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In this short review we pass through the milestones in the studies of the electronic topological transitions (ETT) 
and focus on some recent applications of the ideas worked out in their classical theory. These are: two-di-
mensional electron systems, de Haas–van Alphen effect, classification of ETT in multidimensional systems, 
superconductivity in systems close to ETT, thermoelectricity in heavy-fermion systems, where the cascades 
of topological changes of Fermi surface (FS) are generated by magnetic field. The history of studies of ETT 
is inextricably linked with Kharkov school of condensed matter physics, with such names as I. M. Lifshitz, 
V. G. Bar’yakhtar and many other. Among them is Moisey Isaakovich Kaganov, who contributed much in studies 
of the role of geometry and topology of FS in physical properties of the metals. Two of the authors (A. V. and Y. G.) 
had a honor and pleasure to work with M. I. Kaganov — Y. M. Blanter, M. I. Kaganov, A. V. Pantsulaya, 
and A. A. Varlamov, Phys. Rep. 245, 159 (1994) [1]; all of us have been learning the niceties of science from 
his books. “The Fermi surface is the stage on which the drama of the life of the electron is played out” wrote 
Kaganov and Lifshitz. We devote this work to their memory. 

Keywords: electronic topological transitions, two-dimensional electron systems, de Haas–van Alphen effect, 
superconductivity. 

1. Origin and adolescence of ETT

The discovery of a surprising new phase transition in 
liquid helium by W. H. Keesom and coworkers in Leiden 
in 1932 who observed a lambda-shaped “jump” discontinuity 
in the temperature dependence of the specific heat followed 
by the first classification of the general types of transition 
between phases of matter, introduced by Paul Ehrenfest in 
1933 (see the historical overview [2]). The proposed classi-
fication of phase transitions is based on the discontinuities 

of the derivatives of the free energy as a function of the 
parameter governing transition. The lowest derivative of 
the free energy that is discontinuous at the transition point 
labels the kind of the transition in this scheme. First-order 
phase transitions exhibit a discontinuity in the first deriva-
tive of the free energy with respect to some thermodynamic 
variable. Second-order phase transitions are continuous in 
the first derivative but exhibit discontinuity in a second de-
rivative of the free energy. Under the Ehrenfest classifica-
tion scheme, there could in principle be third, fourth, and 
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higher-order phase transitions. This classification later was 
applied to the study of the transition from the normal to the 
superconducting state in metals, discussing liquid-gas, or-
der-disorder, and paramagnetic-ferromagnetic phase transi-
tions. 

As is known, the shape and size of the Fermi surface (FS) 
may change under the influence of such factors as uniform 
compression, changes in the concentration of ingredients in 
the alloy and anisotropic deformation [3]. In particular, 
changes may occur in the topology of the FS: individual 
voids may appear and disappear, or a closed FS may trans-
form into an open one. In 50-ies Mott and Jones [4] made 
a general observation that singularities in the electron state 
density can manifest themselves in certain characteristics 
of a metal. Later on, Van Hove [5] noted that the quasi-
particle density of states in a crystal possesses singularities 
at the energies corresponding to change in the FS topology. 
The anomalies associated with the 1

22 -order phase transi-
tion were discussed by Ziman [6] when he tried to explain 
the behaviour of the electrical resistance of copper at low 
temperature. Finally, in the seminal paper [7] I. M. Lifshitz 
consistently formulated the idea of an electron topological 
transition in 1960, and it was this paper that has stimu-
lated further experimental and theoretical studies in this di-
rection. 

I. M. Lifshitz noticed that changes in topology manifest 
themselves as certain anomalies in thermodynamic and 
galvanomagnetic characteristics of the metal. He performed 
a theoretical study of these anomalies and found that, at 
zero temperature and in the absence of impurity electron 
scattering, the topological changes occur when the Fermi 
energy reaches a certain critical value cε . In this case, if 
the energy of quasi-particles, ( )ε p , has an absolute extreme, 
a void is either formed or disappears, whereas if cε  is 
a hyperbolic singular point, then at = cε ε  there occurs a 
disruption of the “neck” that connects two parts of the FS, 
and an open FS may become closed (see Fig. 1). 

Near such transition in 3D metal and at = 0T  the densi-
ty of electron states can be presented as a sum [7] 

 [ ]
1/2

1 2 3 1/2
0 2 3

(2 )
( ) = | | ( )c c

m m m
ν ε ν + ε − ε Θ ± ε − ε

π 
 (1) 

of a smooth function 0ν  and an additional term ( )δν ε  asso-
ciated with the transition, which is non-zero only on one 
side of critical point cε : on those where either a new void 
is formed or a neck is disrupted. Here im  are modules of 
the principal values of an effective mass tensor and Θ is 
the Heaviside function. 

One can easily check that such discontinuity in the de-
rivative of the density of states results in the appearance at 

= 0T  of a non-smooth contribution to the thermodynamic 
potential: 

 ( )5/2( ) | |z z zδΩ Θ ± , (2) 

where = cz ε − ε  is the energy parameter driving transition. 
It characterizes the closeness of the system to the point 
where the number of components of topological connectiv-
ity of the FS changes. This parameter can be biased by 
hydrostatic pressure, anisotropic deformation, doping by 
some isovalent impurities, magnetic field etc. 

