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The energy spectra of a three dimensional velocity field, induced by a set of vortex loops with various con-
figurations are reviewed. This problem is closely related to the actual question  of whether a chaotic set of vortex 
filaments can reproduce the real hydrodynamic turbulence. In the paper we discuss several cases, which allow 
evaluating spectra in an exact form. The research was made for an ensemble of vortex rings of different sizes 
as well as for vortex loops with fractal Hausdorf dimension equal to 5/3, which corresponds to Flory’s vortex 
model, the so-called self-avoid lines. The results obtained are discussed. 
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1. Introduction 

In the numerical simulation experiments on turbulent 
flows in a classical fluid with Reynolds numbers about 100 
and in studies on modeling the dynamics of quantum vor-
tex lines in superfluid helium, similar patterns in the be-
havior of classical and quantum turbulence were found. As 
a result, the approach of describing classical turbulence in 
terms of chaotic vortex lines has acquired particular im-
portance [1–4]. One of the main arguments supporting the 
idea of the semiclassical behavior of quantum turbulence is 
the dependence of the energy spectra E(k) on the wave 
vector k, obtained in numerical simulations and in experi-
ments. There are a quite number of works that demonstrate 
the function dependence E(k), which is alike to the Kol-
mogorov spectrum: 5/3( )E k k −∝ . These works are based 
on both the vortex line method [5–8], and the Gross–
Pitaevskii equation [9–11]. Presence of similar spectrum 
doubtlessly shows connection of chaotic vortex lines dy-
namics with classical turbulence and proves ununiform 
energy distribution in the wave numbers k space. 

However, despite the great importance of this result and 
numerous discussions, the question of how the Kolmo-
gorov spectrum is generated remains open. Therefore, it 
seems attractive to find a mechanism for the occurrence of 
a Kolmogorov-type spectrum based directly on the quan-
tum vortex lines configuration. Earlier, energy spectra of 
three-dimensional velocity field were numerically and ana-
lytically studied. Method for energy spectrum calculation 
was proposed, the general expression for energy spectrum 

was obtained, research of energy spectrum of the 3D ve-
locity field was carried out for a single smooth line, ring, 
lines with Kelvin waves, as well as for a single fractal vor-
tex loop with various Hausdorf dimension [12–15]. 

This paper presents the results of calculating the spec-
tral characteristics of the energy of superfluid helium mo-
tion generated by various series of objects: (i) a set of vor-
tex loops of various structures; (ii) vortex rings of different 
sizes; and (iii) vortex loops with fractal Hausdorf dimen-
sion equal 5/3, which corresponds to Flory’s vortex model, 
the so-called self-avoid lines. The results obtained are 
discussed. 

2. Calculation method 

The general formula for superfluid helium energy can 
be expressed in terms of vortex lines configuration as (see, 
[12, 13] for explanations and notations) 
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Here ( )ξs  are the vortex line positions parameterized by 
the arc length ξ , running from 0 to the length of line L, 

( )′ ξs  denotes the derivative with respect to arc length along 
the line (the tangent vector). Since we will be dealing with 
an ensemble of vortex loops, then, generally speaking, it is 
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necessary to perform summation over all these loops. 
However, by default, we unify the summation over diffe-

rent loops 
j
∑ and the integration procedure 

C
∫ , i.e., 

C C j
=∫ ∫ ∑. 

Brackets  imply an averaging over all possible vortex 
loop configurations. Clearly, the integrand in (1) can be in-
terpreted as the three-dimensional distribution of energy 

3/dE d k , and, accordingly, expression within the brackets  
is just scalar energy spectral density (see [12, 13]). When 
calculating the energy spectrum for an ensemble of vortex 
loops we will suppose that different vortex loops are statis-
tically independent, so averages of cross loops disappear, 
i.e., ( ) ( ) 0i i j j′ ′ξ ξ =s s . For the isotropic case, the spectral 

density depends on the absolute value of the wave number k. 
Integrating over solid angle lead to formula (see [14]): 
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For anisotropic situations, formula (2) is understood as 
the angular average. Thus, for calculation of the energy 
spectrum ( )E k  of the 3D velocity field, induced by the 
vortex filaments we need to know the exact configuration 
{ ( )}s ξ  of vortex lines. Further, we will use formulas (1), (2) 
to calculate the energy spectrum of the three-dimensional 
velocity created by a set of vortex rings, as well as by a set 
of vortex loops of various fractal dimensions. 

3. Energy spectrum of the three-dimensional flow 
created by a set of vortex rings 

Let’s discuss first the spectra ring ( )E k  created by a single 
vortex ring. Vortex ring with the radius R is located in the 
xy plane (z = 0), and it is given by equation 

( )  cos φ,  sin , 0s R R= ϕ . From general formulas (1), (2) 
one can get an expression for spectral density of energy: 
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Calculation ring ( )E k  for R = 1 by formula (3) gives the 
results shown in Fig. 1 (see [15]), Quantity ring ( )E k  is 
reduced by factor 2 2/ (2 )sρ κ π . 

