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Dynamics of quasi-particles in graphene with an impurity and a sharp edge is considered with the kp-method

that allows an unified approach without usage of any models. Dirac and Weyl equations are derived by the

above-mentioned method. The wave function and its envelope function together with the scattering amplitude

are found in the Born approximation. The wave functions are shown to be a superposition of virtual Bloch func-

tions which exponential decay outward from the impurity and the edge. At distances much greater that the atom-

ic spacing the wave functions are explicitly presented. Green’s functions for Shrédinger and Dirac equations are

derived as well. Boundary conditions for the Dirac equation for graphene with a sharp edge are also derived.

Keywords: scattering of quasiparticles in graphene, Weyl and Dirac equations, kp-approximation, Green’s functions.

1. Introduction

Dynamic and kinetic properties of graphene have been at-
tracting much attention during the last decades [1]. Fascinat-
ing dynamic and kinetic phenomena which arise in graphene
can be described by the two dimensional differential Dirac
equation [2, 3] supplemented by boundary conditions.

Details of the boundary conditions and scattering ampli-
tudes depend on microscopic characteristics of the concrete
structures of sample boundaries [4] and the scatterers.
Theoretical derivations of the boundary conditions for Di-
rac equations and the scattering amplitudes are usually ba-
sed on various models such as tight bound model (see, e.g.,
review papers [5, 6] and references there), the effective
mass model [7], tight-binding model with a staggered po-
tential at a zigzag boundary [8].

The object of this paper is to demonstrate that the kp-me-
thod [9] allows investigations of graphene (and Weyl semi-
metals) fundamental properties (including the above-
mentioned) on the base a unified approach. This approach
is justified by the fact that the cone points in graphene are
on the Fermi level or close to it while the kp-approxima-
tion requires nothing but the series expansion in the quasi-
particle momenta in their vicinity.

In this paper, on the basis of the kp-method and without
usage of any models (1) the Dirac and Weyl equations for
quasi-particles are derived; (2) Green’s function, the wave
function together with the scattering amplitude for graphene
with an impurity are obtained in terms of Bloch functions;
(3) Dirac equation, the envelope function together with the
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scattering amplitude, Dirac equation for Green function,
Green’s function are found; (4) boundary conditions for the
Dirac equation for quasi-particles in graphene with an abrupt
boundary are also presented (details of their derivation in the
kp -approximation were earlier published in Ref. 10).

The outline of this paper is as follows. In Sec. 2 Dirac
and Weyl equations are obtained on the base of the kp-ap-
proximation. In Sec. 3 elastic scattering of quasi-particles by
an impurity in graphene is considered: the wave function,
the envelope function and the scattering amplitude are
found in the Born approximation; Green’s functions for
Schrodinger and Dirac equations are also obtained. In Sec. 4
dynamics of quasi-particles and boundary conditions at the
sharp edge of graphene is shortly described. In Sec. 5 con-
cluding remarks are presented.

2. Derivation of Dirac equation by %p -method

Here we shortly present derivation of the Dirac equation
by the kp-method assuming that two quasi-particle energy
bands are degenerated at a point p, =0 (“Dirac” point) in
the quasi-momentum space (see Ref. 10 for details).

The Schrodinger equation for noninteracting quasi-
particles is written as

2 2
{_h—a—+U(r)}Ps,p (1) =&,P)o,, (), (D

2m or?

where U(r) =U(r +a) is the lattice periodic potential (a is
the lattice vector) and
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0, , () = exp(ip—;jus,p (r) @)

is the Bloch function and u, ,(r) is its periodic factor, p is
the electron quasi-momentum while € (p) is the dispersion
law and s is the band number.

For further application of the kp -method it is convenient
to re-write the Schrodinger equation, Eq. (1), as follows:

1 o Y
{ﬁ(—ihgﬂ’j +U (r)}”s,p (r) =g, (Pup (). (3)

According to the kp -method one finds the quasi-particle
dispersion law in the vicinity of the degeneration point
presenting the proper wave functions as a superposition of
Lattinger—Kohn functions [9]:

.pr
Yap = exp(z%j%,o (r), 4)

where the periodic Bloch factors are taken at the degenera-
tion point p = 0.

