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Stable vortex in Bose—Einstein condensate dark matter
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The nature of dark matter (DM) is one of the most fascinating unresolved challenges of modern physics.
One of the perspective hypotheses suggests that DM consists of ultralight bosonic particles in the state of Bose—
Einstein condensate (BEC). The superfluid nature of BEC must dramatically affect the properties of DM includ-
ing quantization of the angular momentum. Angular momentum quantum in the form of a vortex line is expected
to produce a considerable impact on the luminous matter in galaxies including density distribution and rotation
curves. We investigate the evolution of spinning DM cloud with typical galactic halo mass and radius. Analyti-
cally and numerically stationary vortex soliton states with different topological charges have been analyzed.
It has been shown that while all multi-charged vortex states are unstable, a single-charged vortex soliton is ex-
tremely robust and survives during the lifetime of the Universe.
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1. Introduction

Most of the recent cosmological models for galaxy struc-
ture are amount to show the galaxy as a luminous galactic
baryon disk surrounded by a spherical galactic halo of so-
called dark matter (DM). Different estimations (such as di-
rect detection, gamma ray detection, microlensing mea-
suring) [1-6] give DM roughly 95% of the total mass of
the galaxy. The nature of DM remains one of the most ex-
citing open questions in modern physics. Weakly interacting
massive particles (WIMPs) with a mass of O (100) GeV
have been one of the leading DM candidates for a long
time [7]. However, recent negative results for indirect de-
tection [8] and collider experiments [9] cause strong moti-
vation for developing alternative DM models. Plenty of theo-
retical models have shown that considering sub-GeV DM has
some advantages. One of such theories suggests consider-
ing DM as ultralight bosonic particles in the state of Bose—
Einstein condensate (BEC) [10]. These bosonic particles can
interact via gravity and probably via weak interaction. Both
of these interactions are extremely insignificant. For instance,
a mass of axions (one of the possible candidates for DM) is
estimated to be in the range 1072°-1072 eV [11]; s wave
scattering length, which corresponds to the two-particle

interaction, varies in the very wide range 10210~ fm.
However, at the galactic and astrophysical scales, the self-
gravitating BEC may form stable structures in the form of
the galactic halo and astrophysical cold dark matter (CDM)
structures (Bose stars) [12]. Despite the extremely small
mass of these bosonic particles, their gravity force domi-
nates the Universe.

The natural question arises: what is the physical mech-
anism that stands behind the bosonic DM self-stabilisa-
tion? There are two most probable mechanisms to compen-
sate the gravitational self-attraction and prevent collapse:
(i) The quantum pressure that occurs whenever the conden-
sate density is inhomogeneous. (ii) Interparticle repulsive
interaction, which in mean-field approach leads to nonlinear
self-induced potential proportional to condensate density.
Each of these two mechanisms can stabilize the self-gravi-
tating BEC and may lead to a formation of soliton-like statio-
nary in time spatial structures. These nonlinear self-organized
structures are well known in various physical systems. The
hypotheses that dark matter structures of astrophysical and
galactic scales can be treated as self-gravitating BEC com-
posed of extremely light bosonic particles have been deve-
loped for decades. Bose stars as lumps of Bose—Einstein
condensates bound by self-gravity were proposed over
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50 years ago [13, 14]. The stability of such objects has
been studied previously numerically in a non-relativistic re-
gime [15]. Also, the formation of Bose stars [16] and their
collapse [17] have been already studied. Spinning bosonic
stars have been studied in the relativistic regime in [18]. The
collisional dynamics of stable solitary waves in the Schro-
dinger—Poisson equation have been discussed in Ref. 19.
Also have been analytically studied basic properties of self-
gravitating BEC in a harmonic trap with Hartree—-Fock
method and compared with numerical calculations [20].