Evidently, the second derivatives of the thermodynamic 
potential, i.e. specific heat capacity, diamagnetic suscepti-
bility, have a vertical kink ( )1/2| |z zΘ ± . The same non-
smoothness appears also in conductivity [7] 

 ( )1/2( ) | | .z z zδσ Θ ±  (3) 

In their turn, the third derivatives (for instance, the co-
efficient of thermal expansion) from one side of the transi-
tion point demonstrate singularity 1/2| |z −

 . It is from this 
observation I. M. Lifshitz has named such electron transi-
tions at = 0T  and in the absence of impurity scattering as 
the 1

22 -order phase transitions. 
At finite temperature however (or when there are impu-

rities that scatter electrons) the singularity at = 0z  be-
comes smeared out, so, strictly speaking, in this case we 
cannot call such topological transformation of the FS a 
phase transition. To distinguish these cases from the true 

Fig. 1. Panels present two type of Lifshitz transition: neck disrup-
tion (a) and void formation (b). The plots for conductivity are 
reproduced from [8] and are based on Refs. 3, 9 for the clean case 
and are presented for three different temperatures (a more smooth 
curve corresponds to the higher temperature). 
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1
22 -order phase transition, we will call the latter as 

Lifshitz, or an electronic topological transition (ETT). 
Following the prediction by I. M. Lifshitz of a possibil-

ity of changing the FS topology and related effect on the 
physical properties of metals had drawn the attention of 
both theoreticians and experimentalists (for detailed review 
see [1, 3] and references therein). Yet, the low temperature 
measurements of such tiny changes in heat capacity, or 
precise study of the coefficient of thermal expansion were 
found to be rather complicated, and this fact decelerated 
the studies of electronic topological transitions. 

As an important milestone in this initial period of the 
studies of Lifshitz transitions should be mentioned the pa-
per by Baryakhtar and Makarov [10]. The authors studied 
the effect of FS topology change under the effect of pres-
sure on the superconducting transition temperature and 
found that the latter exhibits a considerable nonlinearity. 
Up to the present the discovery of the ( )cT P  anomaly (see, 
e.g., [11–14]) is considered as an experimental proof of the 
Lifshitz transition existence. 

It is necessary to mention also the paper by M. A. Kri-
voglaz and Tuo Hao, who had extended the Lifshitz tran-
sition thermodynamics for the case of metal with impu-
rities [15]. 

2. Discovery of the giant anomaly in Seebeck coefficient 
and recursion to topological transitions 

The next stage in the studies of the electronic topologi-
cal transitions started at the beginning of 80-es and was 
related to the discovery [16] of the giant peak in Seebeck 
coefficient of the alloy 1Li Mgx x−  when the concentration 
of magnesium approached x = 0.2 at. % (see Fig. 2). In 
according to the band calculations namely this value corre-
sponds to the touching of the alloy’s FS the Brillouin zone 
edge, i.e., transition from the closed FS to the open one [17]. 
It was observed as a small kink at room temperature, which 
developed in the well pronounced peak at nitrogen temper-
atures with the further growth up to 30 times with respect 
to the background at the temperature of liquid helium. 

It is worth to recall that this discovery was preceded by 
the prediction of the anomaly in thermoelectric coefficient 
based on the some naive explanation [17]. The authors 
related the kink feature in the density of states ( )zδν  
[see Eq. (1)] to the non-smoothness in the mean free path 
of the charge carriers, 

 ( )1/2
0 1( ) = ( ) | | ( ),l l z z l+ Θ ±p p p  (4) 

where 0 ( )l p  is the mean free path of electron scattering 
at the mainland of the FS with p being the quasiparticle mo-
mentum and 1( )l p  is the term related to the singular region. 

Then they used the Mott’s formula for the Seebeck coef-
ficient 2

== / (3 ) (ln ) / |
F

S T e d d ε επ σ ε  with 0= ( )zσ σ + δσ . 
Accordingly, 1/2| |z −  singularity in thermoelectric coeffi-
cient in this approach occurs due to disruption of the neck. 
Such additive treatment assumes that the electrons in the both 

pieces of the FS are independent. Yet, a more detailed con-
sideration raises questions: (i) which value of the electron 
velocity has to be used to calculate ( )zδσ ? If one chooses 
the value of the velocity at the just disrupted neck, then its 
smallness would suppress the gained singularity. (ii) What 
is the value of the relaxation time, corresponding to the 
electrons scattered from the new piece of the FS? 

The answers to these questions were given in the papers 
[9, 18–20], where the scattering of the electrons belonging 
to the FS with variable number of the components of topo-
logical connectivity was studied (see Fig. 3). The authors de-
monstrated that in the case of the ETT of the type of new 
void formation three scenarios of the electron scattering on 
impurities are possible. The first one is trivial: an electron 
from the mainland returns to the mainland after the scatter-
ing from impurity. Corresponding probability in the case of 
isotropic scattering is determined by the Fermi golden rule: 

 1 2
0 imp 0= 2 | | ,n U−τ π ν  (5) 

where impn  is the impurities concentration and U is the am-
plitude of the scattering potential, which we assume inde-
pendent of momentum. More precise analysis shows, that 
this probability depends on the electron energy = Fω ε − ε , 
but very weakly: the correction to Eq. (5) is 1

0 / F
−τ ω ε . 

Fig. 2. The dependence of thermopower on magnesium concen-
tration at different temperatures T = 4.2 K (filled circles), T = 
= 78 K (triangles) and T = 4.2 K (blank circles) [16]. 
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Namely this smallness is responsible for the standard weak-
ness of the Seebeck effect ( / FS T ε ) in normal metals. 

The second possibility for electrons after the scattering 
from impurity is to travel from the main part of the FS to 
the small void. Probability of such process is definitely 
suppressed by the smallness of the density of states in the 
new void (i.e., available states for newcomer in result of 
scattering process). However, this smallness for the Seebeck 
coefficient is over and above compensated by the strong 
energy dependence of this contribution. The last scenario 
of impurity scattering for electron from the new void is to 
return back. This process can be neglected due to small-
ness of the corresponding density of states which enters 
quadratically in the corresponding probability. 

