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Dynamics of quasi-particles in graphene with an impurity and a sharp edge is considered with the kp-method 
that allows an unified approach without usage of any models. Dirac and Weyl equations are derived by the 
above-mentioned method. The wave function and its envelope function together with the scattering amplitude 
are found in the Born approximation. The wave functions are shown to be a superposition of virtual Bloch func-
tions which exponential decay outward from the impurity and the edge. At distances much greater that the atom-
ic spacing the wave functions are explicitly presented. Green’s functions for Shrödinger and Dirac equations are 
derived as well. Boundary conditions for the Dirac equation for graphene with a sharp edge are also derived. 
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1. Introduction

Dynamic and kinetic properties of graphene have been at-
tracting much attention during the last decades [1]. Fascinat-
ing dynamic and kinetic phenomena which arise in graphene 
can be described by the two dimensional differential Dirac 
equation [2, 3] supplemented by boundary conditions. 

Details of the boundary conditions and scattering ampli-
tudes depend on microscopic characteristics of the concrete 
structures of sample boundaries [4] and the scatterers. 
Theoretical derivations of the boundary conditions for Di-
rac equations and the scattering amplitudes are usually ba-
sed on various models such as tight bound model (see, e.g., 
review papers [5, 6] and references there), the effective 
mass model [7], tight-binding model with a staggered po-
tential at a zigzag boundary [8]. 

The object of this paper is to demonstrate that the kp-me-
thod [9] allows investigations of graphene (and Weyl semi-
metals) fundamental properties (including the above-
mentioned) on the base a unified approach. This approach 
is justified by the fact that the cone points in graphene are 
on the Fermi level or close to it while the kp -approxima-
tion requires nothing but the series expansion in the quasi-
particle momenta in their vicinity. 

In this paper, on the basis of the kp -method and without 
usage of any models (1) the Dirac and Weyl equations for 
quasi-particles are derived; (2) Green’s function, the wave 
function together with the scattering amplitude for graphene 
with an impurity are obtained in terms of Bloch functions; 
(3) Dirac equation, the envelope function together with the

scattering amplitude, Dirac equation for Green function, 
Green’s function are found; (4) boundary conditions for the 
Dirac equation for quasi-particles in graphene with an abrupt 
boundary are also presented (details of their derivation in the 
kp -approximation were earlier published in Ref. 10). 

The outline of this paper is as follows. In Sec. 2 Dirac 
and Weyl equations are obtained on the base of the kp-ap-
proximation. In Sec. 3 elastic scattering of quasi-particles by 
an impurity in graphene is considered: the wave function, 
the envelope function and the scattering amplitude are 
found in the Born approximation; Green’s functions for 
Schrödinger and Dirac equations are also obtained. In Sec. 4 
dynamics of quasi-particles and boundary conditions at the 
sharp edge of graphene is shortly described. In Sec. 5 con-
cluding remarks are presented. 

2. Derivation of Dirac equation by kp -method

Here we shortly present derivation of the Dirac equation 
by the kp -method assuming that two quasi-particle energy 
bands are degenerated at a point 0 = 0p  (“Dirac” point) in 
the quasi-momentum space (see Ref. 10 for details). 

The Schrödinger equation for noninteracting quasi-
particles is written as  

2 2

, ,2 ( ) ( ) = ( ) ( )
2 s s sU

m
 ∂
− + ϕ ε ϕ 

∂ 
p pr r p r

r
 , (1) 

where ( ) = ( )U U +r r a  is the lattice periodic potential (a  is 
the lattice vector) and  
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 , ,( ) = exp ( )s si u ϕ  
 

p p
prr r


 (2) 

is the Bloch function and , ( )su p r  is its periodic factor, p is 
the electron quasi-momentum while ( )sε p  is the dispersion 
law and s is the band number. 

For further application of the kp -method it is convenient 
to re-write the Schrödinger equation, Eq. (1), as follows:  

 
2

, ,
1 ( ) ( ) = ( ) ( )

2 s s si U u u
m

 ∂  − + + ε  ∂   
p pp r r p r

r
 . (3) 

According to the kp -method one finds the quasi-particle 
dispersion law in the vicinity of the degeneration point 
presenting the proper wave functions as a superposition of 
Lattinger–Kohn functions [9]:  

 , ,0= exp ( )si uα
 χ  
 

p
pr r


, (4) 

where the periodic Bloch factors are taken at the degenera-
tion point = 0p . 