In order to solve Eq. (3) by the perturbation theory with
degeneration one takes the sought-for function as a super-
position of the degenerated ones that is

ug 5 (1) = g (P)uy o(r) + &, (P)uy o (1). Q)

Inserting the wave function, Eq. (5), in Eq. (3) and us-
ing the inequality | p | < %/ a one obtains the former equa-
tion in the following form:

2
allao@®=0.  (6)

a=1

h? 92 .
———+U()+pVv—c¢
2m or? () +pv }

Here v = (—ifi/ m)0/ or is the velocity operator o =5 =1,2
are the band numbers of the two degenerated bands.

Taking matrix elements of Eq. (6) one gets a set of al-
gebraic equations for the expansion constants g ,:

(pvy —€)gi(p) +(PV12 )gz (p) =0,

(Pva1) &1 (P) + (P4, —€)g, (p) =0, (7)

where the quasi-particle energy € is measured from the
degeneration energy, €,(0) =¢&,(0) =0, and the matrix el-
ements of the velocity operator are

Vaur = [ 45,0001, (1) ()

Equating the determinant of Eq. (7) to zero one gets the
conventional dispersion law of quasi-particles near the
degeneration point:

pv, £/ (v )> +4|pvy, I?
e.(p)= N > 2 ©

~

where v, =v,;; £ v,,. From here it follows that the disper-
sion law of quasi-particles in the vicinity of the band intersec-
tion is of the graphene-type (see, e.g., review papers [5, 6])

e.(p) = vy p; + p; = *op, (10)

if the lattice symmetry imposes the following conditions
on the velocity matrix elements at the degeneration point
p=0:

vi1(0)=v5(0)=0, |v,(0)|=71,
vy (0) = %iv{3 (0), (11)

where v = v, ~1-10° m/s for graphene.

Inserting the values of the velocity matrix elements
Eq. (11) in Eq. (7), solving the latter equation and using
Eq. (5) one finds the graphene Bloch functions;

(Pfxg,;)) (r)=e™ [”1,0 (1) +e ™y (r} /2o, (12)

where 6 = arctan(p, / p,) and the energy band number is
a==

Introducing the envelope functions

dp
(2mh)?

)= g1,2<p>exp{i"—r} (13)

n
and using Eqgs. (7) one finds the following equation:
(=inv,,0, +V(r)—€) D, (r)—ihv ,0,®,(r) =0,
—ilV3,0, D, () +(=iv,,0, +V(r)—&) D, (r) = 0. (14)

Here we added an external potential V' (r) which smoothly
changes at the atomic scale (it can be rigorously proved as
it is shown in Ref. 10).

Equation (14) transforms into Weyl equation:

60ty +6,0,Py +06,0, Oy +05.0.Dy =0, (15)

where G, is the unity matrix and c,,0,,,5, are the Pauli
matrices if two energy bands of a 3D semi-metal are de-
generated in the vicinity of the Fermi energy and the lattice
symmetry imposes the following conditions on the velocity
matrix elements:

v11(0) = v, (0)=0,

Differential Egs. (14) and (16) describe dynamics of var-
ious Weil semi-metals in accordance with their symmetry
that determine the velocity matrix elements, Eq. (8).

Choosing the graphene symmetry (for which the matrix
elements are given by Eq. (11) one obtains the convention-
al Dirac equation [5, 6]:

V(r)—¢
ho(—id, —0,)

[Vip(0) = v, v =v(l,—i,0).  (16)

ho(—id, + 8»}{(1)1

o~ CDZJ= 0. (17)
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3. Scattering of quasi-particles in graphene
by impurity

Here we consider the elastic scattering of quasi-particles
by an impurity in graphene. After solving the Schrodinger
equation for a quasi-particle in the periodic crystal poten-
tial with an impurity by the kp-method, we derive the Di-
rac equation with an effective scattering potential for the
envelope function. The scattering amplitude and Green’s
functions for the Schrédinger and Dirac equations are also
found.

Elastic scattering of a free quasi-particle by an impurity
in the periodic lattice is described by the following Schro-
dinger equation:

(Ho+7,(0)) P () = 9(r), (18)
where ﬁo is the quasi-particle Hamiltonian for the pure
crystal, Eq. (1), and V(r) is the impurity potential.

