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This paper reviews the quasiparticle model of superfluid helium and its application to describe heat transfer

between a heated solid and superfluid helium. In this case, a problem is considered in which the surface of the

heater is flat and the helium is at practically zero temperature. Under these conditions, heat transfer between so-

lid and superfluid helium is determined by the transformation of the phonons of the solid into helium phonons.

The work considers certain types of such transformation — elastic processes of phonon transformation, in which

the number of phonons is conserved, and inelastic processes, in which the number of phonons changes. The main

attention in this work is paid to the development of a quantum-mechanical approach for calculating the contribu-

tion of various polarizations phonons of solid to the heat flux formation, its magnitude, and angular distribution.

The results of the work are used to explain the experimentally observed features of heat transfer from a heated

solid to superfluid helium.
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1. Quasiparticle model of heat transfer in superfluid
helium

Superfluid “He and solutions of its isotopes are systems
in which quantum laws are most clearly manifested on a
macroscopic scale. The theory of superfluidity of He II was
developed by L. D. Landau [1]. Landau’s theory is based on
the quasiparticle method, according to which certain pro-
perties of superfluid are completely determined by the cor-
responding properties of a gas of quasiparticles. This
quasiparticle approach has proven to be very productive
for the description of condensed matter. Landau’s theory of
superfluidity, in particular, allows one to go from a system
of strongly interacting particles to a system of weakly in-
teracting quasiparticles, the thermodynamic parameters of
which can be calculated in the ideal gas model, and the
kinetic properties — using the perturbation theory. More-
over, the quasiparticle approach to the description of superflu-
id helium turned out to be one of the examples of a successful
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theoretical model, which not only described the phenome-
na for the explanation of which it was created [1]. The ap-
plication of this model made it possible to explain unex-
pected phenomena observed in subsequent experiments, as
well as to predict new properties of superfluid helium and
its solutions.

In pure superfluid helium, quasiparticles are phonons
and rotons — thermal excitations of a quantum liquid with
definite dispersion laws. Taking these quasiparticles into
account made it possible to explain the thermodynamic
properties of He II, in the region up to 2 K, when the gases
of quasiparticles can be considered practically ideal. Also,
the quasiparticle model explains the physical nature of such
phenomena as second sound, thermal expansion of helium,
fountain effect, etc. The use of physical kinetic methods for
a gas mixture of quasiparticles made it possible to calculate
the main dissipative parameters of He Il — the coefficients
of the first and second viscosities, the coefficient of thermal
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conductivity, the absorption coefficients of the first, se-
cond, and other sounds. In the model of quasiparticles, it
was possible to construct a kinetic theory of superfluid
solutions of *He—*He. The theoretical description of these
solutions was made in a three-component system of quasi-
particles — phonons and rotons (thermal excitations of
He II), as well as impuritons (quasiparticles of *He). This
theory has successfully explained the unusual properties of
superfluid *He—*He solutions and provided explanations
for a large number of thermodynamic, hydrodynamic, and
kinetic properties of these quantum fluids.

One example of the application of the quasiparticle mod-
el is the description of heat transfer processes between solids
and superfluid helium, in particular, the so-called Kapitsa
jump. P. L. Kapitsa [2] found that when heat is radiated by a
solid that is in contact with liquid He II, a constant tempera-
ture difference arises between the solid and liquid helium
(Kapitsa jump). This difference turned out to be proportional
to the radiated heat flux, and the value of the thermal re-
sistance, equal to the ratio of the temperature difference to
the heat flux, in Kapitsa’s experiments increased with de-
creasing temperature according to the cubic law.

Since then, the phenomenon of heat transfer between
superfluid helium and a solid has been intensively studied
both experimentally and theoretically. There are at least
three reasons that stimulate this research. At the first, the
unusual phenomenon is observed not only at the superfluid
helium—solid interface, but also at the interfaces of another
quantum continuous media. At the second, the need to take
into account the Kapitsa jump in all low-temperature ex-
periments, since the presence of a Kapitsa jump at ultralow
temperatures significantly reduces the efficiency of heat
exchangers in superfluid helium. And, at the third, despite
the progress achieved over the years in understanding the
physics of heat transfer between two quantum continuous
media, several issues have remained unresolved to this day.