In order to solve Eq. (3) by the perturbation theory with 
degeneration one takes the sought-for function as a super-
position of the degenerated ones that is  

 , 1 1,0 2 2,0( ) = ( ) ( ) ( ) ( )su g u g u+p r p r p r . (5) 

Inserting the wave function, Eq. (5), in Eq. (3) and us-
ing the inequality | | / ap   one obtains the former equa-
tion in the following form:  

 
22 2

,02
=1

ˆ( ) ( ) = 0.
2

U g u
m α α

α

 ∂
− + + − ε 

∂ 
∑r pv r

r
  (6) 

Here ˆ = ( / ) /i m− ∂ ∂v r  is the velocity operator = 1,2sα ≡  
are the band numbers of the two degenerated bands. 

Taking matrix elements of Eq. (6) one gets a set of al-
gebraic equations for the expansion constants 1,2g :  

 ( )11 1 12 2( ) ( ) ( ) = 0,g g− ε +pv p pv p   

 ( )21 1 22 2( ) ( ) ( ) = 0,g g+ − εpv p pv p  (7) 

where the quasi-particle energy ε is measured from the 
degeneration energy, 1 2(0) = (0) = 0ε ε , and the matrix el-
ements of the velocity operator are  

 *
,0 ,0ˆ= ( ) ( )u u d′ ′αα α α∫v r v r r . (8) 

Equating the determinant of Eq. (7) to zero one gets the 
conventional dispersion law of quasi-particles near the 
degeneration point:  

 
2 2

12( ) 4 | |
( ) =

2
+ −

±
± +

ε
pv pv pv

p , (9) 

where 11 22=± ±v vv . From here it follows that the disper-
sion law of quasi-particles in the vicinity of the band intersec-
tion is of the graphene-type (see, e.g., review papers [5, 6])  

 2 2( ) = =x yp p p±ε ± + ±p v v , (10) 

if the lattice symmetry imposes the following conditions 
on the velocity matrix elements at the degeneration point 

= 0p :  

 11 22 12(0) = (0) = 0, | (0) | = ,v v v v   

 ( ) ( )
12 12(0) = (0)y xi±v v , (11) 

where 6= 1 10F ≈ ⋅v v  m/s for graphene. 
Inserting the values of the velocity matrix elements 

Eq. (11) in Eq. (7), solving the latter equation and using 
Eq. (5) one finds the graphene Bloch functions; 

 ( )
, 1,0 2,0( ) = e ( ) e ( / 2gr ir u u−αθ

α  ϕ + 
pr

p r r v , (12) 

where = arctan( / )y xp pθ  and the energy band number is 
=α ± . 
Introducing the envelope functions  

 1,2 1,2 2( ) = ( )exp
(2 )

p dg i Φ  
π ∫

r pr p




 (13) 

and using Eqs. (7) one finds the following equation:  

 ( )11 1 12 2( ) ( ) ( ) = 0,i V i− ∂ + − ε Φ − ∂ Φr rv r r v r    

 ( )21 1 22 2( ) ( ) ( ) = 0.i i V− ∂ Φ + − ∂ + − ε Φr rv r v r r   (14) 

Here we added an external potential ( )V r  which smoothly 
changes at the atomic scale (it can be rigorously proved as 
it is shown in Ref. 10). 

Equation (14) transforms into Weyl equation:  

 0 = 0W x x W y y W z z Wσ εΦ +σ ∂ Φ +σ ∂ Φ +σ ∂ Φ , (15) 

where 0σ  is the unity matrix and , ,x y zσ σ σ  are the Pauli 
matrices if two energy bands of a 3D semi-metal are de-
generated in the vicinity of the Fermi energy and the lattice 
symmetry imposes the following conditions on the velocity 
matrix elements:  

11 22 12 12(0) = (0) = 0, | (0) |= , = (1, , )v v i i−v v v v . (16) 

Differential Eqs. (14) and (16) describe dynamics of var-
ious Weil semi-metals in accordance with their symmetry 
that determine the velocity matrix elements, Eq. (8). 

Choosing the graphene symmetry (for which the matrix 
elements are given by Eq. (11) one obtains the convention-
al Dirac equation [5, 6]:  

 1

2

( ) ( )
= 0

( ) ( )
x y

x y

V i

i V

− ε − ∂ + ∂  Φ 
    Φ− ∂ − ∂ − ε   

r

r





v
v

. (17) 
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3. Scattering of quasi-particles in graphene 
by impurity 

Here we consider the elastic scattering of quasi-particles 
by an impurity in graphene. After solving the Schrödinger 
equation for a quasi-particle in the periodic crystal poten-
tial with an impurity by the kp -method, we derive the Di-
rac equation with an effective scattering potential for the 
envelope function. The scattering amplitude and Green’s 
functions for the Schrödinger and Dirac equations are also 
found. 

Elastic scattering of a free quasi-particle by an impurity 
in the periodic lattice is described by the following Schrö-
dinger equation:  

 ( )0
ˆ ( ) ( ) = ( )iH V+ Ψ εΨr r r , (18) 

where 0Ĥ  is the quasi-particle Hamiltonian for the pure 
crystal, Eq. (1), and ( )iV r  is the impurity potential. 

