic process. This circumstance is 
related to the fact that in [7, 8] the calculations were not 
brought to the final analytical formulas and specific nu-
merical values. 
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In [9–11], the results of constructing a unified self-
consistent theory describing both elastic and inelastic pro-
cesses at the superfluid helium–solid interface were pre-
sented for the first time. These results were reduced to ob-
taining the Hamiltonian of the superfluid helium–solid 
interface and considering an elastic process, as well as 
some inelastic processes that contribute to the energy flux 
from a heated solid to cold superfluid helium. 

In this work, the technique developed in [9–11] is used 
to study the contributions of different types of phonons of 
a solid to the formation of heat flux from a solid to super-
fluid helium. 

2. Energy of excitations and quantization 
of hydrodynamic variables 

To describe the processes of heat transfer from a solid to 
superfluid helium, we use the theory of elastic and inelastic 
interaction of helium and solid phonons at the interface be-
tween these media [9]. This theory is based on the use of the 
hydrodynamic Hamiltonian of thermal excitations of helium 
in an external field created by the oscillating surface of a 
solid. To obtain an explicit form of this Hamiltonian, we 
represent the contribution of thermal excitations to the ener-
gy density of a liquid in the following form: 

 ( ) ( )21
2t t t t LE E Eρ ρ= ρ + ρ − ρv , (1) 

here tρ  and tv  are total density and velocity of helium, 
receptively; Lρ  is the equilibrium value of the density, and 
Eρ is the density of the potential energy of the liquid. The 
helium density can be presented in the following form: 

t L iρ = ρ +ρ+ρ , where ρ is the density deviation, caused 
by the own helium excitations, and iρ  is the density devia-
tion, caused by the helium excitations created by wall os-
cillations. In the same way, we present the total fluid ve-
locity as the sum of two terms t i= +v v v . Further, 
assuming the perturbations to be small, we restrict our-
selves to considering the quadratic and cubic terms in the 
expansion of energy (1) in terms of these perturbations: 
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is Gruneisen constant. 

To obtain the Hamiltonian of the interaction between 
the phonons of helium and a solid, we will leave in Eq. (2) 
only the terms that contain both internal perturbations of 
helium and perturbations caused by vibrations of the walls. 
Then we represent the final expression for the interaction 
energy as the sum of two terms: 

 int 2 3E E E= + . (5) 

The first of the terms is quadratic in perturbations: 
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and the second term contains cubic terms: 
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Let us proceed to the definition of the explicit form of 
perturbations of the hydrodynamic variables of superfluid 
helium — density and velocity — and their subsequent 
quantization. We start with quantizing the perturbations of 
the hydrodynamic variables of superfluid helium density 
and velocity iρ  and iv , which are caused by the presence 
of an oscillating flat wall — the surface of a solid body. 
These perturbations are determined from the system of 
hydrodynamic equations: 

 2

div 0,i
L i

i L
i

L

t
c

t

∂ρ +ρ = ∂
 ∂ = − ∇ρ
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v
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 (8) 

in the presence of the boundary condition at the helium–solid 
interface for the normal component of the fluid velocity: 

 ( , , 0, ) ( , , )iz Bzv x y z t V x y t= ≡ . (9) 

Here the z-axis is chosen perpendicular to the wall, and BzV  
is the amplitude of the wall vibration velocity. Wall vibra-
tions, in turn, can be caused by mechanical action (mem-
brane or tuning fork), or heating of a solid. In the latter 
case, the phonons of the solid, falling on the boundary and 
reflecting from it, lead to its oscillations [5]. In this case, 
the expression for BzV  can be represented as 

 ||

||

( , , 0, ) e ei i t
BzV x y z t A − Ω= = β∑ q τ

q q
q

. (10) 

Here /q S SVβ = Ω ρ , SV  is the volume of the solid, Sρ  is 
the solid density, q and Ω  is the wave vector and frequen-
cy of the incident phonon of solid, respectively. The ||q  is 
the component of the phonon wave vector that is parallel to 
the wall. The normalization factor qβ  is chosen so that the 
energy in the incident wave equals to Ω . The vibration 
amplitudes of wall A take into account the reflection laws 
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in solid of phonons with different polarizations [5] and will 
be discussed below. The solution to system (8) under 
boundary condition (9) has the following form: 

 ||

||

( , ) e e e zi iK zi t
izv t A − Ω= β∑ q τ

q q
q

r  (11) 

and presents plane waves running from the wall. The value 
||( , )z zK K= Ω q  is the zth component of the wave vector of 

the wave radiated into helium: 

 2 2 2
|| ||( , ) /z z LK K c q= Ω = Ω −q . (12) 