The superfluid nature of BEC can dramatically affect
the properties of DM including the formation of quantum
vortices and quantization of angular momentum. There have
been studied possible effects of subgalactic vortices in
the DM on the rotation velocity curves of virialized gala-
xies with standard DM halo profiles [21]. In Ref. 22 exact
solution for a single axisymmetric vortex has been found
analytically in the Thomas—Fermi regime. Conditions of vor-
tex formation in galactic halos composed of BEC DM have
been discussed analytically in Ref. 23. The case of rigid ro-
tation and its impact on BEC DM with and without self-
interaction has been examined in Ref. 24. Rigid slow rota-
tion of BEC DM has been investigated analytically in
Thomas—Fermi limit in Ref. 25. Also, stability and dynam-
ical properties of slowly rotating gravitationally self-bound
BEC have been studied in [26]. It is remarkable that gravi-
ty-like attractive nonlocal interaction has been extensively
studied in the context of atomic BEC (see recent review
article [27]). Similar to nonlocal optical media [28, 29] and
BECs with long-range dipole-dipole [30] interactions stable
spinning solitons and azumthons have been predicted in
atomic BECs with gravity-like attractive interactions [31].

In the present work, we consider CDM of galactic scales.
Our main goal is a consistent analysis of vortex structures
in self-gravitating BECs. We address the following ques-
tions: (i) is it possible to balance such condensate in a state
with nonzero angular momentum? (ii) is such a spinning
superfluid CDM halo stable, and (iii) how the vortex struc-
ture manifests itself in observable properties of the lumi-
nous matter of the galaxy?

Our paper is organized as follows. In Sec. 2 we define
the model which we use to investigate the system. In Sec. 3
we investigate the stationary solutions in two approaches:
using variational analysis and using numerical modelling.
In Sec. 4 the dynamics of the vortex structures in self-
gravitating BEC with typical galactic mass is investigated
numerically. We summarize our results in the concluding
Sec. 5.

2. Model

At the zero-temperature limit, all the bosons condense
into the same quantum ground state and the system is de-
scribed by single condensate wave function ¥(r,t). In the
mean-field approximation, the dynamics of self-gravitating
BEC of N weakly interacting bosons with mass m is de-

scribed by the Gross—Pitaevskii—Poisson (GPP) system of
equations (see, e.g., [32-34]):

2
ino¥ - [—;’—VZ +gN | ¥ +md)]‘11,
m

ot 1)

V2D = 4nGmN | ¥ |2,

where W(r,t) is a complex wave function of the condensate
with normalization condition _[|‘P 2 dr=1, g = 4nh’a,/m

is the coupling strength that corresponds to the repulsive
two-particle interaction, a, is the s wave scattering length,
r =(X,Y,z) — spacial coordinates, t is time, ®(r,t) is the
gravitational potential, G is the gravitational constant. The
density field can be written as:

p=mN ¥, 0]

where mN = M is the total mass of the galaxy’s halo. The to-
tal energy associated with the GPP system can be written as

E=0+U+W, 3)
the kinetic energy
N#%2 2
O=——||V¥]dr, 4
o IV @
the internal energy
2 2
U = 2mash [ p2ar, ©)

and the gravitational potential energy of interaction
1
=3 j p® dr. (6)

In terms of dimensionless units [r—>r/L*, t— Qut,
E—> E/a] the system Egs. (1) can be written in dimen-
sionless form,

iM= [—lvz +O(r, )+ | P(r,t) |2j‘P(r,t),
at 2 (7
V2O(r,t) = | ¥(r,t) %,
where L. = Ac (Mg /m)VA/8m, Q. =chc /L3,

&= (h214nmp\2) (8 /1), my =i/ G is the Planck

mass, A/8m=a,/Ac is the self-interaction constant, and
Ac =h/mc is the Compton wavelength of the bosons.
With the new dimensionless gravitational potential
®— (L /Ac)?®/c?  and the wave function
¥ — (\/8m)(mp /m)2 V4rGM (7 /mc?)¥. From now on
in our paper, we use dimensionless variables.

Finally, the normalization condition in dimensionless
units:

|\W|? dr = 4n— —X:N. 8)
0
mp, V87
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Note that the system Egs. (7) is invariant under follow-
ing transformation: t=A2f, X = AKX, Y=Y, Z=AZ,
v = A2y, @ = 4320, g = 12§, where A > 0. This scaling
invariance allowed us to scale-out the coupling constant
g =1inEgs. (7).

The initial dimensional GPP system includes three cru-
cial physical parameters: particle mass m, self-interaction
constant A /8w (or, equivalently coupling constant g), and
total mass of the system M (or, equivalently, the total
number of particles N). With these parameters, the system
is fully described in our model. In order to be specific, we
fix two of them, which leaves the third one variable.