Using the Green’s function approach one presents the 
wave function of the scattered quasi-particle as follows:  

 (in)
,( ) = ( ) ( , ) ( ) ( )iG V dα ′ ′ ′ ′Ψ ϕ + Ψ∫pr r r r r r r , (19) 

where ( )
, ( )in

αϕ p r  is the incident “graphene” Bloch function, 
Eq. (12), and ( , )G ′r r  is Green’s function satisfying the 
equation  

 ( )0
ˆ ( , ) = ( ).H G r′ ′− ε −δ −r r r  (20) 

Expanding ( , )G ′r r  in the series of Bloch functions 
, ( )sϕ p r  one finds Green’s function as follows:  

 ( , ) = ( , ) ( , )sG ' G Gα ≠α′ ′+r r r r r r , (21) 

where  

 
2 *

, ,
2

=1

( ) ( )
( , ) =

( ) 0(2 )
dG

i
α α

α
αα

′ϕ ϕ
′

ε − ε +π∑∫ p pr rpr r
p



 (22) 

is the “graphene” Green’s function in which the graphene 
dispersion law and the Bloch functions , ( )αϕ p r  are defined 
in Eqs. (10) and (12), respectively, while  

 
*

, ,
2

( ) ( )
=

( ) 0(2 )
s s

s
ss

dG
i≠α

≠α

′ϕ ϕ

ε − ε +π∑ ∫ p pr rp
p



 (23) 

is the Green function of virtual states in which the Bloch 
functions, Eq. (2), are proper functions of quasi-particle 
energies ( )sε p  belonging to other bands, s ≠ α. 

Calculations of “graphene” Green’s function 

Using Eqs. (22), (12) one presents ( , )Gα ′r r  as follows:  

 * *
1,0 1,0 2,0 2,0 1

1( , ) = [ ( ) ( ) ( ) ( )]
2

G u u u u Iα ′ ′ ′+ +r r r r r r   

 ( ) ( )*
1,0 2,0 2,0 1,02 2

( 1) [ ( ) ( ) ( ) ( ) ],
2

u u I u u I
α

+ −− ′ ′+ +r r r r  (24) 

where  

 
( )/

1 2
e( ) =

( ) 0(2 )

idI
i

′−

α

′−
ε − ε +π∫

p r rpr r
p





,  

 
( )/

( )
2 2

e e( ) =
( ) 0(2 )

i pdI
i

± θ′−
±

α

′−
ε − ε +π∫

p r rpr r
p





. (25) 

Performing integrations (see Appendix A) one finds  

 
//4 /4

( )
1 2 2

e e e= =
2

ip Ri ip
I I

RR

π πε± ε π
− −

π ε



 v
, (26) 

where = /pε ε v  is the quasi-particle momentum. 

Calculations of Green’s function for virtual states. 

Here we calculate the part of Green’s function deter-
mined by virtual states, Eq. (23): 

 
( )*

; ;
2

( ) ( )e
( , ) =

( ) (2 )

i '
s s

s
ss

u u dG
−

≠α
≠α

′
′

ε − ε π∑ ∫
p r r

p pr r pr r
p



. (27) 

In the polar coordinates the integral in Eq. (27) reads  

 
2 cos

2
0 0

( , )e
( , ) =

( , )(2 )

ipR
s

s
ss

U pdp pG d
p

∞ π ϕ

≠α
≠α

ϕ′ ϕ
ε − ε ϕπ∑ ∫ ∫r r



, (28) 

where  

 *
; ;( ) = ( ) ( ); = | |s s sU u u R′ ′ −p pp r r r r   

with the momenta taken in the polar coordinates. 
At / 1Rp   one may use the fastest descent method 

for calculations of the integral with respect to ϕ  and find  

 2
0

2( , ) =
(2 )s

s

dp p
G

R

∞

≠α
≠α

π′
π∑ ∫r r 



,  

 
/4 /4( ,0)e ( , )e

e e
( ,0) ( , )

i i
s sipR ipR

s s

U p U p
p p

− π π
− π + 

ε − ε ε − ε π  
. (29) 

For calculations of the above integrals it is convenient 
to choose the integration contours in the complex plane 
shown in Fig. 1. 

In the general case, the dispersion equations ( , )s pε ϕ  
considered as functions of the complex variable =z p i+ ξ  
have branching points, their characteristic distances from 
the real axis being of the order of / a  (here a is the atom-
ic spacing). In Fig. 1, they are schematically shown with 
small circles at the beginnings of branch cuts; as the ener-
gy ε is out of the energy band under consideration s ≠ α 
the poles (which are shown with black dots) are in the 
complex planes with | | /ξ ∆ v  where ∆ is the characteris-
tic width of energy gaps. 