As a result, the total relaxation time can be written as 

 ( ) ( )
1

01
(3) ( , ) =

2 F
F

z z
−

− τ
τ ω κ ±ω− ε κ ±ω±  ε

 , (6) 

where the low index 3 denotes the dimensionality and where 
the function 

 

1/21/2
2

2
0

1( ) = 2
4

x x x
  
 κ + −   τ  

 (7) 

appeared firstly in the paper of Krivoglaz and Tu Hao [15]. 
The choice of signs in Eq. (6) is the following: sign “+” 
corresponds to the transition of the neck disruption type 
(hyperbolic point) while sign “–” corresponds to the for-
mation of the new void. More explicit form Eq. (6) ac-
quires in the clean limit, when 1

0 T−τ  : 

 
1/2

1 1
(3) 0

| |( , ) = 1 ( ) .
F F

zz z− −
  ω +ω τ ω τ − − Θ − −ω ε ε   

 (8) 

Equation (6) allows to present the Seebeck coefficient 
for the system close to ETT in the compact form valid for 
the wide range of impurity concentrations ( 1

0 F
−τ ε ) and 

temperatures: 

 
2 20

( , ) ( , ).
cosh

2

Bk dS T z z
eT

T

∞

−∞

ω ω
τ ω

ωτ ∫
 (9) 

It is essential that consideration of such problem in the 
model of neck disruption reproduces the same result for 
Seebeck coefficient with replacement z z→ −  and ω→ −ω, 
the latter means the replacement of electrons by holes. 
Therefore, the shape of singularity close to ETT depends 
only on the character of topological changes of the FS but 
not on its geometrical type, viz. void or neck. 

The discovery of singularity in Seebeck coefficient in 
1Li Mgx x−  alloy (see Fig. 2) became a trigger for intensive 

study of transport phenomena in vicinity of very different 
topological transitions, generated by isotropic pressure, 
anisotropic deformation, inducing of the isovalent impuri-
ties and other methods (see detailed references in [1, 3]). 

3. ETT in two dimensions 

3.1. Dissimilarity with the three-dimensional case 

End of the XX century was marked by the special interest 
in low dimensional systems, this is why let us briefly re-
view now the 2D case (we will follow Ref. 21). It turns out 
that the density of states singularities, oppositely to the 3D 
case, are different here depending on the transition type. In 
the case of a void formation and an elliptical surface of the 
spectrum, the non-smooth part of the density of states 
(DOS) turns out to be proportional to ( )( )cΘ ± ε − ε , while 
in the case of neck disruption the DOS singularity is pro-
portional to ln cε − ε  [22–24]. As a consequence a singular 
part of the thermodynamic potential is proportional either 
to 2 ( )z zΘ ±  (void formation) or 2 lnz z  (neck disruption) 
at zero temperature and in absence of a random potential 
(the role of the impurity scattering was discussed in Ref. 25). 

One can see that these two expressions are very different 
from each other. In the case of neck disruption, the singu-
larity is nonzero from both sides of the transition and it is 
even on z. This fact is a direct consequence of the above-
mentioned symmetry of a system corresponding to simulta-
neous exchange of holes and electrons branches in the spec-
trum and a change of z sign [see the discussion below Eq. (9)]. 

Fig. 3. Panels present theoretical calculations of the signatures of 
the Lifshitz transition in thermopower S . The plots are repro-
duced from [8] and are based on Refs. 3, 9 for the clean case and 
presented for three different temperatures. The sign of the ther-
mopower (maximum or minimum) is defined by the type of 
charge carrier (see Fig. 1). 
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In this case, the second derivative of the thermodynamic 
potential has a logarithmic singularity at the transition point. 

In the case of a void formation the DOS becomes non-
zero from one side of the transition only (those correspond-
ing to the new void). First derivatives of the thermodynam-
ic potential have kinks at = 0z , and the second ones break. 

In accordance with Ehrenfest terminology, both two-
dimensional void formation and neck disruption must be 
referred as second order phase transitions. However, it is 
important to note that this terminology seems to be too 
general and can give rise to some misunderstanding. In 
fact, in the current literature, the term “second order phase 
transition" is strictly associated with the phenomena de-
scribed by the Landau theory, where it was supposed that 
the dependence of the thermodynamic potential on the or-
der parameter is different, above and below cT , due to the 
special choice of the temperature dependence of the coeffi-
cient in the quadratic term. So, in spite of the common fea-
tures between the types of transitions, the 2D void for-
mation and neck disruption have to be differentiated from 
the second-order phase transitions in the Landau sense. 

3.2. Thermopower close to the 2D ETT of the neck 
disruption type 

Slight differences between the two aforementioned ETT 
lead naturally to some differences for the thermodynamic 
and kinetic properties. The two most remarkable examples 
are the thermal expansion coefficient and thermoelectric 
power. The first one does not exhibit any singularities at all 
at the point of void formation and exhibits a sharp peak in 
the temperature dependence (with height proportional / )Tµ  
in the case of neck disruption [22]. Thermopower depen-
dence versus z  exhibits a sharp asymmetric peak with 
height / Tµ  in the case of void formation [in the 3D case 
it was 1/2( / )Tµ ] [25, 26]. 

Special attention in 2D systems requires the case of 
neck disruption. Here, unlike the 3D case, the system ac-
quires a new type of symmetry: the relaxation time remains 

unchanged when one replaces the electrons by holes and 
changes the sign of z : 

 1 1
(2) 0

42( , ) = ln .
| |

Fz
z

− − ε
τ ω τ

π ω+
 (10) 

Correspondingly, this fact dramatically affects the 
shape of singularity in Seebeck coefficient: instead of well 
pronounced asymmetry with which we are already familiar 
for both types of transition in 3D case and void formation 
in 2D case, in the case of 2D neck disruption the depen-
dence ( )S z  is even, with a minimum and maximum of the 
same height [26, 27] (see Fig. 4). 

3.3. Topogical transitions in a quasi-2DEG: 
Quantization of entropy 

The characteristic example of the ETT in two dimen-
sions is the filling by electrons of the empty subband formed 
due to the size quantization in the quasi-two-dimensional 
electron gas (quasi-2DEG). Each intersection of the levels 
of electron size quantization by the chemical potential 
(when µ passes the level NE ), can be considered as the point 
of the Lifshitz phase transition of the void formation type, 
where the FS acquires a new component of topological 
connectivity. 