We determine the particle mass as m = 3-1072* eV and
the self-interaction constant as A/8m =5.62-10"%. This
allows us to vary total halo mass M and, as a result, de-
scribe different DM halos. When we fix the self-interaction
constant A/8m, the normalization constant N, is deter-
mined by the total halo mass. Our choice of determination
for particle mass m and self-interaction constant A./8m is
described below.

It is important to note that all parameters of the dimen-
sionless system Eqs. (7) are completely described by the
normalization constant N,. Thus, our results can be straight-
forwardly generalized for arbitrary particle mass, self-inter-
action constant, and total halo mass.

3. Stationary solutions

Here we consider stationary localized DM structures,
which may appear as the result of a balance between gravi-
tational contraction and two repulsive interactions: quan-
tum pressure and nonlinear interaction. We study steady
states of the GPP system for the condensate with topologi-
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s=0 s=1
— Variational 1.51 — Variational
41 ~~" Numerical 1 ~~" Numerical

s=4
» — Variational
1 :
~~Numerical
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Fig. 1. (Color online) Condensate density profile p/p, in
(X, y, 2=0) plain as a function of radial coordinate in kpc for the
halo of mass M = 3~10“M@ with different topological charges:
$=0,1,2, 4. Here p, =8.5-10% kg/m? is the critical cosmolog-
ical density. Solid blue line and dashed black line correspond
to the variational analysis and numerical modeling, respectively.
The insets represent corresponding 3D density isosurfaces (sur-
faces of constant density) in cyan color.

cal charge s. Such a system has spherical symmetry for the
fundamental soliton s=0 and cylindrical symmetry for
vortex solitons s >0. Fundamental solitons (s =0) have
been already studied in variational approach [32, 33]. In
our work, we generalize these results for spinning s-charged
vortex states. The stationary solution wave function can be
written in the following form:

W(r,t) = y(r)e™,

where p is a chemical potential and y(r) is a spatial profile
of the wave function. In case of cylindrical symmetry, the
spatial part can be written as:

w(r,0,2) =y(r.,2z) e,

where r; =/x? +y?.

In our work, we use two methods: variational analysis
and numerical modelling. The results obtained for topolo-
gical charges s =0, 1, 2, 3, 4 with both methods show good
agreement with each other (see Fig. 1).

3.1. Variational analysis

In order to gain a deeper insight into the properties of
stationary solutions of GPP, we introduce a simple analyti-
cal variational analysis with a trial function of the form

z
.
v o= w w T

where R and n are variational parameters, r, =/x? +y?2.
The constant A is defined by normalization condition Eq. (8):

/ N
A= —0
¥2nR3s!

Let us calculate the total energy functional Eq. (3) using
ansatz Eq. (9). The kinetic energy Eq. (4) in dimensionless
units

_ Ng(1+2n(1+5))
4R

_1 2
®'EI|V“’| dr

the internal energy Eq. (5) in dimensionless units

1 NZr(s+1/2
U=3flviar= Pt
42r2R3NT (s +1)

the gravitational potential energy of interaction Eq. (6) in
dimensionless units

- 1 2
w=2 [ 1w @dr,
the last integral can be calculated in Fourier space:

1
w :Ejfnw 21F[@]dk.
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Making Fourier transform of the second equation in
Egs. (7), one can obtain the gravitational potential in Fourier
space:

1
Flol=-5F[lvl] (10)

Therefore,

SFvE]) (11)

_1dk
vv_—Ej

and the Fourier transform of | y |?:

k2RZ2  K2R2

Flly 1= @ )3,2 L (k2R%/4)e 4 4 , (12
where k, = /kZ+kZ and L(x) is sth order Laguerre po-

lynomial.

Inserting this into Eq. (11) and integrating over polar
angle and k,, one can obtain the following result for the
gravitational potential energy:

2n2 2
202 _kJ_R (1-n%)
w=_No jdk Erfc [k R”)LZ[MR ]e 2

V2 4
Finally, the dimensionless total energy
No(1+2n2(1+5)) NZT(s+1/2)
Ele= > -
4R%n 422 R3N (s +1)

ké(@-n?)
Ng jErf ["ﬁjﬁ[kjj 2 dk..  (13)

The next step of variational analysis is to find the mini-
mum of the total energy in space of variational parameters
(R,m). This is done for the different topological charges s.