Performing the contour integrations in the complex 
plane (see Appendix C) one finds Green’s function for 
virtual states:  
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/

2
e 1( , )

2

R a

sG
RaR

−

≠α ′ +
∆π

r r




v
. (30) 

Finally, according to Eqs. (21), (24), (26), (30) the total 
Green function for the electron reads 

 
/4e e( , ) =

2 2

iRpi

e
p

G
R

π ε
ε′ − ×
π

r r
 v

  

 
2 /

*
,0 ,0 2

, =1

1 e( ) ( ) ,
R a

u u
R aR

−

α β
α β

 
′ ′× +  

δ 
∑ r r 

v
. (31) 

Inserting Eq. (31) into Eq. (19) one readily finds the in-
tegral equation for the wave function of the electron scat-
tered by the impurity in graphene:  

 
3/2

(in) /4
,

(2 )
( ) = ( ) eipε π

α
π

Ψ ϕ − ×pr r


v
  

 
| |2

;0 ;0 2
, =1

e( ) ( ) ( ) ( )
(2 )| |

ip

i
du u V

′−ε

α β
α β

′
′ ′ ′× Ψ +

′ π−
∑ ∫

r r rr r r r
r r 

  

 
2 /

2
e, .

/

R aa
R R a

− 
+  

 
  (32) 

This equation can be easily solved in Born’s or semiclassical 
approximations that gives the explicit expression for the wave 
function of the electron scattered by the impurity. 

As one sees from Eq. (32), in the vicinity of the impuri-
ty the wave function of the quasi-particle scattered by the 
impurity is a superposition of the virtual states belonging 

to all available energy bands that fast decays as the dis-
tance from the impurity increases. 

In the next section, using the kp-method we derive the 
Dirac equation for quasi-particles in graphene with an im-
purity. As is shown there solution of this equation in 
Born’s approximation allows to present the envelope func-
tion and the scattering amplitude in an explicit form. 

Envelope function and scattering amplitude for graphene 
with an impurity 

First we derive the Dirac equation for quasi-particles in 
graphene with an impurity using the kp-method. For this 
purpose we write the Schrödinger equation considering the 
term with the impurity potential as a known function in the 
right-hand side of it:  

 
2 2

2 ( ) ( ) = ( ) ( )
2 iU V

m
 ∂
− + − ε Ψ − Ψ 

∂ 
r r r r

r
 . (33) 

Expanding Ψ in the left-hand side of the above equa-
tion in the series of χ [see Eq. (4)]  

 
2

, 2
=1

= ( ) ( )
(2 )

dgα α
α

Ψ χ
π∑ ∫ p

pp r


 (34) 

and using Eq. (11) one finds the Schrödinger equation in 
the p-representation:  

 
2

*
, ,

=1
( ) ( ) ( ) = ( ) ( ) ( ) .ig g V d′ ′α α α α α

′α

−ε + ⋅ − χ Ψ∑ ∫ pp p v p r r r r   

  (35) 

In the above equation, contributions of the virtual states 
are neglected (see the previous section). 

The envelope functions are given by Eq. (13) and hence, 
according to Eq. (34), they are related to the wave function of 
the Schrödinger equation, Eq. (18), by the following relation:  

 
2

,0
=1

= ( ) ( )uα α
α

Ψ Φ∑ r r . (36) 

After multiplying the both sides of Eq. (35) by 
exp{ / )}ipr   and integrating with respect to p one finds 
the following equation for the envelope function:  

 1 2 1,0

1 2 2,0

( ) = ( ) ( ) ( ),

( ) = ( ) ( ) ( ).
x y i

x y i

i u V

i u V

εΦ + ∂ − ∂ Φ Ψ
 ∂ + ∂ Φ + εΦ Ψ

r r r

r r r





v
v

 (37) 

Treating the right-hand side as a known function one 
finds the following solution of this Dirac equation:  

2
(in) *

1 ,01
=1

( ) = ( ) ( ) ( ) ( , )iV u A dα α
α

′ ′ ′ ′ ′Φ Φ − Ψ ∑∫r r r r r r r ,  

2
(in) *

2 ,02
=1

( ) = ( ) ( ) ( ) ( , )iV u B dα α
α

′ ′ ′ ′ ′Φ Φ − Ψ ∑∫r r r r r r r . (38) 

Fig. 1. Closed contours of integration C+  and C−  for calcula-
tions of the first and second integrals in Eq.(28) are shown with 
solid and dotted lines, respectively; branching points are shown 
with small circles at the beginnings of branch cuts; poles of the 
integrands are shown with black dots. 
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where (in)
1,2Φ  are the envelope functions of the incoming 

quasi-particle (which are solutions of the above homoge-
neous Dirac equation) while functions Aα  and Bα  are inte-
grals with respect to the momentum p:  