In gated structures, a series of Lifshitz transitions can 
be controlled by the gate voltage. Corresponding anoma-
lies in the thermodynamic and transport characteristics, in 
particular, thermoelectric coefficient related to the peculi-
arities of the energy dependence of the electron momentum 
relaxation time have been studied experimentally and theo-
retically in [26, 28] and [25, 27], respectively. In particular, 
ETTs spectacularly manifest themselves in behavior of dif-
ferential entropy (entropy per electron), 1( / )Ts V n−≡ ∂ ∂  
(  is the entropy, V  is the volume of the system which 
below we will assume to be unit). An elegant way to mea-
sure this quantity directly was recently demonstrated [29]. 

As was shown [30, 31], the quantization of the energy 
spectrum of quasi-2DEG into subbands leads to a very spe-
cific quantization of the entropy: s exhibits sharp maxima 
as the chemical potential µ passes through the bottoms of 
size quantization subbands ( iE ). 

Indeed, the density of electronic states (DOS) in a non-
interacting 2DEG and in absence of scattering has a stair-
case-like shape [32]: 

 ( )2
=1

( ) = ,i
i

m E
∞∗

ν µ Θ µ −
π ∑


 (11) 

with m∗  being the electron effective mass. The differential 
entropy, s, can be found using the Maxwell relation: 

 
1

= = = .
T n T

n ns
n T T

−

µ

 ∂ ∂µ ∂ ∂     −       ∂ ∂ ∂ ∂µ       

  (12) 

Fig. 4. Theoretical calculations of the thermal power ( )S z  for the 
case of the Lifshitz transition of the neck disruption type in two 
dimensions. The plot is reproduced from Ref. 27, two curves 
correspond to different values of electron concentrations. 



A. A. Varlamov, Y. M. Galperin, S. G. Sharapov, and Yuriy Yerin 

736 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 8 

The relationship between the electron concentration n, 
chemical potential µ and temperature T  can be found inte-
grating Eq. (11) over energies with the Fermi–Dirac distri-
bution: 

 ( ) 2
=1 0

( )
, = .

exp 1

i

i

E Emn T dE
E

T

+∞∞∗ Θ −
µ

−µ π + 
 

∑ ∫


 (13) 

Using Eq. (13) one can express s in the form of sums 
over the subband levels averaged over energy with tempe-
rature smearing factor. 

In the absence of scattering this result is independent of 
the shape of the transverse potential that confines 2DEG 
and of the material parameters including the electron effec-
tive mass and dielectric constant. The value of the entropy 
in the Nth maximum depends only on the number of 
the maximum N: 

 =
, =

ln 2| = .
1/ 2En

T En

s
n Nµ

µ

∂ ≡  ∂ − 


 (14) 

The universality of the above quantization rule can be 
broken both by disorder and by electron-electron interac-
tions. Using a simple model of Lorentzian smearing of the 
electronic spectrum one can see that it leads to the relative 

correction of 1/ Tτ , where τ is the electron life time. 
For the case of a single-band 2DEG the role of the elec-
tron-electron interaction in the partial entropy was investi-
gated in [29]. 

The variation of differential entropy s versus chemical 
potential is schematically shown in Fig. 5, lower panel. 
The peaks in it correspond to the steps of the density of 
states shown in the upper panel of the same figure. This 
dependence can be interpreted in the following way. At low 
temperatures, the main contribution to the entropy is pro-
vided by the electrons having energies in the vicinity of the 
Fermi level, the width of the “active” layer being T . 
If the electron DOS is constant within the layer then by 
adding an electron one does not change the entropy. 
Hence, the entropy is independent of the chemical poten-
tial, ( / ) 0TS n∂ ∂ → . However, if the bottom of one of the 
subbands falls into the active layer, the number of “active” 
states becomes strongly dependent on the chemical poten-
tial. In this case, adding an electron to the system, one 
changes the number of “active” states in the vicinity of the FS. 
Consequently, the partial entropy strongly increases. The 
peaks of the partial entropy correspond to the resonances 
of the chemical potential and electron size quantization 
levels. The further increase of the chemical potential brings 
the system to the region of the constant density of states, 
where the partial entropy vanishes again. 

At 0T →  (yet /T τ  ) the peaks of s are located at 
NEµ → , > 1N , the maximal values being max ( ) =s N

= ln 2 / ( 1/ 2)N − . At finite T  the peaks acquire finite 
widths of the order of T  and shift toward negative values 
of NEµ −  analogously to the shift of the maximum in the 
Seebeck coefficient (see Fig. 3). 

4. De Haas-van Alphen effect as the 1
21  order phase 

transition 
Let us discuss the situation when the magnetic field H  

is applied to the metal and the cross-section of the FS in 
the direction perpendicular to H  is closed (we will follow 
Ref. 21). The motion of the electrons is quantized in this 
plane while remains free and effectively one-dimensional 
in the magnetic field direction, viz. because he energy 
spectrum depends on one momentum projection only. It is 
important to note that the intersection of the sequent Lan-
dau level and chemical potential level (see Fig. 6) can be 

treated, in certain sense, as a 11
2

 order ETT. 

Indeed, if one denotes Landau level energies (which can 
be found from the Lifshitz-Onsager quantization rule for 
reasonable fields) as nE , then the DOS singularity in the 
vicinity of this crossing reads [33] 

 ( ) ( ) ( )1/2 .n nE E−δν ε ε − Θ ε −  (15) 

It is clear from the last expression that the number of 
available for electrons states for nth level is non-smooth 

Fig. 5. Schematic representation of the dependencies of the elec-
tronic density of states (a) and the partial entropy (b) as functions 
of the chemical potential. The plot is reproduced from [30]. 
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and proportional to ( ) ( )1/2
n nE Eε − Θ ε −  and the non-

smooth part in the thermodynamic potential turns out to be 

 ( ) ( ) ( )3/2
n nE EδΩ ε µ − Θ µ −  (16) 

at zero temperature. 
We have to note that the chemical potential depends on 

the magnetic field due to the particle number conservation 
law; nevertheless this dependence becomes important in 
the ultra-quantum limit only, which is beyond the scope of 
our discussion here [33–35]. 