Using the Green’s function approach one presents the
wave function of the scattered quasi-particle as follows:

Y(r) =i (r)+ j Gr,x VW, (x)¥(x)dr',  (19)

where q)(’”)(r) is the incident “graphene” Bloch function,
Eq. (12), and G(r,r") is Green’s function satisfying the
equation

(1310 - s)G(r,r') =—8(r—7r"). (20)

Expanding G(r,r’) in the series of Bloch functions
@, (r) one finds Green’s function as follows:
G(r,r') =G, (r,r)+ G, (r,1), 21

where

dp  Pop )Py, ()
Ga(rir) = ZIQ n)? e—g,(p)+i0 (22)

is the “graphene” Green’s function in which the graphene
dispersion law and the Bloch functions ¢, , (r) are defined
in Egs. (10) and (12), respectively, while

_ dp ©5p()0,,(r)
¢ ZI Qnh)? e—g,(p)+i0

SEQ

(23)

is the Green function of virtual states in which the Bloch

functions, Eq. (2), are proper functions of quasi-particle

energies ¢, (p) belonging to other bands, s # a..
Calculations of “graphene” Green’s function

Using Eqgs. (22), (12) one presents G, (r,r") as follows:

G, (r,r")= [”1 o (X)uy o (r) +uuz 0 (X o (D11, +

_1 ¢ * ’ + * r -
+ ( 2) [y o (ruy 157 + uzo(ru 1571 (24)

where
ip(rfr')/h

(2nh)* e—g,(p)+i0°

1e-r)= [P

- izG
ep(r r )/h

= J4(27571)2 £—¢ (p)+10

(25)

Performing integrations (see Appendix A) one finds
in/4 ip R/ in/4
n=rp=-S— Pt T ()

2nh R eR?

where p, = /v is the quasi-particle momentum.

Calculations of Green'’s function for virtual states.

Here we calculate the part of Green’s function deter-
mined by virtual states, Eq. (23):

G, ()= Z j gp (P (r)e?) dp 27
S#E =~ &— as (p) (27Th)2

In the polar coordinates the integral in Eq. (27) reads

dpp i
Gy o (r',r) =
%{ @nh)® |

Us (p, @)erhese
eE—-¢g; (pa (P)

» (28)

where

Us (P) = u:;p (r’)us;p (l‘), R= | r'—r |

with the momenta taken in the polar coordinates.
At Rp/h>>1 one may use the fastest descent method
for calculations of the integral with respect to ¢ and find

,ZTEh dp\/;
b#a(r ) Z J. (2T[h)2 s

SEA ()
Us (P, O)e_m/4 e[pR + Us (pa Tr)emM e—ipR (29)
S_SS(pDO) S—Ss(p,TE) .

For calculations of the above integrals it is convenient
to choose the integration contours in the complex plane
shown in Fig. 1.

In the general case, the dispersion equations &,(p,®)
considered as functions of the complex variable z = p +i§
have branching points, their characteristic distances from
the real axis being of the order of 7/ a (here a is the atom-
ic spacing). In Fig. 1, they are schematically shown with
small circles at the beginnings of branch cuts; as the ener-
gy € is out of the energy band under consideration s # o
the poles (which are shown with black dots) are in the
complex planes with | §| 2> A/ v where A is the characteris-
tic width of energy gaps.

Performing the contour integrations in the complex
plane (see Appendix C) one finds Green’s function for
virtual states:
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Fig. 1. Closed contours of integration C, and C_ for calcula-
tions of the first and second integrals in Eq.(28) are shown with
solid and dotted lines, respectively; branching points are shown
with small circles at the beginnings of branch cuts; poles of the
integrands are shown with black dots.

—R/a 1

hov2naR RZA

Finally, according to Egs. (21), (24), (26), (30) the total
Green function for the electron reads

(P — (30)

S‘i(l

in/4 iR
Goray— S [P e
PAGE]

2hv \ 2nh \/—

—R/a
quao(r)uﬁo(r)JFO[B zﬂe\/—R} (€2))

o,p=1

Inserting Eq. (31) into Eq. (19) one readily finds the in-
tegral equation for the wave function of the electron scat-
tered by the impurity in graphene:

3/2
\P(r) (P(m)(r) (27[) \/a l7r/4

V(X' (r el ar
xa%“luao(r)juso(r) (r)¥(r )\/ﬁ(ZTE?I)2 '

o a2 e—R/ a
) (32)
R JR/d
This equation can be easily solved in Born’s or semiclassical
approximations that gives the explicit expression for the wave
function of the electron scattered by the impurity.
As one sees from Eq. (32), in the vicinity of the impuri-

ty the wave function of the quasi-particle scattered by the
impurity is a superposition of the virtual states belonging

to all available energy bands that fast decays as the dis-
tance from the impurity increases.