 
( )

1 1 2 2
e= =

( ) (2 )

i dA B
p

∞ ′−

−∞

ε
− ε π∫

p r r p
v

,  

 
( )

2 2 2

( )e
=

( ) (2 )

i
x yp ip dA

p

∞ ′−

−∞

+

− ε π∫
p r r p



v
v

,  

 
( )

2 2 2

( )e
=

( ) (2 )

i
x yp ip dB

p

∞ ′−

−∞

−

− ε π∫
p r r p



v
v

. (39) 

Performing integrations analogous to those made in 
Appendix A one finds:  

 
/3/2

/4
1 2 1 2 2

(2 ) e= = = = e ,
4(2 ) /

ip R
i p

A A B B
p R

ε
επ

ε

π
π






v
  

 = | | .R ′−r r  (40) 

Inserting Eq. (40) into Eq. (38) one finds the set of inte-
gral equations for the envelope functions of the graphene 
with an impurity as follows:  

 1

2

1 1
e ( )

e 1
i

ii Vε
ε

Φ +      ′= −     Φ −    
∫rk r  ×  

 
2 2

*
,0 ,0 1

=1 =1
( ) ( ) ( ) ( , )u u A dβ β α

β α

′ ′ ′ ′× Φ∑ ∑r r r r r r , (41) 

where = arctan /y xp pϕ  and for the sake of definiteness, 
the scattering of an electron is considered. While writing 
this equation Eq. (36) was used. 

In the Born approximation the second term in the right-
hand side of Eq. (41) is considered as a perturbation and at 
large distances from the impurity one finds the envelope 
function of the electron scattered by the impurity as follows:  

 
01

2 0

1 1 ee ( )
e 1

ik R
i

i f
R

ε
ε

ε

Φ +     
= − θ     Φ −    

rk , (42) 

where the scattering amplitude is  

 
3/2

/4( ) = e
2

i vf ππ
θ − ×

ε
   

2
( 1)*

,0 ,02 2
, =1

e ( ) ( ) ( )e .
(2 )

i i
i

d V u u′− β− ϕ
α β

α β

′ε ′ ′ ′×
π ∑∫ qrr r r r
v

 (43) 

While writing the above equation we chose the coordi-
nate origin at the scattering center and introduced the radius 
vector 0R  from the origin to the observation point, a unity 
vector along it being denoted by ′n . Therefore, in this coor-
dinates vector R  [see Eq. (40)] reads 0= ′−R R r . At large 
distances from the center, 0 | |R ′r , one has 0R R ′ ′≈ −k n . 

Vector = ′ −q k k , where = k′ ′k n  is the wave vector of the 
quasi-particle after scattering;  

 = 2 sin / 2,q k θ   

θ being the angle between k  and ′k , i.e., the scattering angle. 
As one sees the envelope function, Eq. (42), and Dirac 

equation for it, Eq. (17), are tightly coupled with the wave 
function, Eq. (32), and Schrödinger equation, Eq. (18) via 
the function-envelope function relation Eq. (36). Below we 
present a Green’s function equation for the Dirac equation 
which is closely associated with Green’s function of the 
Schrödinger equation. 

Green’s function for the Dirac equation 

Green’s functions are convenient tools for investiga-
tions of properties of various systems and it may be desira-
ble to have an equation for Green’s function for the Dirac 
equation, Eq. (17), closely related to the Schrödinger equa-
tion, Eq. (1), and the corresponding Green’s function equa-
tion, Eq. (20). 

Using Eq. (20) for Green’s function ( , )G ′r r  of the 
Schrödinger equation, Eq. (1) and repeating the reasoning 
for derivation of Eq. (37) from Eq. (33) one finds the equa-
tion for Green’s function of the Dirac equation as follows:  

 
( )
1
( )
2

( ) ( , )
( ) ( , )

D
x y

D
x y

v i G
v i G

−ε − ∂ + ∂    ′
  =   − ∂ − ∂ −ε ′  

r r

r r





  

 1,0

2,0

( )
= ( ).

( )
u
u
 

′− δ − 
 

r
r r

r
 (44) 

In Eq. (44), expanding in the series of the proper func-
tion of the Dirac equation one finds that Green’s function 
reads as follows:  

 
( ) 2
1

2( )
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=

(2 )( , )

D

D

G d
G α

 ′
  ×
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r r p
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 1,0 2,0 ( )/( ) ( 1) e 1
e
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i

i
u uα θ
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α − θ

α

+ −  
×  −ε − ε  

r p r rr
p

 , (45) 

where ( ) = ( 1) pα
αε −p v  and = arctan( / )x yp pθ . 