It can be concluded that the de Haas-van Alphen oscil-
lations arising when the next Landau level passes through 
the chemical potential value, can be treated as ETT to 
which the 1

21  order has to be attributed. The second deriva-
tives of the thermodynamic potential tend to infinity at 

= 0T  if ( ) = nz H E , and at finite temperatures exhibit 
sharp peaks with magnitude ( )1/2/ Tµ . This singularities 
are nothing else but inverse magnetic field oscillations of 
magnetic susceptibility in the De Haas-van Alphen effect. 
It is noteworthy that the kinetic coefficients behave exactly 
as ETT in 3D case: conductivity (Shubnikov-de Haas ef-
fect), thermopower [36, 37], etc. 

5. Multi-dimensional ETT 

After this review of the different phenomena showed by 
the electronic topological transitions, we would like to 
mention some general features characteristic for such tran-
sitions and to classify them formally for arbitrary space 
dimensionalities n (we will follow Ref. 21). 

In the neighborhood of any non-degenerate critical 
point, the spectrum can be described by a quadratic form 

and the equation of the Fermi hypersurface can be ex-
pressed as 

 
2

=1
= .

2

n
i

c
ii

p
m

ε − ε∑  (17) 

The shape of this hypersurface is determined by the sig-
nature of im , = 1, 2, ...,i n  and by the sign of cε − ε . The 
topological type of transition (only the sign of cε − ε  is 
changed), is established by the signature of im  only. 

Let us start the discussion from the 0D case. Here the 
Fermi sea of electrons may be formally treated as a point 
which can be empty ( < cε ε ) or occupied by two electrons 
( > cε ε ). Therefore, only the transition which can be for-
mally treated as the void formation type, can occur in this 
case (the void does not exist or occupies all 0D space). 

In the 1D case, the Fermi sea is presented by the inter-
val [ ],F Fp p− . These two limiting points play the role of 
the Fermi “surface”. For the surface 

 
2

=
2

x
c

x

p
m

ε − ε  (18) 

only two signatures, [ ]+  and [ ]− , are possible and both cor-
respond to void formation (of electron or hole types). So in 
this case, like in the 0D case, only one type of transition, 
namely void formation, is possible. The same void for-
mation type transition is typical for the electron system of 
any dimensionality and corresponds to the signatures 
{ }...+ + + +  and { }...− − − − . But already in the 2D another 
type of signature: { }+ −  (or { }− + ) for the quadratic form 
Eq. (17) appears and establishes side by side with the void 
formation, another type of ETT - the neck disruption. A 
similar type of transition occurs in the 3D space for the 
signatures { }+ + −  and { }− − + ; the same as for higher 
space dimensions. 

In the 4D space, besides the two transitions of the men-
tioned above nature, the new transition type corresponding 
to the symmetrical signature { }+ + − −  appears. 

In the general case of a n-dimensional space 1n +  dif-
ferent signatures are possible of which { }...+ + + +  and 

{ }...− − − −  describe a new electron and hole void for-

mation, respectively, { }...+ + + + −  and { }...− − − − +  corre-
spond to electron/hole neck disruption and the other are 
associated with more complex topological transformations. 
In general, the surface containing p pluses and q minuses 
( , > 1p q ) can be imagined as ( )p q+  dimensional hyper-

boloid and 
1 1
2

n +  (if n is even) or 
1 ( 1)
2

n +  (if n is odd) 

different kinds of transitions are possible. 
It can be seen that if n is even ( = 2n k ) one among the-

se transition types (which corresponds to the symmetrical 
signature of k  positive and k  negative masses) possesses a 
remarkable symmetry: the system the system does not vary 
if all electrons are interchanged with holes and the sign 

cε − ε  changes also. This symmetry (it was already de-

Fig. 6. Fermi sphere in magnetic field is transformed in a set of 
Landau cylinders, corresponding to the filling by electrons of the 
degenerated states at the Landau levels. 
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scribed for the 2D system) must imply the DOS singularity 
dependence to be even function of cε − ε . All other types of 
transitions do not exhibit such a symmetry and we cannot 
expect consequently that the singular part of the DOS will 
be even function of energy. It is worthwhile to stress that 
such electron-hole symmetry exists for even dimensional 
spaces only. For odd dimensions, the two hyperbolic sur-
faces beyond and above the transition are not topologically 
equivalent. 

The critical exponent of the DOS non-smoothness may 
be easily calculated for the n-dimensional case of void 
formation. Really, the DOS is proportional to (see [33]) 

 ( ) [ ] [ ][ ] ( ) = ( ) ,n n ndd d
d

ν ε δ ε − ε Θ ε − ε
ε∫ ∫p p p p

 (19) 

where the index [n] denotes the dimensionality of the space. 
One can see that the last integral presents nothing else than 
a volume inside the equal energy surface ( ) =ε εp  and is 
proportional to the number of electron states. The singular 
part of it is proportional to the volume of the n-dimensio-
nal ellipsoid, 

 =1[ ]
/2( ) = ,

2 ( / 2 1)

n

i
in

n n n

p
N

n
ε

π Γ +

∏


 (20) 

where ip  are the large semi-axis of the ellipsoid in momen-
tum space. Due to the homogeneity of the quadric form in 
Eq. (17), the volume of the n-dimensional ellipsoid is pro-
portional to ( ) ( )/2n

c cε − ε Θ ε − ε . So the non-smooth part 
of the DOS is proportional to [ ] /ndN dε , i.e., 

 ( ) ( )/2 1[ ] ( ) .nn
c c

−δν ε ε − ε Θ ε − ε  (21) 

The contribution to the thermodynamic potential reads 

 ( ) ( ) ( )/2 1[ ] .nn
c c

+δΩ ε ε − ε Θ ε − ε  (22) 

We can conclude now that n-dimensional formation of 
a void can be considered as phase transition of / 2 1n +  
order at zero temperature, and for high dimensions ETT-
related singularities will be manifested weakly. This con-
clusion concerns other types of transitions too. 