Let us discuss the choice of the BEC parameters and
analysis of the fundamental soliton s = 0. This case corre-
sponds to the spherical symmetry, therefore, there is only
one variational parameter R (n =1). Dimensionless total
energy:

2 2
Ele= 3 No + Ng __ Mo .
4R? 427%?R®  4J2n%?R
Energy minimum dE /dR = 0 is attained at the point:
3 2
R=N2m |, +N—°3 . (14)
Ng 6m

Inserting this into Gaussian ansatz Eg. (9), one can find
the density function, which is shown in the top left plot of
the Fig. 1. Also, the energy and the chemical potential for
this case are shown in Fig. 2. In order to estimate the system
spatial scales, it is useful to calculate the mean-squared
radius which is called an effective radius. In this case

1
2 _ 4 2,2
&ﬁ—MJW|rm, (15)

where r=/x?+y?+22. The results for effective radius

are shown in left plot in Fig. 3.

The Eqg. (14) is called “mass-radius relation” (because
N, is proportional to mass) and has been already achieved
for GPP system in the variational analysis approach in [32, 33].
Our interest here is, by using this relation, determine the phy-
sical parameters of the system — particle mass m and self-
interaction constant A / 8.

In order to determine them, we consider the following
physical parameters for galactic halo: total mass
M =3-10"M_ and radius Ry, =10 kps =3.09-10® m
These parameters are introduced in [32] as typical for DM
condensate halo.

The next step is to calculate the radius, inside which the
total mass of the halo is 0.99M. This radius is called Rgg
and in dimensionless units is calculated from the following
equation;

Rog
j Ly |2 r 2dr—099j|\u|2 r2dr.

Solving this equation, one can find: Ryy = 2.38R. Then, we
fix the Ry in physical units to be equal to the typical halo
radius Ry,0: Rgg - L = Rpy- Using the mass-radius rela-
tion Eq. (14), the definition of the normalization constant N
Eq. (8) and also putting them and the chosen quantities M
and R, into previous condition, one can find the relation
between two parameters, which are undefined yet — particle
mass m and self-interaction constant A / 8rx:

M —q02 J1.27 + 0.23\/11:3 119810 (16)
eV 8n

Next, we need to choose the rest of the parameters We
assume the particle mass to be m = 3.107% eV, which has

Op= s=0 s=0
s=1 s=1
~50 5=2 §=2
s=3 S
s=4 s=4
-100
w—150
54
200 o,
Q\
-250 8o A DY,
[ X N
300 +4al WORY
- vl YA A D Q|
x40 KA TG
1.0 1.0
x10" MM, 10"

Fig. 2. (a) The total energy E and (b) chemical potential p
(in units of & = 7.05-10% J) of the stationary solitonic and vortex
structures as functions of the halo mass M (in units of M®-1012).
Lines correspond to the variational analysis results while points
correspond to the numerical modeling results for different topo-
logical charges s.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 8 747



Y. O. Nikolaieva, A. O. Olashyn, Y. I. Kuriatnikov, S. 1. Vilchynskii, and A. I. Yakimenko

e —--s5=0 g <-s=1

400 -5 =1 1y A S=2
R -h&-s=2 AR -@-5=3
Y Ees=3 A0 ~-s=4
! - s=4

Fig. 3. Effective radius (a) and effective height (b) [def.
Eqgs. (15), (17), (18)] as a functions of halo mass M (in units of
M®-10“). Lines correspond to the variational analysis results
while points correspond to the numerical modeling results for
different topological charges s.

approximately the same order as particle masses used in dif-
ferent BEC DM simulations, and find from the Eq. (16) the
corresponding self-interaction constant A /8m =5.6-10"%.
Further, we use the fixed mass m and self-interaction cons-
tant A; however, the total halo mass M is not necessarily
needed to be equal M = 3-10"M . We can tune this mass
by changing the normalization constant N,. Thus, the phy-
sical parameters, which are used for the dimensionless ver-
sion of Egs. (1): L.=6.35-10"m, Q:'=2.04.10"s,
£=7.05-10 .