4. Derivation of boundary conditions for 
Dirac equation 

Dynamics of quasiparticles in graphene that occupies the 
upper half plane 0y ≥  is described by Schrödinger equation:  

 
2 2

2 ( ) ( ) = ( )
2

U
m

 ∂
− + Ψ εΨ ∂ 

r r r
r

  (46) 

with the boundary condition  

 =0( ) | = 0yΨ r , (47) 

where ( ) = ( )U U +r r a  is the lattice periodic potential. 
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To solve the problem of reflection by the sharp edge at 
= 0y , we use Green’s function for Schrödinger equation 

Eq. (46):  

 
2 2

2 ( ) ( , ) = ( )
2

U G
m

 ∂ ′ ′− + − ε δ − 
∂ 

r r r r r
r

  (48) 

in which the lattice potential ( )U r  covers the whole 
plane ( , )x y . 

Using Eqs. (20), (46) and taking into account the 
boundary condition Eq. (47) one finds  

 
(in) 2

,
= 0

,

( ) ( )( ) = ( , 0; ) |
2 y

y

r
x dx

m y

+∞
α

′ −
α −∞

χ ′∂Ψ′Ψ + −
′∂∫p rr r

v
. (49) 

Here (in)
, ( )rαχ p  is the graphene Kohn–Lattinger function 

Eq. (4) incident to the graphene edge from the infinity 
y →∞ and (gr)

, = ( ) /y yα α∂ε ∂pv  is the velocity y -projec-
tion that normalizes the incident function to the flux unity 
while (gr) ( ) = pαε ±p v  is the graphene dispersion; in order to 
define ( )Ψ r  on the whole half-plane 0y ≥  the boundary 
contour is shifted to = 0 0 , 0y ′ ′− ≡ − δ δ →  (see Ref. 11). 

Expanding ( , )G ′r r  in the series of Bloch wave func-
tions and using Eq. (48) one finds  
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s s

s s
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p

p
 (50) 

where summation goes over all energy bands and 0δ → +  
Inserting Eq. (50) into Eq. (49) one finds the wave 

function on the right half-plane 0x ≥  as follows:  
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,
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α

χ
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p
r
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2
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α α α
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s s s
s
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≠

+ 


∑ p p r  (51) 

where ( , 0) = ( ) /y x y′Ψ − ∂Ψ ∂r  at = 0y − . While writing the 
above equation we assumed that along the edge line = 0y  
the lattice is periodic with the period xa  that is 

( ,0) = ( ,0)xx x aΨ Ψ +  and hence the momentum projection 
xp  conserves; (gr)Iα  and ( )bnd

sI  are one-dimensional inte-
grals defined below, Eqs. (52), (53) 

Differentiating the both sides of Eq. (51) with respect 
to y  one obtains the integral equation for ( , 0)y x′Ψ −  the 
solution of which completes the definition of the sought 
wave function ( )Ψ r . Despite this integral equation can 
not be solved in the general case important properties of 

the quasi-particle scattering by the sharp sample boundary 
may be derived from Eq. (51). 

Indeed, let us consider one-dimensional integrals with 
respect to yp  in Eq. (51) re-writing them in the following 
forms:  

 
/2 /

(gr)

/2

e=
( , )

by iypy

y
x yby

I dp
p p iα

α−
ε − ε + δ∫



 (52) 

and  

 

//2 *
, , , ,( )
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( ,0) ( )e
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( , )

iypb yy
s p p s p px y x ybnd

s y
s x yby

u x u
I dp

p p i
−

ε − ε + δ∫
r 

 (53) 

Here yb  is the period of the reciprocal lattice in the       
y-direction. 

In the complex plane the dispersion law of the degenerated 
bands of graphene Eq. (10) considered as a function of the 
complex variable = yz p i+ ξ (that is 2 2( , ) =x xp z z pε + +v ) 

has branch points at = xz ip±  and the two branches of this 
complex function are the two energy bands on the real axis 

= yz p . The dispersion law functions of other energy bands 
are also multi-valued functions with branch points in the 
complex plane. 

Therefore, integral Eq. (52) is a sum of the residues and 
the integral along the brunch cut in the upper complex 
half-plane 0ξ ≥  inside the contour schematically shown in 
Fig. 2. The left and right vertical lines of the contour are 
separated by the reciprocal period yb  and hence the inte-
grals along them cancel each other because the integrands 
are periodic functions of the same period. The integral 
along its upper horizontal part exponentially goes to zero 
as this contour part goes to i∞ .  