In the next section, using the kp-method we derive the
Dirac equation for quasi-particles in graphene with an im-
purity. As is shown there solution of this equation in
Born’s approximation allows to present the envelope func-
tion and the scattering amplitude in an explicit form.

Envelope function and scattering amplitude for graphene
with an impurity
First we derive the Dirac equation for quasi-particles in
graphene with an impurity using the kp-method. For this
purpose we write the Schrodinger equation considering the
term with the impurity potential as a known function in the
right-hand side of it:

n o
{ T 2+U(r) S}W(r)——V(r)‘P(r) 33)

Expanding ¥ in the left-hand side of the above equa-
tion in the series of y [see Eq. (4)]

2
W= [ gu(Ptap®) (34)
a=1

_dp
(2mh)?
and using Eq. (11) one finds the Schrédinger equation in
the p-representation:

2
620, (P)+ D, (P Vo018 (B) == 1. (1) ()P (x)al.
a'=l1

(35)

In the above equation, contributions of the virtual states
are neglected (see the previous section).

The envelope functions are given by Eq. (13) and hence,
according to Eq. (34), they are related to the wave function of
the Schrodinger equation, Eq. (18), by the following relation:

2
Y= 1, ()P, (r). (36)
a=1

After multiplying the both sides of Eq. (35) by
exp{ipr/#h)} and integrating with respect to p one finds
the following equation for the envelope function:

e®; +1w(i0, —0,)Py = u; o (r)V;(r)¥(r),
ho(i0, +0,)P; +e@; = u, o (r)V;(r)¥(r).

Treating the right-hand side as a known function one
finds the following solution of this Dirac equation:

2
@, (r) = O - j ViR ul o (1) A, (r',r)dr,
a=1

2
O, (1) = O — [V, () P() D s o (1) B, (F,r)dr’ . (38)
o=l
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where (Dﬁ? are the envelope functions of the incoming
quasi-particle (which are solutions of the above homoge-
neous Dirac equation) while functions 4, and B, are inte-
grals with respect to the momentum p:

T gy
A =B=¢c| ————,
B (vp)* —¢ 2nh)’

—00

0

- o(p, +ip, )™ ™) gp
’ p?-¢  Qmun)*

0

:Iv(px—zpy)ef"(”“ dp
L wpP-e em)

(39

2

Performing integrations analogous to those made in
Appendix A one finds:

A =4,=B =8B, = e'™4 @m* Pe et
42nh)? v p. R/
R=|r-r'|. (40)

Inserting Eq. (40) into Eq. (38) one finds the set of inte-
gral equations for the envelope functions of the graphene
with an impurity as follows:

) 1Y, (1 ,
HE (e

2 2
x D up o (NP ()Y ul (A (X, r)dr,  (41)
p=1 o=l
where @ =arctan p, / p, and for the sake of definiteness,
the scattering of an electron is considered. While writing
this equation Eq. (36) was used.

In the Born approximation the second term in the right-
hand side of Eq. (41) is considered as a perturbation and at
large distances from the impurity one finds the envelope
function of the electron scattered by the impurity as follows:

S o
D,) (e* -1 JRo

where the scattering amplitude is

3/2
L in/4 hv

A e
€ dr’ 2
X —— e 'y (¢! u (Fug o (r)efB Do (43
Uz J-(ZTCh)z l( )Q;ZI OL,O( ) B,O( ) ( )

While writing the above equation we chose the coordi-
nate origin at the scattering center and introduced the radius
vector R, from the origin to the observation point, a unity
vector along it being denoted by n'. Therefore, in this coor-
dinates vector R [see Eq. (40)] reads R =R, —r'. At large
distances from the center, R, > |r’|, one has R ~ R, —k'n’.

Vector q =k'—k, where k' = kn’ is the wave vector of the
quasi-particle after scattering;

q=2ksin®/2,

0 being the angle between k and k', i.e., the scattering angle.

As one sees the envelope function, Eq. (42), and Dirac
equation for it, Eq. (17), are tightly coupled with the wave
function, Eq. (32), and Schrédinger equation, Eq. (18) via
the function-envelope function relation Eq. (36). Below we
present a Green’s function equation for the Dirac equation
which is closely associated with Green’s function of the
Schrédinger equation.

Green’s function for the Dirac equation

Green’s functions are convenient tools for investiga-
tions of properties of various systems and it may be desira-
ble to have an equation for Green’s function for the Dirac
equation, Eq. (17), closely related to the Schrodinger equa-
tion, Eq. (1), and the corresponding Green’s function equa-
tion, Eq. (20).