The first theoretical explanation of the Kapitsa jump
was proposed by Khalatnikov in the quasiparticle model
[3]. According to this theory, heat transfer between two
quantum continuous media is due to the transition of pho-
nons from one medium to another. Heat transfer, in this
case, is strongly limited due to the inconsistency of the
acoustic impedance of the media and the smallness of the
critical angle of incidence for phonons in liquid helium,
above which total internal reflection occurs.

Further experiments, carried out in different years for vari-
ous solids, gave results that sometimes differed significantly
for different authors, even for the boundaries of the same sol-
ids with superfluid helium. In this case, both the temperature
dependence and the numerical value of the heat transfer coef-
ficient were observed to differ from the results of the
Khalatnikov theory by one or two orders of magnitude.

A significant contribution to the study of heat transfer
was made by direct experiments by Adrian Wyatt, in which
the energy and angle distribution of phonons that were

emitted by a heated solid into cold (7' < 100 mK) super-
fluid helium were measured. These direct experiments,
carried out on various ideal crystal surfaces, showed the
presence of two separated channels of phonon emission.

The first channel formed a sharp peak of phonons, which
radiated into a narrow cone of angles, the axis of which was
normal to the surface of the solid. The solid angle of this
cone for various solids coincided with the results of the clas-
sical acoustic theory, on which Khalatnikov’s theory was
based [3-5]. This radiation channel was called acoustic.

Along with phonons, emitted into a narrow cone, they
observed the phonons emitted in all directions with a co-
sine-like angular distribution. This channel of phonon
emission is called background radiation. In this case, the
total phonon energy contained in the background radiation
was an order of magnitude higher than the phonon energy
that was emitted into the acoustic channel.

According to the acoustic theory [3-5], the phonons of
solid falling on the interface between a solid and superfluid
helium are transformed with a certain probability into pho-
nons of a liquid. In this case, the energy of the incident
solid-state phonon is equal to the energy of the liquid pho-
non. This process of phonon transition from one medium
to another can be called elastic because energy and number
of phonons are conserved.

The existence of background radiation was tried to be
explained by the inelastic processes when the number of
phonons in the initial and final states is different. Experi-
mental work [6] shows a diagram of an inelastic process in
which one solid phonon transforms into two liquid pho-
nons, which can move at any angle to the interface. In this
case, the average phonon energy of the liquid turns out to
be less than the energy of the solid-state phonon. As noted
in [6], the possibility of inelastic processes contributing to
the background radiation was indicated by the fact that the
phonons generating the background radiation have lower
energy than phonons and are concentrated in a narrow
acoustic peak.

In this regard, theoretical studies of inelastic processes
were carried out, and their contribution to the energy flux
through the solid-superfluid helium interface. One of the
possible inelastic processes, which differed from the pro-
cess depicted in [6], was considered by Khalatnikov in [3],
who showed that the contribution of this process to the
Kapitsa jump is relatively small.

In [7], an attempt was made for the first time to create a
microscopic theory that would describe both elastic and
inelastic processes in a unified manner. Work [8] develop-
ped the approach proposed in work [7]. However, in [7, 8],
it was not possible to create a self-consistent approach that
would allow obtaining results that coincide with the results
of Khalatnikov for the elastic process. This circumstance is
related to the fact that in [7, 8] the calculations were not
brought to the final analytical formulas and specific nu-
merical values.
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In [9-11], the results of constructing a unified self-
consistent theory describing both elastic and inelastic pro-
cesses at the superfluid helium—solid interface were pre-
sented for the first time. These results were reduced to ob-
taining the Hamiltonian of the superfluid helium—solid
interface and considering an elastic process, as well as
some inelastic processes that contribute to the energy flux
from a heated solid to cold superfluid helium.