In the case of the vortex solitons (s > 0) the total energy
Eq. (3) depends on two variational parameters: (R,n). Fur-
ther details of the variational procedure are discussed for
case S=1, 2,3 in Appendix A.

The next step is to find a pair of variational parameters
which minimizes the total energy. It can be done by solv-
ing the system of the equations:

This system is transcendental; therefore, it can be solved
numerically. The pair of parameters (R,n) is found for dif-
ferent values of normalization constant N. Inserting this into
Gaussian ansatz Eq. (9), one can calculate the total energy of
the system and chemical potential for different values of N,.
The results in dimensional quantities are shown in Fig. 2.
The effective spatial scales can be defined as follows:

1

2 - 2 2

Reﬁ—Nojnlwl dr, (17)
1

2 - 2 2

Zeff_NOJ.Z |y dr. (18)

In case s > 0 the definition of R differs from the one
in case s =0 Eqg. (15). The variational analysis results for
these quantities are shown in Fig. 3 as dashed lines.

3.2. Numerical modeling

We solve numerically the set of Eqgs. (7) of nonlinear
equations using the stabilized relaxation procedure similar
to that employed in [28].

The fundamental soliton (s = 0) corresponds to a spher-
ically symmetric solution

W(r,t) = y(r)e ™.

In this case Eqgs. (7) takes form

W:_E(@ﬁd_“f}(@wz)w,

2
2\ dr r dr (19)
d’o 200 _
dr2 r dr '

Boundary conditions are y'(0) =0, and v — 0, at r — .
Gravitational potential ®(r) for fixed spherically-symmetric
condensate density distribution can be found analytically
as follows:

o= m-ne, @
where
Mo(r) = [w2(2)E? dg, (21)
0
Dy(r) = [w?(&)E d&. (22)
0

The boundary-value problem for y has been solved nu-
merically in coordinate space using stabilized relaxation
method described in Ref. 28.
For s > 0 stationary state has cylindrical symmetry
P(r,t) = y(r,,z) e*0e M,

Consider y = y(r,,z) and ® = ®(r, , z) we obtain

_ 19, 2
wy = -5 | AL 7 x+(<l>+x )x

2
(23)
A(O) +i D = XZ
o '
2 2
where A() :a—+ii—s—2 the boundary conditions

a2 roor, r?
for the vortex soliton profile are
x(0,2) =0; lim x(r.,2) =0; lim x(r.,2) = 0.
r| —o Z—>to0
For the potential ® we used the boundary condition
Egs. (23) assuming that the potential is given by Coulomb

potential with reasonable accuracy well apart of localized
condensate cloud.
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Using Fourier transform for z coordinate we obtain
from Eqgs. (23) the boundary value problem for each Fouri-
er harmonic. This radial problem has been solved by the
stabilized iterative procedure similar to the spherically-
symmetric problem described above.

The results obtained with both numerical and analytical
methods are in good agreement with each other: density
functions for chosen total halo mass for cases s = 0,1, 2, 4
are shown in Fig. 1; the energy and the chemical potential
for cases s=0,1, 2,3, 4 are shown in Fig. 2; effective ra-
dius and height are shown in Fig. 3.

4. Dynamics

The long-lived CDM structures which survive at cos-
mological time scales can play a crucial role in the for-
mation and evolution of the galaxies. Thus, it is very im-
portant to verify whether obtained steady-state solutions
are stable. We have studied the stability of the vortex struc-
tures by direct simulations of the propagation dynamics of
perturbed vortex solitons by applying the split-step Fourier
method to solve Egs. (7) numerically. The details of the
numerical procedure are discussed in Appendix B.

The dynamical simulations of s-charged DM structures
were initiated with the perturbed steady-state wave func-
tion ¥ of the form W |,_o= ¥ [1+&cos (LO)], where ¢ is
the perturbation amplitude and integer L corresponds to
the azimuthal symmetry of perturbation.