Using Eq. (20) for Green’s function G(r,r') of the
Schrédinger equation, Eq. (1) and repeating the reasoning
for derivation of Eq. (37) from Eq. (33) one finds the equa-
tion for Green’s function of the Dirac equation as follows:

—g hv(=id, +0,) G](D) (r,r")
fv(=i0, ~0,) —& G (r,r")

= —{”"0 (r)JS(r -r'). (44)

Uzo (r)

In Eq. (44), expanding in the series of the proper func-
tion of the Dirac equation one finds that Green’s function
reads as follows:

G (r,r') :i [
G (r,r") (2nh)*

o=l

ul,o(r>+<—1)°‘e"9uz,0r( 1
X

o [P (45
e—¢&,(p) (—1)“6_'ej @
where ¢, (p) = (—1)*vp and 6 = arctan(p, / p,,).

4. Derivation of boundary conditions for
Dirac equation

Dynamics of quasiparticles in graphene that occupies the
upper half plane y > 0 is described by Schrodinger equation:

n* o°
{—%¥+U(r)}‘l’(r) =&¥(r) (46)

with the boundary condition

Y(r)[,-=0, 47

where U(r) = U(r +a) is the lattice periodic potential.
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To solve the problem of reflection by the sharp edge at
y =0, we use Green’s function for Schrodinger equation
Eq. (46):

n* ?
["Ea?+ U(r) —st(r,r’) =8(r—r) (48

in which the lattice potential U(r) covers the whole
plane (x, y).

Using Egs. (20), (46) and taking into account the
boundary condition Eq. (47) one finds

A (r ), h2 iy ¥ (r")
( 0;r)———
‘/Uy,a oy

Here 7% (r) is the graphene Kohn-Lattinger function
Eq. (4) 1nc1dent to the graphene edge from the infinity
y— o and v,, =® (p)/dy is the velocity y-projec-
tion that normalizes the incident function to the flux unity
while gffr) (p) = top is the graphene dispersion; in order to
define W(r) on the whole half-plane y >0 the boundary
contour is shiftedto y =-0=0-5", 8 — 0 (see Ref. 11).

Expanding G(r,r’) in the series of Bloch wave func-
tions and using Eq. (48) one finds

¥(r)=

|y—_o dx. (49)

Y (D ap (F)
G(r,r')= Z Is lz)-:(g’)(p)l)+18dp+

05 p (M0, (r)

dp, 50
e—c,p)+id T (59)

s#1,2

where summation goes over all energy bands and 6 — +0
Inserting Eq. (50) into Eq. (49) one finds the wave
function on the right half-plane x > 0 as follows:

(in)
%
Y(r)=—20 4

v}’,fl

+— j dX¥'(x,0)e" " { > o (T, 0)ug o (1) +

a=1,2

+ Z u; o (X, 0)ug , ()" } (51)

s#1,2

where W', (x,-0) = 0¥ (r)/dy at y =—0. While writing the
above equation we assumed that along the edge line y =0
the lattice is periodic with the period a, that is
¥ (x,0) =¥(x+a,,0) and hence the momentum projection
p, conserves; [® and /(¥ are one-dimensional inte-
grals defined below, Egs. (52), (53)

Differentiating the both sides of Eq. (51) with respect
to y one obtains the integral equation for ‘¥, (x,—0) the
solution of which completes the definition of the sought
wave function W(r). Despite this integral equation can
not be solved in the general case important properties of

the quasi-particle scattering by the sharp sample boundary
may be derived from Eq. (51).

Indeed, let us consider one-dimensional integrals with
respect to p, in Eq. (51) re-writing them in the following
forms:

by/2

&) =
* _b{/za—ea(px,py)ﬂés

iyp.,/h
e .y

(52)

and

byl2 — ivp/h
Us.py.py (x,O)uS,px’py (r)e

J(bnd) —
N .
e—&,(py,p,)+id

dp,,. (53)
7by/2

Here b, is the period of the reciprocal lattice in the
y-direction.

In the complex plane the dispersion law of the degenerated
bands of graphene Eq. (10) considered as a function of the

complex variable z= p,, +i€ (that is &(p,,z) =+oyz2 +p?)
has branch points at z = *ip_ and the two branches of this

complex function are the two energy bands on the real axis
z = p,. The dispersion law functions of other energy bands

are also multi-valued functions with branch points in the
complex plane.