The transverse components of this vector and the frequen-
cy are equal to the corresponding values of the incident 
phonon: || ||=K q  и Ω = ω. The density and other (parallel 
to the wall) components of the velocity are determined 
from the solution of the system (8) 

 ||

||

,
, ( , ) e e e zx y i iK zi t

ix y
z

K
v t A

K
− Ω= β∑ q τ

q q
q

r , (13) 

 ||

||

( , ) e e e zi iK zL i t
i

L z

Kt A
c K

− Ωρ
ρ = β∑ q τ

q q
q

r , (14) 

where 2 2 1/2
||( )zK K= +K  is absolute value of the wave 

number the of the wave radiated from solid. 
After carrying out the second quantization procedure in 

a solid [5, 9], we obtain that the operator ˆ
BZV  is defined by 

the operators of creation and annihilation of phonons in 
solid b̂+

q  и b̂q. 

 ||
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q
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The quantization procedure used to obtain relation (15) 
takes into account, in particular, the fact that a solid occu-
pies half of the space, as well as the extremely small im-
pedance of the solid–superfluid helium interface. Relation 
(15) was first obtained in [9] and takes into account the 
presence of only one type of phonons in a solid. 

Operator (15) was used in [9] to describe all types of in-
teractions containing two or three types of phonons. In 
[10, 11], it was shown that the main contribution to the 
heat transfer is made by the process in which one phonon 
incident on the boundary of a solid is converted into one 
phonon (elastic process) or two phonons (the first inelastic 
process) of helium. For this reason, in the article, we will 
restrict ourselves to taking into account only these two 
processes. In this regard, in the operator of the velocity of 
oscillations of the boundary (15), we restrict ourselves to 
taking into account one operator of annihilation of the 
phonon of a rigid body incident on the boundary: 

 ||
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q

. (16) 

To take into account different polarizations of the pho-
nons of a solid, it is necessary to use the expressions for 
the vibration amplitudes ( )lAq  and ( )tAq  of the wall surface 
velocity when longitudinal and transverse phonons inci-
dent on it: 
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where the creation and annihilation operators refer to pho-
nons of the corresponding polarization. Amplitudes ( )lAq  
are ( )tAq  presented in [5] and correspond to the process of 
longitudinal phonon incidence with subsequent reflection 
of the longitudinal and transverse phonons 
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as well as to the process of transverse phonon incidence 
with the subsequent reflection of the longitudinal and 
transverse phonons 

 
2

( )
2 2 2

cos sin 2
sin 2 sin 2 cos 2

t lt

t l l

c
A

c c
θ θ

=
θ θ+ θq . (19) 

As a result, for velocity ˆ iv  and density ˆ iρ  operators of 
forced vibrations inside helium, we obtain the following 
expressions: 
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which we will be used to determine the interaction 
Hamiltonian. 

At the next stage, we quantize the phonon field of inter-
nal perturbations of superfluid helium. The procedure for 
such a quantization was carried out in [9] and takes into 
account the fact that helium occupies a half-space, as well 
as the presence of a fixed impenetrable boundary. 
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where the normalization constant / L LVα = ω ρk  . 
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3. Hamiltonian of interaction and heat flux 
in elastic processes 

To determine the Hamiltonian that describes the elastic 
process of phonon transformation at the boundary, we use 
expression (6) for the energy density, which contains the 
quadratic terms in the deviation of the velocity and density 
from the equilibrium values: 

 
2

2
ˆ ˆ ˆˆ ˆ L

L i i
L

cH = ρ + ρρ
ρ

vv . (25) 

Using relations (20)–(24) from Eq. (25), after integra-
tion over the volume of the liquid, we obtain the Hamilto-
nian, which describes the transformation of a solid body 
phonon into a helium phonon: 

 
||

el
ˆˆ ˆL L

S S z

V KH a b A
V K

+ρ
= Ω ω

ρ ∑ k q q
q

  . (26) 

Such a Hamiltonian differs from the Hamiltonian used 
in [7, 8] and, at the same time, gives the correct result for 
the elastic process obtained in the Khalatnikov theory [5]. 
The heat flux in the proposed approach is determined by 
the general quantum-mechanical formula: 

( )cos 1 ( ) ( ) .f f f f i if if
W w E n E d n E d= θ Π + Γ Π Γ∑∫  (27) 

Here w is the probability of the transition of phonons 
from the initial state to the final state per unit time through 
the unit of surface area, fE  and iE  are the total phonon 
energies in the final and initial states, respectively. The 
value of the probability w of the transition from the initial 
state to the final state is determined by the relation 

 ( )22 ,k fi f iw M E E
S
π

= δ −


 (28) 

where the matrix element of the Hamiltonian (26) of the 
transition from the initial to the final state is used: 

 (el)
el

ˆ
fiM f H i= . (29) 

When calculating (29), the final state is normalized to the 
value ,zLK  where L is the longitudinal size of helium, and 

zK  is the longitudinal component of the wave vector of 
the radiation field of an oscillating surface in helium (12). 
The final result for the heat flux (27) for the process under 
consideration has the form: 

 
2

el ,
2L L S S

S
W c A n dΩ

= ρ Γ
ρ∫ q
  (30) 

which coincides with the result of the acoustic theory [5]. 