6. Revisited ETT in superconductors 

It has been shown that abrupt topological modification 
of the FS can be achieved by tuning of different macro-
scopic parameters such as temperature, pressure, strain, ex-
ternal magnetic fields and doping. 

A dramatic reshaping of the FS topology viz. Lifshitz 
transition often leads to the emergence of the plenty phe-
nomena also in the superconducting phase of a material 
and as a result to the unusual behavior and the alteration 
of many properties relevant to superconductivity. 

On of the first evidence of the Lifshitz transition in a 
superconductor was revealed in the above mentioned paper 
of Baryakhtar and Makarov [10] where the effect of pres-
sure on the superconducting transition temperature cT  in 
various metals was studied both theoretically and experi-
mentally. It was found that with the increasing of the pres-

Fig. 7. Dependence of the change of superconducting transition 
temperature in thallium and its alloys as a function of the pressure 
in katm for pure Tl (up, curve 1), Tl with 0.45 at. % (atomic per-
centage) Hg (middle, curve 2) and Tl with 0.9 at. % Hg (bottom, 
curve 3). Curves a  represent linear contribution, while 1b , 2b  and 

3b  are nonlinear components of curves 1, 2, 3, respectively. The 
dashed lines are the nonlinear parts of the dependence of /cdT dP 
on the pressure. The plot was reproduced from Ref. 10. 
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sure the critical temperature of pure thallium and of thal-
lium with Hg impurities undergoes a nonlinear variation 
(see Fig. 7). 

Interpretation of such anomalous behaviour can be done 
within the BCS (Bardeen–Cooper–Schrieffer) theory of su-
perconductivity. The corresponding equation for the tem-
perature dependent energy gap ( )T∆  can be written in the 
following form: 

 
( )2 2

2 2

( )1 = tanh ,
22 ( )

D

D

Td
TT

ω

−ω

 ξ + ∆ν ξ ξ  λ
 ξ + ∆  

∫  (23) 

where λ is the constant of electron-phonon interaction, Dω  
is the Debye frequency, and ( )ν ξ  is the density of states. 
In the vicinity of ETT ( )ν ξ  is given by Eq. (1). 

Theoretical analysis of the Eq. (23) for limiting cases 
= 0T  and = cT T  allows to interpret qualitatively the ex-

perimental data shown in Fig. 7. At the relatively low pres-
sures the Fermi energy Fε  is slightly higher than cε . Until 
the difference F cε − ε  remains less than Dω  the critical 
temperature increases due to the presence in Eq. (23) of the 
correction ( )δν ξ  which strongly varies as a function of 
energy. With the further increase of pressure, correspond-
ing growth is saturated, yet the other mechanisms enter in 
interplay: the non-monotonic behaviour of the critical tem-
perature is connected with the dependence on pressure of 
other parameters of Dω , 0ν , and λ and the presence of im-
purities (see Fig. 7, curves 2 and 3) [13, 14]. 

Later the same theory was applied successfully for in-
terpretation of the behavior of the critical temperature as a 
function of pressure in In–Cd [12], in In–Sn and In–Pb al-
loys [38, 39]. 

The similar qualitative dependence of cT  as a function 
of lattice strain was detected in strontium ruthenate 

2 4Sr RuO  that probably exhibits an exotic, odd-parity kind 
of superconductivity [40]. Compressing the a axis of the 

2 4Sr RuO  lattice drives the critical temperature through a 
pronounced maximum, that is a factor of 2.3 higher than cT  
of the unstrained material. The combination of experi-
mental data and theoretical calculations gives evidence that 
the observed maximum cT  occurs at or near a Lifshitz tran-
sition when the Fermi level passes through a Van Hove 
singularity [40–42]. 

It is worth note that after discovery of the copper-based 
high-temperature superconductivity there was an attempt 
to exploit the theory of ETT for the elucidation of the order 
parameter symmetry in such compounds [43]. The model 
proposed by A. Abrikosov was based on two pillars: i) exist-
ence of a large dielectric constant associates with the ion 
cores that leads to a weak screening of the Coulomb forces 
and corresponding long range interactions of conduction 
electrons; ii) existence of the extended saddle point singu-
larities and their dominant contribution to formation of the 
order parameter. Assumption that the density of states and 

energy gap ( )p∆  in the singular region of the momentum 
space to be much larger than beyond, results in the modifi-
cation of the BCS self-consistency Eq. (23). Its solution 
demonstrates the possibility of the s-wave and d -wave 
order parameter symmetries coexistence, the absence of 
the Josephson effect in the c-oriented junctions based 
on such compounds, their tunneling conductance as well as 
the enhancement of the critical temperature. 

Despite the fact that this model is rather simple and 
succeeded to explain most of the apparently contradictory 
properties of high-temperature superconductors at the mo-
ment of its proposition, it has not become widely accepted. 

In 2008 high-temperature superconductivity was sur-
prisingly discovered in iron-based materials. The presence 
of iron, for long time believed as an enemy of supercon-
ductivity, led to the explosive growth in the study of basic 
physical properties of this new family and comprehension 
of origin of the unconventional pairing mechanism in these 
high temperature superconductors. It was demonstrated by 
ARPES and other techniques that a common feature of 
iron-based superconductors is the multiple-band electronic 
structure. Some of these bands are very shallow with Fermi 
energies of several meV [44–48]. This circumstance allows 
to deplete such bands by means of doping or pressure, and 
therefore to induce the Lifshitz transition in such materials. 
As a result, complex multi-band topology gives rise to a 
much richer nomenclature of effects in the vicinity of ETT 
in these superconductors in comparison with their conven-
tional counterparts. 