The spectrum ring ( )E k  scales like 2
ring ( )E k k∝  for 

wave vectors much smaller than the inverse radius, 1kR . 
This distribution is a consequence of the fact that closed 
vortex domain induces a far field flow scaling as 31 r/ . For 
the large values (kR >> 1) energy density is inversely pro-
portional to the wavenumber 1( )E k k −∝ , like for straight 

line. Here and below, when calculating the spectra in ac-
cordance with formula (2), we omitted the factor 

2 2/ (2 )sρ κ π . Straight line 1k −∝  is plotted for reference. 
Turning-point in spectral density behavior or maximum 

on the curve ring ( )E k  noccurs at the value of wavenumbers 
matching ring radius. It seems attractive to use this fact and 
choose an ensemble of rings with different lengths in order 
to investigate the behavior of the spectrum of the vortex 
rings set. Calculation of energy density for rings series 
gives energy spectrum values shown in Fig. 2. The transi-
tion from square law of energy spectrum 2( )E k k∝  to 

1( )E k k −∝  is spread out in wavenumbers space. A transi-
tion region appears in which the spectral energy density 
depends on the distribution of the vortex rings in their radii 
space /dN dR . 

It is seen that the spectral density can both increase and 
decrease with wavenumbers, depending on the distribution 
of the loops. However, the degree of decrease and increase 
of the spectral function in the transition range is between 
the dependences 2k∝  and 1k −∝  . The result shows that a 
set of ideal vortex rings does not induce a velocity with the 
Kolmogorov energy distribution spectrum 5/3( )E k k −∝ . 

Fig. 1. Reduced energy spectral density ring ( )E k  for the single 
vortex ring (see text for detailed explanations). 

Fig. 2. Energy spectrum of vortex ring set. The distribution of the 
rings with the radii satisfies the relation / ndN dR R−∝ , where n: 
3/2 (1), 5/2 (2), 3 (3), 7/2 (4). Two straight lines corresponds to 

2k∝  (5) and 1k−∝  (6). They are plotted for reference. 
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4. Energy spectrum of the three-dimensional flow 
created by an ensemble of Brownian loops of various 

Hausdorf dimensions 

In this chapter, we will consider the case of an ensemble 
of Brownian loops of various fractal dimensions. To calcu-
late the spectral characteristics based on formulas (2), (3) 
of a vortex tangle, we need one useful tool often used in 
statistical problems, the so-called characteristic (or gene-
rating) functional (see, for example, [16]). Following these 
works, we define the characteristic functional ({ ( )})j jW ξP  
as average 

  
0
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L
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 

′ ξ = ξ ξ ξ
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Averaging can be performed using the probability dis-
tribution functional ( ( ))jξP s as a path integral 
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The characteristic functional ({ ( )})W ξP  (5) allows cal-
culating the average of any value depending on the config-
uration of vortex lines by simple functional differentiation. 
For instance, the average tangential vector ( )j jα′ ξs , or 
the correlation function between the tangential vectors of 
various elements of the vortex lines ( ) ( )j j j jα β′ ′ξ ξs s , can 
be easily expressed through the characteristic functional 

({ ( )})j jW ξP  (4) in accordance with the rules: 
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Combining (2) and (4) one concludes that the spectral 
density ( )E k  is expressed via CF as follows (see [12, 17] 
for details): 
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Here ( )θ ξ  is a unit-step function. 
Supposing that the probability functional ( ( ))jP ξs  is a 

Gaussian one, calculation of the CF can be readily made by 
the full square procedure to give the result (here we con-
sider only the isotropic case) 
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From the definition (7) of the CF it follows that 
the function ( )N ′ ′′

αβ ξ − ξ  coincides with the correlation 
function 1( ) ( )jα α′ ′ξ ξs s  between tangent vectors. Substi-
tuting (9) in expression for energy (8), and supposing 
an isotropic situation [i.e., ( ) ( )N N′ ′′ ′ ′′

αβ ξ − ξ = ξ − ξ ], one 
can obtain [12, 17]: 
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This formula can be used to directly calculate the energy 
spectrum for various functions N(x), representing the con-
figuration of the vortex loops. 

Earlier, the energy spectrum of a single vortex line has 
been calculated in accordance with the formula (2) (see, 
for example [12, 17]). In Fig. 3 on a logarithmic scale, the 
results of calculating the energy spectrum for vortex loops 
with a nominal length of 100 are presented. The structure 
of the loops is described by the power-law correlation 
function ( )   N x cxλ= . The length L of such curves increases 
with its 3D size D as 2 ( )/ 2L D∝ λ + , which implies that 
an average loop is a fractal object having the Hausdorf 
dimension equal to 2 / ( 2)dH = λ + . 