Therefore, integral Eq. (52) is a sum of the residues and
the integral along the brunch cut in the upper complex
half-plane £ > 0 inside the contour schematically shown in
Fig. 2. The left and right vertical lines of the contour are
separated by the reciprocal period b, and hence the inte-
grals along them cancel each other because the integrands
are periodic functions of the same period. The integral
along its upper horizontal part exponentially goes to zero
as this contour part goes to io.

Below, for the sake of certainty we consider here one
valley reflection of an electron, oo = 1. We also assume that

— N\ — > —

p
o/
b2 ) P b2

Fig. 2. (a) Equal energy contour v,/ pi + pf =¢. The thick ar-
rows show the velocity direction at fixed energy ¢ and p . The

incident quasiparticle has conserving projection p, = — p(,”

while
the outgoing quasiparticle has p, =+ p;,l). (b) Contour of integra-
tion of Eq. (52). Dots on the real axis p, show positions of the
poles corresponding to points with positive and negative velocity
v,. Thick vertical line is the brunch line corresponding to the
brunchlng point (thick dots), p(g') =ip,, in the quasi-particle

spectrum.
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only one contour &(p,,p,)=¢ exists at a fixed p, as
shown in Fig. 2.

In this case Eq. (52) reads
by /2 Syl
Il(gf) —

dp (34)

ye

2, 2
~by,/2 [8—\/Px +py +id]

The pole of the integrand in Eq. 54 which contributes
to the integral lies on the right upper side of the real
axis (see Fig. 2).

1

Py =P +ii 5—0,

0@’

where its real part is p{") =4/(e/v)* - p; . One easily sees

from the denominator of the integrand that this pole is in-
side the integration contour because the velocity

oe(p.,
, = %pory)

v | n>0

apy Py=Py

and hence it corresponds to the quasiparticle state reflected
back by the boundary.

Taking into account the above-mentioned pole and
branch cut one easily carried out integration in Eq. (54)
(calculations of the integral along the branch cut is pre-
sented in Appendix C) and finds /(& as follows:

. ) .
2mi opy /h " 2hi efypxh'

]l(gr) =—— " ¢
0
v, (P> P)") ye

(55)

For calculations of the integral in Eq. (53) one finds the
poles from the equation &,(p,,p,)=¢,s#a where the
energy bands ¢,(p,,p,) do not overlap bands o =1, 2 in
which the energy €. In the general case the difference be-
tween those bands

6o (0, =2, 1})| 2 MG, ~T0 0, s =,

(where A(gii, is the characteristic value of the energy gap
between the energy bands) and hence poles of the inte-
grand in the upper imaginary plane have large imaginary
parts & ~ b(gs) = A(g;)p /v. On the other hand the dispersion
laws e,(p,,z) as functions of the complex variable
z = p, +i€ are also multi-brunched, the brunching points
of which having also large imaginary parts & ~ b(()s).
Performing integration in Eq. (53) in much the same
manner as above one finds 7(*"® as follows (details of the
calculations are presented in Ref. 10):
—ybo/h

[‘gbnd) LS

(56)
0

Using Egs. (55), (56) together with Eq. (51) we found
that at distances y > a (here a is the characteristic period
of the graphene lattice) the graphene wave fuction is the

difference between the incident and outgoing Bloch func-
tions of the infinite graphene:

—| @ _ e
e [‘%;h,p@“’ (waw“’j*

—wp,/h

+Ce ey (r), (57)

where p{™ and p{*") =—p{" are the y-projections of the
quasiparticle momentum while C is a constant ~ 1 (details
of calculations are given in Ref. 10).

From Eq. (57) and Eq. (36) one easily finds that at the
distances from the graphene sharp edge much greater than
the atomic spacing, / > a , the graphene envelope function
®(r) is the difference between the incident and outgoing
wave functions (which are two independent solutions of
the Dirac equation Eq. (17)):

_ T (1
P(r) = e™Px {e”’y ( . J—e Py )( - ﬂ (58)
e'? e ’®

where the phase ¢ = arctan( p;i“) /'p.).