One of the such an unusual phenomenon was predicted 
in a regime of BCS–BEC (Bose–Einstein) crossover in a 
two-band superconductor when the chemical potential µ is 
tuned in a narrow energy range around the edge edgeE  of 
the second band [49–51]. 

Shifting the chemical potential for the superconductor 
one can track the evolution of FS topology and the emer-
gence of several Lifshitz transitions (Fig. 8). When µ is 
increased above edgeE , and the system undergoes an ETT 
with the opening of a new 3D FS [see Figs. 8(a), (b)]. 
When µ reaches a higher energy threshold, the electronic 
structure undertakes a second ETT, the 3D-2D ETT, where 
one FS changes topology from 3D to 2D, i.e., from «sphe-
rical» to «cylindrical» or vice versa [see Figs. 8(c), (d)]. 
This ETT is a feature of stacks of metallic layers, multi-
layers, or so-called superlattices of quantum wells, and there-
fore it is typical for all existing high-temperature supercon-
ductors and novel materials synthesized by material design 
in the search for room temperature superconductivity. 

In the general case of multi-band metal with deep pri-
mary bands and a shallow one, when the bottom of the 
shallow band crosses the Fermi level, ETT causes anoma-
lous density of states with the qualitatively different beha-
viors on the two sides of the Lifshitz transition in the su-
perconducting phase [52]. The mean-field theory gives the 
expression for the resulting density of states 
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 ( ) ( ) ( )
3/2

2 2 2= 1 0

2
= Re sgn

8s
Em

E E
Eδ ±

  
  ν + δ ×
  π − ∆ 
∑   

 2 2
0 ,E × µ + δ − ∆ 

 (24) 

where 0∆  is the pairing amplitude (gap function) induced 
in the shallow band by Cooper pair exchange with the deep 
bands. Equation (24) was obtained within conditions that 
energy gaps in each band are much smaller than the Fermi 
energies for the deep bands, while the relation between 

0∆  and µ can be arbitrary. Also, the term corresponding 

to the contribution to pairing from the shallow band was 
excluded in self-consistent equations for energy gaps. 

It is important to note that the term with = 1δ −  contrib-

utes to Eq. (24) only if > 0µ  and 2 2
0<E µ + ∆ . At 

0 = 0∆  Eq. (24) yields the normal density of states, 

 ( ) ( ) ( )
3/2

2

2
= ,

4n
m

E E Eν +µ Θ +µ
π

 (25) 

while in the limit 0µ ∆  the density of states recovers the 
standard symmetric BCS shape 

 ( ) ( )
2 2

0

= 0 .s n
E

E
E

ν ν
− ∆

 (26) 

Equation (24) describes main peculiar features of a 
multiband superconductor near the Lifshitz transition. On 
one side of the ETT the density of states diverges at the 
energy equal to the induced gap, whereas on the other side 
it vanishes. 

7. Cascade ETT in heavy fermion systems 

The specific feature of the extensively studied since 
2006 heavy-fermion systems is that the Lifshitz transitions 
are driven by a magnetic field (see, e.g., Ref. 53 for a brief 
overview). In these compounds, flat quasiparticle bands 
with the widths often comparable to the Zeeman splitting 
of the energy bands eff( / 2) Bg Hµ  for field of order 10 T 
cross the Fermi level. For example, a series of strong 
anomalies in the thermoelectric power were recently ob-
served both in the ferromagnetic Kondo lattice material 
YbNi4P2 when the magnetic field varies in the range from 
0.4 to 18 T [8] and in the heavy fermion compound 
YbRh2Si2 when the field varies in the range from 9.5 to 
13 T [53]. 

The experimental findings of Ref. 8 were theoretically 
interpreted in terms of the series of the independent 
Lifshitz topological transitions as considered above in 
Sec. 2. The sign of the thermopower signature (maximum 
or minimum) allows to determine the type of charge carrier 
(electrons or holes). Moreover, resolving the shape of the 
peaks it is possible to identify the type of Lifshitz transi-
tions as neck or void type (see Fig. 1). 

The theoretical analysis of Ref. 8 is valid for standing 
apart peaks, viz. when the width of the peak is much 
smaller than the distance between them. Yet, comparing 
the experimental situations Ref. 8 and that one of Ref. 53 
for YbRh2Si2 one can see that the minimal distance be-
tween the anomalies in the former is 0.75 T (for the most 
of the peaks it is a few Tesla), while all anomalies in [53] 
experiments are separated by the value of 0.6 T. 

When the thermopower peaks are getting close to each 
other one should also include the superposition phenomena 
between the new pockets occurring in the narrow energy 
range. An indication that the superposition of the different 

Fig. 8. Sketch of the evolution of the FS for a two-band super-
conductor by shifting the chemical potential from (a) to (d) so 
that it crosses two Lifshitz ETT. The first ETT occurs moving the 
Fermi level across the band edge edgeE  of the second band so that 
the superconductivity goes from the single FS in (a) with a single 
condensate to the two FS in (b) with two condensates: the first (1) 
has a 2D topology and the second (2) has a 3D topology. Chang-
ing FE  the system crosses the critical energy 3 2D DE −  where the 
second FS undergoes a 3D–2D ETT shown in panel (b) changing 
its topology: the second closed 3D FS (b) becomes the tubular 2D 
FS in (d). The first large 2D FS (1) remains nearly constant when 
the chemical potential is shifted. Taken from Ref. 49. 
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Lifshitz transitions indeed occurs in the experiments on 
YbRh2Si2, is that it is hard to identify the type of the transi-
tion. The asymmetry of the individual peaks which repre-
sents the characteristic feature of the Lifshitz transition, is 
blurred in YbRh2Si2 as compared with YbNi4P2. 

To take into account the specificity of a cascade of Lif-
shitz transitions on quasiparticle scattering the following 
model was suggested in [53]. In the review we will not go 
into specific detail of YbRh2 Si2  compound which was also 
modelled by ab initio computations and following Ref. 53 
represent the general idea how to describe the cascade of 
Lifshitz transitions. 