In this work, the technique developed in [9—-11] is used
to study the contributions of different types of phonons of
a solid to the formation of heat flux from a solid to super-
fluid helium.

2. Energy of excitations and quantization
of hydrodynamic variables

To describe the processes of heat transfer from a solid to
superfluid helium, we use the theory of elastic and inelastic
interaction of helium and solid phonons at the interface be-
tween these media [9]. This theory is based on the use of the
hydrodynamic Hamiltonian of thermal excitations of helium
in an external field created by the oscillating surface of a
solid. To obtain an explicit form of this Hamiltonian, we
represent the contribution of thermal excitations to the ener-
gy density of a liquid in the following form:

1
E, =EptV?+Ep(pt)—Ep(pL), (1)

here p, and v, are total density and velocity of helium,
receptively; p; is the equilibrium value of the density, and
E, is the density of the potential energy of the liquid. The
helium density can be presented in the following form:
p, =p, +p+p,;, where p is the density deviation, caused
by the own helium excitations, and p; is the density devia-
tion, caused by the helium excitations created by wall os-
cillations. In the same way, we present the total fluid ve-
locity as the sum of two terms v, =v-+v,;. Further,
assuming the perturbations to be small, we restrict our-
selves to considering the quadratic and cubic terms in the
expansion of energy (1) in terms of these perturbations:
2
E=p7L(V+V,-)2 +;TLL(p+pi)2 +

1 2u—1)c?
+5(p+pl—)(v+v,-)2+%(p+p,—)3. ©)
6p;
Here
02 (E (p ))
2 p At
= 3
‘L Pt aptz ( )
Pt=PL
is the sound velocity in helium
Olnc;
=—= 4
Olnp, @

is Gruneisen constant.

To obtain the Hamiltonian of the interaction between
the phonons of helium and a solid, we will leave in Eq. (2)
only the terms that contain both internal perturbations of
helium and perturbations caused by vibrations of the walls.
Then we represent the final expression for the interaction
energy as the sum of two terms:

Ey = E; + E5. @)

The first of the terms is quadratic in perturbations:
i
Ey =pL vV, +—pp;s (6)
Pr

and the second term contains cubic terms:
1 2 ;
Ey=(p+p;) vy, +E(PV[2 +in2)+(—

(7

Let us proceed to the definition of the explicit form of
perturbations of the hydrodynamic variables of superfluid
helium — density and velocity — and their subsequent
quantization. We start with quantizing the perturbations of
the hydrodynamic variables of superfluid helium density
and velocity p; and v;, which are caused by the presence
of an oscillating flat wall — the surface of a solid body.
These perturbations are determined from the system of
hydrodynamic equations:

op;
%+pLdivvi =0,

®)

in the presence of the boundary condition at the helium—solid
interface for the normal component of the fluid velocity:

viz(xryyz=0yt)EVBz(x’yst)' (9)

Here the z-axis is chosen perpendicular to the wall, and V.
is the amplitude of the wall vibration velocity. Wall vibra-
tions, in turn, can be caused by mechanical action (mem-
brane or tuning fork), or heating of a solid. In the latter
case, the phonons of the solid, falling on the boundary and
reflecting from it, lead to its oscillations [5]. In this case,
the expression for V. can be represented as

Vg (x,,2=0,1) = Z ByAq Q[T i
q

Here B, =/AQ2/ pgV , Vs is the volume of the solid, py is
the solid density, q and Q is the wave vector and frequen-

cy of the incident phonon of solid, respectively. The q is
the component of the phonon wave vector that is parallel to
the wall. The normalization factor 3, is chosen so that the
energy in the incident wave equals to 7). The vibration
amplitudes of wall 4 take into account the reflection laws

(10)
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in solid of phonons with different polarizations [5] and will
be discussed below. The solution to system (8) under
boundary condition (9) has the following form:

_ q)T L -iQt LK,z
viz(r,t)—ZBque Fe ¥ etz
qj

(an

and presents plane waves running from the wall. The value
K, =K.(Q,q)) is the zth component of the wave vector of
the wave radiated into helium:

K. =K. (Q.q) = Q% /¢ -qf .

The transverse components of this vector and the frequen-
cy are equal to the corresponding values of the incident
phonon:K =q; u Q=0. The density and other (parallel
to the wall) components of the velocity are determined
from the solution of the system (8)

(12)

Kx i —iQt LiK .z
Vi, (0.0 = D" oAy — et a3
q z
K » .
pi (r’t) = p_LZ Bqu K_e qHTe theleZ’ (14)

C
L q z

where K = (K +K2)""? is absolute value of the wave
number the of the wave radiated from solid.