The upper dotted curve corresponds to the power-law 
dependence N(x) with exponent λ = 0, i.e., smooth line 
with dimension 1. It is easy to see that dependence 

2( ) ~E k k  changes to dependence ( ) ~E k k  in the region 
–1~ 0,01 100k =  that is quite expected, because dimension 

of the line is equal to 1, and the length is equal to 100 in 
3D space. 

The middle solid line is the energy spectrum for a vor-
tex line, described by the Flory model (see, e.g., [18]), a 
self-avoid line, for which N(x) is expressed by a power 
function with exponent 4 / 5λ = − . For it, a change in the 
behavior of the energy spectrum from 2( ) ~E k k  to the 

Fig. 3. Energy spectra of vortex lines of various fractal dimen-
sions (see text for explanations). 
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dependence 1/3( ) ~E k k −  in the region 3/5~ 100k −  is also 
observed, this is in good agreement with general considera-
tions, since the fractal dimension of such a line is equal 
to 5/3. The lower dashed curve shows the energy spectrum 
of the Brownian vortex line, for which the correlation 
function is a delta function. The squared dependence 

2( ) ~E k k  alters into a plateau, i.e., 0( ) ~E k k , in the re-
gion ~ 1/ 100k , as expected given that formally λ = 0, 
and Hausdorf dimension is equal 2. 

In present work, we consider some preliminary results 
on the energy spectrum obtained for an ensemble of loops 
described by the Flory model. In Fig. 4 the results of calcu-
lating the energy spectrum for vortex loops with 5/3 Haus-
dorff dimension are presented on a logarithmic scale. The 
curves are normalized per unit length of the vortex line. 

Straight lines have a slope of k2 and 1/3k − , and they are 
plotted a reference. The upper line corresponds to a set of 
loops with a fixed length, and its spectrum naturally coin-
cides with the spectrum of a single Flory line. The next 
(from top to bottom) lines have a distribution of lengths L 
satisfies relation, / pdN dL R−∝ , with p equal to 0, 3/2, 
5/2, 7/2, respectively. It can be seen that the area of slope 
changing from k2 to 1/3k −  is extended and shifted towards 
large k, as well as this area is slightly stretched. Nothing 
dramatic happens, though. The result obtained shows that a 
set of fractal lines does not induce a velocity with the 
Kolmogorov energy distribution spectrum 5/3( )E k k −∝ . 

5. Conclusion 

Summarizing, it can be resumed that the 3D energy 
spectrum ( )E k  generated by an ensemble of vortex loops 
consists of several parts. The first one appears at small k, 
associated with the large scales, of the order of the size of 
the system and the spectrum behaves as 2( )E k k∝ . This be-
havior is general, it does not depend on loops shape, this is 

the consequence of the asymptotic behavior ( 31 r/  at )r →∞  
of the velocity field. For large wave numbers spectrum ( )E k  
should be close to 1k −  for smooth lines, and again regard-
less of the specific model. The spectrum ( )E k  in the region 
of intermediate k depends on the detailed structure of loops 
constituting the vortex tangle. It depends also on the distri-
bution of loops in space of their lengths /dN dL. The spec-
tral density can both increase and decrease with wave-
numbers k depending on the distribution of loops and their 
shape. However, the degree of decrease and increase of the 
spectral function in the transition region is between the 
dependences 2k∝  and 1k −∝ , or between the dependences 

2k∝  and 31/k −∝  in the case of Flory loops. Thus the varia-
tion of the distribution of lengths in the ensemble of vortex 
loops lines cannot create 3D flow, which has the Kolmogo-
rov spectrum 5/3( )E k k −∝  [19]. It appears that a stronger 
singular velocity field is required to obtain the Kolmogo-
rov spectrum. It is obvious that the model of vortex loops 
built within the framework of the local approximation fails 
to create the necessary singularity, and further research 
should be concentrated on studying the velocity field of 
colliding interacting vortex loops. 
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Енергетичний спектр 3D-поля швидкості, яке 
індуковано набором вихрових петель 

O. Yurkina, S. К. Nemirovskii 

Розглянуто енергетичні спектри тривимірного поля швид-
кості, індукованого набором вихрових петель з різною кон-
фігурацією. Ця проблема тісно пов’язана з актуальним пи-
танням, чи може хаотичний набір вихрових ниток відтворити 
реальну гідродинамічну турбулентність. Наведено кілька ви-
падків, що дозволяють точно оцінити спектри. Дослідження 
проведено для ансамблю вихрових кілець різного розміру, а 
також для вихрових петель із фрактальною розмірністю Хаус-
дорфа, що дорівнює 5/3 та відповідає моделі полімерів Флорі. 
Обговорено отримані результати. 

Ключові слова: надплинність, вихори, квантова турбулент-
ність. 
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