We assume that all topological changes of the FS are 
due to the formation of new spherical pockets (see Fig. 9). 
Here the index = 0i  denotes to regular part of the FS here-
after referred to as mainland while the critical parts are 
labelled by = 1, ...,i N . The quasiparticle excitation spec-
trum for each of them can be presented as: 

 
2( )

( ) = , = 0, ,
2

ci
i i

i
Z i N

m
−

ξ −
p p

p   (27) 

where cip  is the position of its center in the Brillouin zone, 
=i ciZ µ − ε  is its energetic size, =ciε µ is the critical point 

of multi-valued function of energy when the i-th voids ap-
pears, im  is the corresponding effective mass. 

In Refs. 9, 20 it was demonstrated that the anomaly 
in the Seebeck coefficient in the vicinity of Lifshitz transi-
tion is directly related to the specific quasiparticle scatter-
ing starting from the bulk component of the mainland FS 
(the energy size is 0Z ) and ending at the small pocket of 
the FS (characterized by the energy size iZ ). It was shown 
that the latter is a trap for quasiparticles, their velocity here 
is small and they die away. The next scattering with the do-
minating probability returns the quasiparticle back to the 
mainland FS. Such forth and back scattering give rise to 
the singularity of the Seebeck coefficient. At the first glance 
generalization of the described scattering mechanism to the 

case of multiple Lifshitz transitions seems to be trivial: it is 
just necessary to account for the round trips of the quasi-
particles from the mainland FS to all other pockets 

1 2 3( , , ,Z Z Z ), see 0, jτ  processes in Fig. 9. Yet, as will 
be shown below, this is not enough. An important role is 
also played by the “traveling” of the quasiparticles be-
tween the newborn FS elements, 1, jτ  and 2, jτ  processes in 
Fig. 9. The expression for the scattering time for the 
quasiparticles belonging to the “l ”th pocket accounting for 
the return to the same pocket and round trips to the smaller 
ones with >i l, in full analogy with the results of Refs. 9, 20, 
is given by: 

 ( )1 1
,

=
, , ..., = ( , ),

N

l l N l i l
i l

Z Z Z− −τ ω τ ω∑  (28) 

where 
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,
0

( , ) = .
2
l i

l i l
l l

Z
Z

Z
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τ ω

τ
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Here the function 

 

1/21/2
2

2
0

1( ) = ,
4l

l

   κ ε ε + − ε   τ  
 (30) 

with 1 1 2 3/2 1/2
0 imp= | | (2 )l ln U m Z− −τ π  as the relaxation time 

of the electron initially belonging to the lth void and cal-
culated in the golden rule approximation (compare with 
Eqs. (5), (7). For the sake of simplicity the effective masses 
for electrons in all voids are assumed to be equal, =im m. 

Finally, the expression for the Seebeck coefficient (9) be-
comes now the sum over involved cascade scattering pro-
cesses (marked in Fig. 9 by the black, red and blue arrows, 
respectively) with the relaxation time ( , )zτ ω  replaced by 
the corresponding for each term time ( ), , ...,l l NZ Zτ ω . 

8. Conclusion 

As we have shown the field of fermiology, related to 
study of geometrical and topological properties of FS, 
founded by I. M. Lifshitz still remains hot topic and time to 
time emerges in different problems of condensed matter: in 
new families of superconductors, heavy fermion systems, 
low dimensional systems, etc (see review articles [54, 55] 
and [56]). Considerable merit in it belongs to M. I. Ka-
ganov, both due to his original contributions and his re-
view article [1] which became the handbook for new ge-
nerations of researchers. 

A. V. is grateful to V. S. Egorov for valuable discussion 
and clarification of the historical circumstances. S. G. Sh. 
acknowledges a partial support by the National Academy 
of Sciences of Ukraine grant “Functional Properties of 
Materials Prospective for Nanotechnologies” (project 
No. 0120U100858). Y. Y. acknowledges support by the 
CarESS project. 

Fig. 9. (Color online) Schematic representation of the various 
quasiparticle scattering processes between the pockets with the 
energy sizes iZ . ,i jτ  correspond to the processes from pocket i to 
pocket j  ( 0, jτ  refers to the process from the main FS 0Z ) through 
impurities (crosses). Taken from [53]. 
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Короткий посібник з електронних топологічних  
переходів 

A. A. Varlamov, Y. M. Galperin, S. G. Sharapov, 
Yu. Yerin 

У короткому огляді розглянуто основні етапи досліджень 
електронних топологічних переходів (ЕТП). Особливо увагу 
приділено сучасним додаткам ідей, які розроблені в класич-
ній теорії. До них відносяться: двовимірні електронні системи, 

ефект де Гааза–ван Альфена, класифікація ЕТП у багаторозмір-
них системах, надпровідність в системах, близьких до ЕТП, 
термоелектрика в системах з важкими ферміонами, де каскади 
топологічних змін поверхні Фермі генеруються магнітним 
полем. Історія вивчення ЕТП нерозривно пов’язана з харків-
ською школою фізики конденсованого стану з такими імена-
ми, як І. М. Ліфшиць, В. Г. Бар’яхтар та багатьма іншими. 
Серед них Мойсей Ісакович Каганов, який зробив великий 
внесок у вивчення впливу геометрії та топології поверхні Фермі 
на фізичні властивості металів — Y. M. Blanter, M. I. Kaganov, 
A. V. Pantsulaya, and A. A. Varlamov, Phys. Rep. 245, 159 
(1994) [1]. Двоє з авторів (А.В. та Ю.Г.) мали честь та задо-
волення працювати з М. І. Кагановим. Всі ми вчилися тон-
кощам науки з його книг. «Поверхня Фермі — це сцена, на 
якій розігрується драма життя електрона», — писали Каганов 
та Ліфшиць. Ми присвячуємо цю роботу їх пам’яті. 

Ключові слова: електронні топологічні переходи, двовимірні 
електронні системи, ефект де Гааза–ван Аль-
фена, надпровідність.
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