After carrying out the second quantization procedure in
a solid [5, 9], we obtain that the operator I}BZ is defined by
the operators of creation and annihilation of phonons in
solid b7 u b,

I}Bz = Z Bq [l;q _Z;:rq]AequT'

qaj

(15)

The quantization procedure used to obtain relation (15)
takes into account, in particular, the fact that a solid occu-
pies half of the space, as well as the extremely small im-
pedance of the solid—superfluid helium interface. Relation
(15) was first obtained in [9] and takes into account the
presence of only one type of phonons in a solid.

Operator (15) was used in [9] to describe all types of in-
teractions containing two or three types of phonons. In
[10, 11], it was shown that the main contribution to the
heat transfer is made by the process in which one phonon
incident on the boundary of a solid is converted into one
phonon (elastic process) or two phonons (the first inelastic
process) of helium. For this reason, in the article, we will
restrict ourselves to taking into account only these two
processes. In this regard, in the operator of the velocity of
oscillations of the boundary (15), we restrict ourselves to
taking into account one operator of annihilation of the
phonon of a rigid body incident on the boundary:

V. = iZBqul;eiq”T.
q

(16)

To take into account different polarizations of the pho-
nons of a solid, it is necessary to use the expressions for
the vibration amplitudes A(Y) and A(Y) of the wall surface
velocity when longitudinal and transverse phonons inci-
dent on it:

P =03 By AL BT,
qj

amn

where the creation and annihilation operators refer to pho-
nons of the corresponding polarization. Amplitudes Aé”
are Aflt) presented in [5] and correspond to the process of
longitudinal phonon incidence with subsequent reflection
of the longitudinal and transverse phonons

40 _ cf cos0cos 20,
q

(18)

. . b
c? 5in 20, sin 20 + ¢ cos* 20,

as well as to the process of transverse phonon incidence
with the subsequent reflection of the longitudinal and
transverse phonons

40 _ c? cos 0sin 20,

q

(19)

¢?sin 20, sin 20+ c? cos? 20

As a result, for velocity v; and density p, operators of
forced vibrations inside helium, we obtain the following
expressions:

N ~ K ;
V[ (r,t) — Z BqA((ll,t)bq K_eICIHT eszz , (20)
q) z
- _Pr ani K i ik -
pi(r,t)—c—z By by e e 1)

L q) z

which we will be used to determine the interaction
Hamiltonian.

At the next stage, we quantize the phonon field of inter-
nal perturbations of superfluid helium. The procedure for
such a quantization was carried out in [9] and takes into
account the fact that helium occupies a half-space, as well
as the presence of a fixed impenetrable boundary.

ik.z —ik,z
A PL ~ At el = 4+e E ikH‘r
p_—z oy (ak+a_k)(—2 Je , (22)

22 _e—‘k z

ik i "
Je' ",23)

\32 =§qk%<&k—&+k)[e B g

k ik,z —ik,z )
°|=Zak7”(ék—&+k)(—e = Je"”, (24)
k

where the normalization constant o, = \/Zi®/p,V, .