5. Conclusion

In this paper dynamics of quasi-particles in graphene
with an impurity and a sharp edge is considered with the
kp-approach. Dirac equation for graphene and Weyl equa-
tion for semi-metals are derived in Sec. 2. For graphene
with an impurity, the wave function and its evolution func-
tion together with the scattering amplitude are found in the
Born approximation. As an auxiliary tool Green’s func-
tions for Schrédinger and Dirac equations are also derived.
In the both cases of the impurity and the sharp edge, the
wave functions of the scattered quasi-particles are shown
to be superpositions of virtual states which exponentially
decay outward from the scatterer. They are explicitly pre-
sented for distances much greater that the atomic spacing.
In the case that the velocity direction of the incident quasi-
particle is perpendicular to the edge the above-mentioned
superposition of virtual states decays linear with the distance
increase, Eq. (57). It is proved that at the distances much
greater than the atomic spacing the graphene envelope func-
tion is the difference between the incident and outgoing
wave functions which are two independent solutions of the
Dirac equation for the infinite graphene, Eq. (58), the latter
being the boundary condition for Dirac equation.

Acknowledgment
This work was supported by Croatian Science Founda-
tion, project IP-2016-06-2289.
Appendix A: Calculations of contour integrals
for “graphene” Green’s functions

Inserting the polar coordinates in the integrals in Eq. (25)
one finds
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dp
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where p, =¢/v and R=|r-r'| while J, are the Bes-
sel functions of the first kind. For the sake of certainty,
here and below all calculations are done for electrons the
dispersion law of which is ¢, (p) =vp [see Eq. (10)].
Asymptotic of the Bessel functions for large arguments are

Jo(pR) =2/ (npR) cos(pR -1/ 4)
and

J1(pR) = J2/ (nRp) sin(pR -/ 4)
and hence at pR > 1, Eq. (Al) reads

2
L(r-r)= ——FJ G

S -
p—p,—i0

63) _ 27
Lre-r)= \/7J‘(2nh)2

v \/; ‘ (expi(pR—nM)_eXp
PP —i0

i(pR—m/4) + eXp—i(pR—ﬂ/4))

—i(pR—rr/4)). (A2)

Using the contours of integration in the complex plane
presented in Fig. 3 for calculations of the first and second

&

cut

—_———
~

ke e e = e .= ==

Fig. 3. Closed contour in the complex plane. The pole is shown
with a dot.

integrals in the right-hand sides in Eq. (A1), respectively,

one finds
=1 = _l\/Tei(sz/mnm) N
v \ 2mhR
+i%? /2_11 e—m/4]?@ dg .
1 2
R 0 lE_!_pg (2Tfh)

+ein/40j‘)\/g"*_kg dg }

o &+ p, (2mh)? (a3

As Rp, > 1 one may neglect i§ in the denominators of
the integrals and readily finds Eq. (26) of the main text.

Calculations of the contour integrals for the “virtual” part
of Green’s function
In order to calculate integrals in Eq. (28) it is conven-
ient to use contours in the upper and the lower complex
planes for the first and second integrals respectively as it is
shown in Eq. (28) with solid and dotted lines. As a result,
Green’s function is presented as follows:

Gs¢(x(r”r) = Z [s;

SF#EQ

_ 1 1

— X
Y ho2mR
X{\/ZUS(ZI,O)eI-(ZlfTC/“)+\/ZUS(ZZ’TE)6*[(Z2*T[/4)}+

+lj‘° dZ\/Zz eizR Us (Z’ 0)e7in/4 ~ Us (—Z, Tc)e[n:/4 .
o (2nh) €—¢,(z,0)

e—¢g,(—z,m)

—in/4
N azz\/E2 Uy(z.00e™™ p
L Q) 5—g,(2,0)
b

in/4
+J‘ d dZ\/; U,(z,m)e e_iZR, (A4)

& @nh)? e—g (z,m)
where z, =p,+i§, and z, =p, —i|y,| (where & >0,
&, <0) are coordinates of the poles in the first and second
integrals in Eq. (28), respectively, the residues of which
contribute to the contour integration; the third term in the
right-hand side is the integral along the imaginary axis while
the last two terms are integrals along the pathes around the
cuts (those pathes are marked as C} and C7 in Fig. 1)

Using the inequality R/a > 1 one takes the integrals in
Eq. (A4) and finds G, (r',r) written by the order of mag-

SF#EO

nitude in Eq. (30) of the main text.