4. Hamiltonian of interaction and heat flux 
in an inelastic process 

To determine the Hamiltonian, which describes the ine-
lastic process of transformation of one phonon of a solid 
into two phonons of a liquid at the interface, we use ex-
pression (7) for the energy density. This expression con-
tains cubic terms in the deviation of velocity and density 
from equilibrium values, and those in which one of the 
factors corresponds to a solid, and two to helium: 

 ( ) ( )3
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ρ
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In this expression, a symmetrization procedure is carried out 
to take into account the non-commutativity of operators. 

Using relations (20)–(24) and Eq. (30), after integration 
over the volume of the liquid, we obtain the Hamiltonian, 
which describes the transformation of a phonon of a solid 
into two phonons of helium: 

 ___________________________________________________  
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q k k
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 ______________________________________________ 

where 1,2ω  and Ω  are respectively, the phonon frequencies 
of helium and solid, 1,2k  and q are the phonon wave vec-
tors of the helium and the solid, respectively; amplitudes 

( , )A q k  are equal to 

 1 2 1 2

1 2 1 2
( , ) 2 1 z zk kA A u

k k k k
 

= − + + + 
 

q
k kq k , (33) 

and it is used the abbreviation 

 ,0( ) nnδ = δ . (34) 

The calculation of the heat flux from a solid with a 
temperature ST  to liquid helium with a zero temperature is 

carried out based on relations (27)–(29) and gives the fol-
lowing expression: 

 21 2
inel

1 2
( , ) .

2
z

S S L
z z S

k kW A n d d
k k

Ω
= Γ Γ

+ ρ∫ q k   (35) 

The boundaries of integration in the phase space LdΓ  of 
the phonon momentum in helium are determined from the 
laws of conservation of energy and the tangential compo-
nent of the phonon momentum. The features of the angular 
distributions of the interacted phonons are considered in 
more detail in [11]. 
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In contrast to the elastic process in the considered inelas-
tic process, the phonons that have radiated in helium will 
move in all directions to the surface. In this case, in the an-
gular distribution of phonons, along with a sharp acoustic 
peak due to the elastic process, phonons emitted in all di-
rections should also be observed. Such an angular distribu-
tion of phonons was detected in experiments [6, 12–15], 
where two separated channels of phonon emission by a 
heated solid into cold (T < 100 mK) superfluid helium 
were observed. 

The result for the heat flux was first obtained in [11] for 
the case of incidence of longitudinal phonons of solid heli-
um on the boundary. Relationship (35) allows one to take 
into account the contribution of other types of excitations 
of solids, in particular, transverse phonons or surface waves. 

Figure 1 shows the angular distribution of phonons 
emitted into helium. The solid line corresponds to theoreti-
cal calculations using formulas (30) and (35) for certain 
heater temperatures. Such a high heater temperature, which 
exceeds the superfluid transition temperature, is explained 
by the fact that it is not the equilibrium temperature of the 
solid, but is the instantaneous effective temperature of the 
metal film heater through which a short electric current 
pulse passes. 

Conclusion 

The paper reviewed the quasiparticle model of heat 
transfer from a solid to superfluid helium and considered 
inelastic phonon interactions at the interface between 
these two media. In the frame of this model, the interac-
tion Hamiltonian for elastic (26) and inelastic (32) pro-
cesses that give the main contribution for heat flow are 
derived. The obtained expressions take into account the 
contribution of different types of thermal excitations in 

solid — longitudinal and transverse phonons and surface 
waves. From the derived Hamiltonian, the respective heat 
flows were calculated. The result for the elastic process 
(30) coincides with the result of the acoustic theory and the 
result for the heat flow caused by the inelastic processes 
(35) allows to describe the wide angular distribution of 
emitted phonons, which is observed in experiments. 
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 ___________________________ 

Фононна модель теплового випромінювання 
твердим тілом з плоскою поверхнею 

в надплинний гелій 

I. N. Adamenko, E. K. Nemchenko, K. E. Nemchenko 

Проведено огляд квазічастинкової моделі надплинного 
гелію та її застосування до опису теплообміну між нагрітим 
твердим тілом та надплинним гелієм. При цьому розгляда-
ється задача, в якій поверхня нагрівача є абсолютно плос-
кою, а гелій знаходиться при практично нульовій темпера-
турі. У цих умовах теплообмін між твердим тілом та 
надплинним гелієм визначається трансформацією фононів 
твердого тіла в фонони гелію. Розглядено певні види такої 

Fig. 1. Angular distribution of phonons emitted into superfluid 
helium by a heated solid. Points represent the experimental data, 
the upper solid line corresponds to the temperature TS = 4 K, the 
lower one — TS = 3 K. 
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трансформації — пружні процеси перетворення фононів, в 
яких кількість фононів зберігається, та непружні процеси, в 
яких кількість фононів змінюється. Основну увагу приділено 
розробці квантово-механічного підходу для обчислення вне-
ску фононів твердого тіла різних поляризацій у формування 
потоку тепла, його величини та кутового розподілу. Резуль-

тати роботи застосовуються для пояснення спостережених в 
експерименті особливостей перенесення тепла від нагрітого 
твердого тіла в надплинний гелій. 

Ключові слова: стрибок Капіци, тепловий потік, нееластичні 
процеси.
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