706 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 8



Phonon model of heat radiation into superfluid helium by a solid with a flat surface

3. Hamiltonian of interaction and heat flux
in elastic processes

To determine the Hamiltonian that describes the elastic
process of phonon transformation at the boundary, we use
expression (6) for the energy density, which contains the
quadratic terms in the deviation of the velocity and density
from the equilibrium values:

; C an
Hy =p vV, +—=pp
PL

(25)

i

Using relations (20)—(24) from Eq. (25), after integra-
tion over the volume of the liquid, we obtain the Hamilto-
nian, which describes the transformation of a solid body
phonon into a helium phonon:

N 4 A K
Hy = #Zx/thwa;quqK—. (26)

pSVS q z

Such a Hamiltonian differs from the Hamiltonian used
in [7, 8] and, at the same time, gives the correct result for
the elastic process obtained in the Khalatnikov theory [5].
The heat flux in the proposed approach is determined by
the general quantum-mechanical formula:

W=[w E, 080, T1(1+n(E))dT Tn(E)dT . (27)
f - ’

Here w is the probability of the transition of phonons
from the initial state to the final state per unit time through
the unit of surface area, £, and E; are the total phonon
energies in the final and initial states, respectively. The
value of the probability w of the transition from the initial
state to the final state is determined by the relation

where the matrix element of the Hamiltonian (26) of the
transition from the initial to the final state is used:

MY = (1| Hali). (29)

When calculating (29), the final state is normalized to the
value LK _, where L is the longitudinal size of helium, and

K, is the longitudinal component of the wave vector of
the radiation field of an oscillating surface in helium (12).
The final result for the heat flux (27) for the process under

consideration has the form:
2 hQ
Wa =crps |4y 35 "sTs: (30)
s

which coincides with the result of the acoustic theory [5].

4. Hamiltonian of interaction and heat flux
in an inelastic process

To determine the Hamiltonian, which describes the ine-
lastic process of transformation of one phonon of a solid
into two phonons of a liquid at the interface, we use ex-
pression (7) for the energy density. This expression con-
tains cubic terms in the deviation of velocity and density
from equilibrium values, and those in which one of the
factors corresponds to a solid, and two to helium:

1y = (394 99) ¥, 4 (p ¥, 49,0, )+
Liwnn ~ . u-1)e} .. . .
+E(PV?+PiV2)+%PPi(P+ i)' (3D
2p;

In this expression, a symmetrization procedure is carried out

to take into account the non-commutativity of operators.
Using relations (20)—(24) and Eq. (30), after integration

over the volume of the liquid, we obtain the Hamiltonian,

2 2 . . . .
W, = 2n | Mﬁ| 5( E, - Ei)’ (28) Whlch describes the trar.lsformatlon of a phonon of a solid
A : into two phonons of helium:
R h3/2 A
Hy=—— Z QO 0, iy by A(Q KBk, + k. + K )S(Ky +ky +q), (32)
c\PsVs qkik2

where ®, , and Q are respectively, the phonon frequencies
of helium and solid, k, , and q are the phonon wave vec-
tors of the helium and the solid, respectively; amplitudes
A(q,Kk) are equal to

A(q.k) = 4, du—tbiz  Far KKy . (33)
ko ky kK
and it is used the abbreviation
d(n)=9,,. (34)

The calculation of the heat flux from a solid with a
temperature T to liquid helium with a zero temperature is

carried out based on relations (27)-(29) and gives the fol-
lowing expression:

inel :j hklkZZ

2 hQ)
Aq k) B2 pdrdl,. (35
ko +h, (q.k)| 2pSnS sdlp. (35)

z

The boundaries of integration in the phase space dI";, of
the phonon momentum in helium are determined from the
laws of conservation of energy and the tangential compo-
nent of the phonon momentum. The features of the angular
distributions of the interacted phonons are considered in
more detail in [11].
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Fig. 1. Angular distribution of phonons emitted into superfluid
helium by a heated solid. Points represent the experimental data,
the upper solid line corresponds to the temperature 75 =4 K, the
lower one — Tg=3 K.

In contrast to the elastic process in the considered inelas-
tic process, the phonons that have radiated in helium will
move in all directions to the surface. In this case, in the an-
gular distribution of phonons, along with a sharp acoustic
peak due to the elastic process, phonons emitted in all di-
rections should also be observed. Such an angular distribu-
tion of phonons was detected in experiments [6, 12—-15],
where two separated channels of phonon emission by a
heated solid into cold (7 < 100 mK) superfluid helium
were observed.