Appendix B: Matrix elements

Here calculations of matrix elements with Kohn—Lattinger
functions are presented for the sake of convenience.
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A= J-X:;',p’ (r) X(x,p (r) =

yoo (ytDhay (ny+1)ay
= j dre'® POy, (R, o(r), (BI)

n=—x
nea, nya,

where n = (nx,ny) while ny, = 0,£1,%2, ...
Changing integration variables r =r'+a one finds
o (a)
A= Z e/(Pp)a j drug o (r)ug o(r).
0

n=-ow

(B2)

Here summation is over a unit cell.
Taking the sum one finally finds the normalization con-
dition for the Kohn—Lattinger functions as follows:

00

. dr
I X(x',p' (l') th,p (l')

——=3,,5(p-p),
e (P-p)

(B3)

8

where the the normalization condition for the periodic
functions u, o (r) = u, o(r+a) =u, ,(r) was used:

(a) dr
[t 0,0 (1) 5 =8 0
0 a

(B4)

Performing analogous calculations one finds matrix
elements of the velocity operator:

dr

— B5
(2nh)? ®3)

[0 ) ¥ () =3(p—P)Vou-

Appendix C: Calculation of the integral along
the cut for the edge scattering

Using Eq. (54) of the main text one writes the integral
along the branch cut in Fig. 2 as follows:

i

(cont) 2 eiyi/h da
I = —_——— =
e vy P +E
2 e VC/h
—2i j - ac (C1)
Py [S—U\/P)% -¢%]
Changing the variables { —g — C one gets
* —yC/h
[0 = pje /" - e (C2)
! e—i0\C(C+2p,)

As one sees from Eq. (C2) the main contribution of the
integrand to the integral is at { <7/ y. This inequality
means that the square root in the integral denominator is
much less than &/v (note that | p™ <g/v). Therefore,

neglecting the term with the square root one easily takes
the integral and finds

Dihe PV

ye

I(Cont) — (C3)

1. C. W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
P. R. Wallace, Phys. Rev. 71, 622 (1947).
. D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685
(1984).
4. Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett.
97, 216803 (2006).
5. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
6. S. Das Sarma, Shaffique Adam, E. H. Hwang, and Enrico
Rossi, Rev. Mod. Phys. 83,109 (2011).
7. E. McCann and V. I. Fal’ko, J. Phys.: Condens. Matter 16,
2371 (2004).
8. A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B 77,
085423 (2008).
9. J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
10. A. M. Kadigrobov, Fiz. Nizk. Temp. 44, 1598 (2018) [Low
Temp. Phys. 44, 1245 (2018)].
11. P. M. Morse and H. Feshbach, Methods of Rheoretical
Physics, McGraw-Hill Book Company, New York, Toronto,
London (1953), Part I.

W

HocnigmkeHHa guHamiku KBasivacTMHOK B rpadpeHi
3 AOMiLLKaMM Ta FOCTPUMN Kpasimn Kp-MeToaoMm

A. M. Kadigrobov

JuHamiky KBa3idacTHHOK y rpadeHi 3 DOMilIKaMH Ta roc-
TPUMH KpassMH DPO3TIAHYTO 3a JOIOMOTOIO kp-METOXy, SIKUH
JOMYCKa€ €IMHUMA Miaxix 6e3 BUKOPUCTAHHS OyIb-sKOi MOJeIi.
ITum metonmoMm orpumano piBHAHHA [lipaka Ta Beitnsa. XBuisoBy
¢yHkuio Ta ii 00BigHY, @ TAKOXK aMILTITYAY PO3CIsIHHS OTPUMaHO
B HaOmwkeHHI bopHa. [loka3aHo, 1m0 XBHIbOBI (DYHKIII € cymep-
MO3MILIEI0 BIPTyallbHUX OJOXIBCHKUX (DYHKIIH, SIKi EKCIIOHEH-
[iaJBHO 3aracaroTh BiJ JOMIIIKH 10 Kparo. Ha BincraHsx, siki Ha-
6araTo MNEepeBHILYIOTh MDKaTOMHI, XBHJIbOBI (yHKUIl mpen-
CTaBJICHI B IBHOMY BHTJIAi. BuBeneno ¢ynkuii I'pina 1yt piBHIHB
Hlpeninrepa Ta [lipaka, a TakoX TpaHUYHI YMOBH B PiBHSHHI
Mipaxka uist rpadeHy 3 TOCTpUM KPaeM.

Kitro4oBi ciioBa: po3cisiHHS KBa3i4aCTHHOK y Trpad)eHi, piBHSIHHS
Beitns ta lipaka, kp-meron, ¢pynxunii I'pina.
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