Below, for the sake of certainty we consider here one 
valley reflection of an electron, = 1α . We also assume that 

Fig. 2. (a) Equal energy contour 2 2 =x yp p+ εv . The thick ar-
rows show the velocity direction at fixed energy ε  and xp . The 
incident quasiparticle has conserving projection (1)=y yp p−  while 
the outgoing quasiparticle has (1)=y yp p+ . (b) Contour of integra-
tion of Eq. (52). Dots on the real axis yp  show positions of the 
poles corresponding to points with positive and negative velocity 

yv . Thick vertical line is the brunch line corresponding to the 
brunching point (thick dots), (gr) =y xp ip , in the quasi-particle 
spectrum. 
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only one contour 1( , ) =x yp pε ε  exists at a fixed xp  as 
shown in Fig. 2. 

In this case Eq. (52) reads  

 
/2 /
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1 2 2

/2

e= .
[ ]

by iypy

y
b x yy

I dp
p p i− ε − + + δ

∫


 (54) 

The pole of the integrand in Eq. 54 which contributes 
to the integral lies on the right upper side of the real 
axis (see Fig. 2). 

 (1)
1 ( )= , 0y

x
p p i

α

δ
+ δ →

v
,  

where its real part is (1) 2 2= ( / )y xp pε −v . One easily sees 
from the denominator of the integrand that this pole is in-
side the integration contour because the velocity  

 (1)=

( , )
= | > 0x y

y p py yy

p p
p

∂ε

∂
v   

and hence it corresponds to the quasiparticle state reflected 
back by the boundary. 

Taking into account the above-mentioned pole and 
branch cut one easily carried out integration in Eq. (54) 
(calculations of the integral along the branch cut is pre-
sented in Appendix C) and finds (gr)

1I  as follows:  

 
(1) /(gr)

1 (1)
2 2= e e

( , )
iyp ypy x

y x y

i iI
yp p

−π
− +

ε






v
. (55) 

For calculations of the integral in Eq. (53) one finds the 
poles from the equation ( , ) = ,s x yp p sε ε ≠ α  where the 
energy bands ( , )s x yp pε  do not overlap bands = 1, 2α  in 
which the energy ε. In the general case the difference be-
tween those bands 

( )
gap( , ) ( , ) / ,s

x y s x yp p p p a sα ′ε − ε ∆ ≠ αv , 

(where ( )
gap
s∆  is the characteristic value of the energy gap 

between the energy bands) and hence poles of the inte-
grand in the upper imaginary plane have large imaginary 
parts ( ) ( )

gap0 = /s sbξ ∆ v . On the other hand the dispersion 
laws ( , )s xp zε  as functions of the complex variable 

= yz p i+ ξ  are also multi-brunched, the brunching points 
of which having also large imaginary parts ( )

0
sbξ . 

Performing integration in Eq. (53) in much the same 
manner as above one finds ( )bnd

sI  as follows (details of the 
calculations are presented in Ref. 10):  

 
/0

( ) e yb
bnd

sI
− 

v
 . (56) 

Using Eqs. (55), (56) together with Eq. (51) we found 
that at distances y a  (here a is the characteristic period 
of the graphene lattice) the graphene wave fuction is the 

difference between the incident and outgoing Bloch func-
tions of the infinite graphene:  

 (gr) (gr)
(in) ; , (out); ,

( ) = ( ) ( )p p px x yp px y
αα

 
Ψ ϕ −ϕ +  

 
r r r   

 
/

/
;0e e ( )

ypx ixpxaeC u
y

−

α+ r


 , (57) 

where (in)
yp  and (out) (in)=y yp p−  are the y -projections of the 

quasiparticle momentum while C  is a constant 1  (details 
of calculations are given in Ref. 10). 

From Eq. (57) and Eq. (36) one easily finds that at the 
distances from the graphene sharp edge much greater than 
the atomic spacing, l a , the graphene envelope function 

( )Φ r


 is the difference between the incident and outgoing 
wave functions (which are two independent solutions of 
the Dirac equation Eq. (17)):  

 
(in) (in)( )1 1

( ) = e e e
e e

iyp i ypixp y yx
i i

−
ϕ − ϕ

    
Ψ −    

    
r



, (58) 

where the phase (in)= arctan( / )y xp pϕ . 