The result for the heat flux was first obtained in [11] for
the case of incidence of longitudinal phonons of solid heli-
um on the boundary. Relationship (35) allows one to take
into account the contribution of other types of excitations
of solids, in particular, transverse phonons or surface waves.

Figure 1 shows the angular distribution of phonons
emitted into helium. The solid line corresponds to theoreti-
cal calculations using formulas (30) and (35) for certain
heater temperatures. Such a high heater temperature, which
exceeds the superfluid transition temperature, is explained
by the fact that it is not the equilibrium temperature of the
solid, but is the instantaneous effective temperature of the
metal film heater through which a short electric current
pulse passes.

Conclusion

The paper reviewed the quasiparticle model of heat
transfer from a solid to superfluid helium and considered
inelastic phonon interactions at the interface between
these two media. In the frame of this model, the interac-
tion Hamiltonian for elastic (26) and inelastic (32) pro-
cesses that give the main contribution for heat flow are
derived. The obtained expressions take into account the
contribution of different types of thermal excitations in

solid — longitudinal and transverse phonons and surface
waves. From the derived Hamiltonian, the respective heat
flows were calculated. The result for the elastic process
(30) coincides with the result of the acoustic theory and the
result for the heat flow caused by the inelastic processes
(35) allows to describe the wide angular distribution of
emitted phonons, which is observed in experiments.
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®OHOHHA MOAErNb TEMMOBOrO BUNPOMiHOBAHHS
TBEPOUM TifIOM 3 MIIOCKOK MOBEPXHEID
B HAONJTMHHWIA renin

I. N. Adamenko, E. K. Nemchenko, K. E. Nemchenko

ITpoBeseHO oOrsAA KBa3i4aCTHHKOBOI MOJENi HaJINIMHHOTO
renito Ta ii 3aCTOCYBaHHS 10 OIHCY TEIIO0OMIHY MiXK HAarpiTHM
TBEPAUM TIJIOM Ta HaJIUIMHHUM renieM. IIpu upomy posrisina-
€TBCS 3a/iada, B SIKill MOBEpXHsS HarpiBada € abCONIOTHO ILIOC-
KOI0, a TeNill 3HAXOJUTHCSI MPU MPAKTHYHO HYIbOBIH TeMmepa-
Typi. Y IHUX yMoBaxXx TEIUNIOOOMIH MDXK TBEpPIUM TLIOM Ta
HaJIUIMHHAM TellieM BU3HA4aeThecs TpaHchopmaliiero (OHOHIB
TBEpJOro Tina B GOHOHH Temito. Po3risiieHo meBHI BUAM Takol
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Phonon model of heat radiation into superfluid helium by a solid with a flat surface

TpaHchopmManii — HpyXKHI NPOIECH IEepPeTBOPEHHS (POHOHIB, B
SIKAX KUTBKICTH (DOHOHIB 30epiraeThcsi, Ta HENPYXKHI MPOLECH, B
SIKAX KUTBKICTh ()OHOHIB 3MiHIOEThCsl. OCHOBHY yBary IpHIiICHO
PO3po0IIi KBAHTOBO-MEXAHIYHOTO MiAXOAY A OOYHMCICHHS BHE-
cKy (OHOHIB TBEepAOro Tijia Pi3HUX HoNspu3auiil y GopMyBaHHS
MOTOKY TeIUIa, HOro BEIWYMHU Ta KYyTOBOTO pO3MOily. Pe3ys-

TaTu poOOTH 3aCTOCOBYIOTHCS NS MOSICHCHHS CIIOCTEPEIKCHUX B
eKCIICpIMEHTI 0COOIMBOCTEH MEPEeHECEHHs TeIula BiJl HAarpiToro
TBEP/IOTO Tijla B HAAIUIMHHUIL Teliil.

Kimrouosi cioBa: crpubok Kaminu, TermioBuii MOTIiK, HeeTacTHIHI
MPOLIECH.
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