5. Conclusion  

In this paper dynamics of quasi-particles in graphene 
with an impurity and a sharp edge is considered with the 
kp-approach. Dirac equation for graphene and Weyl equa-
tion for semi-metals are derived in Sec. 2. For graphene 
with an impurity, the wave function and its evolution func-
tion together with the scattering amplitude are found in the 
Born approximation. As an auxiliary tool Green’s func-
tions for Schrödinger and Dirac equations are also derived. 
In the both cases of the impurity and the sharp edge, the 
wave functions of the scattered quasi-particles are shown 
to be superpositions of virtual states which exponentially 
decay outward from the scatterer. They are explicitly pre-
sented for distances much greater that the atomic spacing. 
In the case that the velocity direction of the incident quasi-
particle is perpendicular to the edge the above-mentioned 
superposition of virtual states decays linear with the distance 
increase, Eq. (57). It is proved that at the distances much 
greater than the atomic spacing the graphene envelope func-
tion is the difference between the incident and outgoing 
wave functions which are two independent solutions of the 
Dirac equation for the infinite graphene, Eq. (58), the latter 
being the boundary condition for Dirac equation. 
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Appendix A: Calculations of contour integrals 
for “graphene” Green’s functions 

Inserting the polar coordinates in the integrals in Eq. (25) 
one finds  
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where = /pε ε v  and = | |R ′−r r  while 0,1J  are the Bes-
sel functions of the first kind. For the sake of certainty, 
here and below all calculations are done for electrons the 
dispersion law of which is ( ) =p p+ε v  [see Eq. (10)]. 

Asymptotic of the Bessel functions for large arguments are  

0 ( ) = 2 / ( ) cos( / 4)J pR pR pRπ − π  

and  

1( ) = 2 / ( ) sin( / 4)J pR Rp pRπ − π  

and hence at 1pR , Eq. (A1) reads  
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Using the contours of integration in the complex plane 
presented in Fig. 3 for calculations of the first and second 

integrals in the right-hand sides in Eq. (A1), respectively, 
one finds  
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As 1Rpε   one may neglect iξ  in the denominators of 
the integrals and readily finds Eq. (26) of the main text. 

Calculations of the contour integrals for the “virtual” part 
of Green’s function 

In order to calculate integrals in Eq. (28) it is conven-
ient to use contours in the upper and the lower complex 
planes for the first and second integrals respectively as it is 
shown in Eq. (28) with solid and dotted lines. As a result, 
Green’s function is presented as follows:  
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, (A4) 

where 1 1 1=z p i+ ξ  and 2 1 2= | |z p i− χ  (where 1 > 0ξ , 
2 < 0ξ ) are coordinates of the poles in the first and second 

integrals in Eq. (28), respectively, the residues of which 
contribute to the contour integration; the third term in the 
right-hand side is the integral along the imaginary axis while 
the last two terms are integrals along the pathes around the 
cuts (those pathes are marked as 1

bC  and 2
bC  in Fig. 1) 

Using the inequality / 1R a  one takes the integrals in 
Eq. (A4) and finds ( , )sG ≠α ′r r  written by the order of mag-
nitude in Eq. (30) of the main text. 

Appendix B: Matrix elements  

Here calculations of matrix elements with Kohn–Lattinger 
functions are presented for the sake of convenience.  

Fig. 3. Closed contour in the complex plane. The pole is shown 
with a dot.  
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where = ( , )x yn nn  while , = 0, 1, 2, ...x yn ± ± . 
Changing integration variables = ′ +r r a  one finds  
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Here summation is over a unit cell. 
Taking the sum one finally finds the normalization con-

dition for the Kohn–Lattinger functions as follows:  
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where the the normalization condition for the periodic 
functions ,0 ,0 ,0( ) = ( ) = ( )u u uα α α+r r a r  was used:  
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Performing analogous calculations one finds matrix 
elements of the velocity operator:  
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Appendix C: Calculation of the integral along 
the cut for the edge scattering  

Using Eq. (54) of the main text one writes the integral 
along the branch cut in Fig. 2 as follows:  
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Changing the variables qζ − → ζ  one gets  
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As one sees from Eq. (C2) the main contribution of the 
integrand to the integral is at / yζ  . This inequality 
means that the square root in the integral denominator is 
much less than /ε v (note that (in)| /xp ε v). Therefore, 

neglecting the term with the square root one easily takes 
the integral and finds  
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Дослідження динаміки квазічастинок в графені 
з домішками та гострими краями kp-методом 

A. M. Kadigrobov 

Динаміку квазічастинок у графені з домішками та гос-
трими краями розглянуто за допомогою kp-методу, який 
допускає єдиний підхід без використання будь-якої моделі. 
Цим методом отримано рівняння Дірака та Вейля. Хвильову 
функцію та її обвідну, а також амплітуду розсіяння отримано 
в наближенні Борна. Показано, що хвильові функції є супер-
позицією віртуальних блохівських функцій, які експонен-
ціально загасають від домішки до краю. На відстанях, які на-
багато перевищують міжатомні, хвильові функції пред-
ставлені в явному вигляді. Виведено функції Гріна для рівнянь 
Шредінгера та Дірака, а також граничні умови в рівнянні 
Дірака для графену з гострим краєм.  

Ключові слова: розсіяння квазічастинок у графені, рівняння 
Вейля та Дірака, kp-метод, функції Гріна.
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