Evolution of the condensate density for different topo-
logical charges is illustrated in Figs. 4, 5, and 6. We have
found that DM halo with embedded multi charged s>1
vortex is unstable due to azimuthal symmetry-breaking in-
stability. It is remarkable that vortex structures with s >4
disintegrate into the filaments taking away the kinetic en-
ergy of the condensate vortex superflow (see Fig. 4). Using
simple estimates based on the conservation total energy it
is straightforward to find that for the galactic halo of mass
M =3-10"M, kinetic energy of the vortex flow domi-
nates the gravitational binding energy for s> 3. Thus even

e 85’ o o°
t=1.1'10"yr  t=14-10"yr x10°
—40F —40F -40F 3
g g o . g F e B2
& Og £ 0; . #» S Og.
= F o ® = E e |1
A0E L vt 405 ] 40BL i,
—40 0 40 —40 0 40 —40 0 40p/p
x, kpe x, kpe x, kpe ¢

Fig. 4. The snapshots of the 3D isosurface of the condensate den-
sity (upper row) and the normalized condensate density in xy plane
(lower row) for s = 4. The snapshots are given for three indicated
moments of time. Note that s = 4 vortex disintegrates into four
flying away fragments keeping the kinetic energy of the vortex
flow.
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Fig. 5. The same as in Fig. 4 for s = 2. Note that a doughnut-
shaped vortex transforms into a single-connected blob with com-
plex condensate flow at the periphery of the galactic halo.
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Z of o Z of £ of 10
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Fig. 6. The same as in Fig. 4 for stable single-charged (s=1)
DM vortex soliton. It is remarkable that even being strongly per-
turbed (¢ =0.1, L=2) the vortex survives during the Universe
lifetime.

s = 3 vortex in principle can disintegrate into flying away
filaments according to this estimate. However, we never
observed the disintegration of the vortex states with s <4
in our numerical simulations. The vortex solitons with
s =2, 3 are also unstable, but the initial doughnut-shaped
DM halo transforms into a single-connected blob with vor-
tex flow located mostly at the periphery of the halo (see an
example of such evolution for s = 2 in Fig. 5).

With no surprise, we observed stable evolution of the
fundamental soliton (s = 0), which exhibit periodic oscilla-
tion of the width and amplitude caused by initial perturba-
tion. It is much more remarkable that the single-charged
s =1 vortex soliton appears to be stable even being strongly
perturbed. Stable evolution of the DM vortex is illustrated
in Fig. 6 for L = 2 azimuthal perturbation having the am-
plitude £ = 0.1. It has been shown recently in [35] that sim-
ilar DM structures, in the form of mini boson stars, demon-
strate stability against the non-axisymmetric instability if
the self-interactions are chosen in a specific way. Which is
consistent with our result.

5. Conclusions

We have studied superfluid self-gravitating BEC with
nonzero angular momentum. We have analyzed stationary
three-dimensional vortex soliton states with different topo-
logical charges. By means of analytical variational analysis,
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we predict the main features of steady vortex soliton so-
lutions, which are in good agreement with our numerical
results.

Using direct numerical simulations of the (3+1)D Gross—
Pitaevski—Poison system we studied the evolution of spin-
ning DM cloud with typical galactic halo mass and radius.
We have found that while all multi-charged vortex states
(s > 2) are unstable, a single-charged vortex soliton (s =1)
and fundamental soliton (s =0) are extremely robust and
survive during the lifetime of the Universe. In the strict
sense, even quite robust dynamics for a huge time does not
prove rigorously stability of the DM structure. In the pre-
sent work, we restrict stability analysis fixing the DM halo
mass by a typical value. This raises the question of whether
azimuthal instability is suppressed for s =1 DM vortices
with an arbitrary mass, or there is a stability threshold for
spinning galactic halo formed by superfluid BEC. Further
investigations including linear stability analysis are needed
for a severe test of stability.

A comprehensive analysis of the interactions between
spinning superfluid DM and luminous matter is beyond the
scope of the present work. This problem merits a separate
study, that is now in progress, and the results will be pub-
lished elsewhere. Nevertheless, some tentative general
conclusions from our theoretical results can be made. Both
outcomes with stable vortex solution (s =1) and vortex
decay (s >1) provide interesting results that might have a
connection to galaxy structures. One shows that for unsta-
ble s=2 and s =3 CDM structures vortices transfer from
the centre to the periphery of the halo, which might be re-
lated to the galaxy rotation curve problem. We have found
that vortices with s > 4 are unstable to decay into fragments,
which constrain from above the angular momentum of the
considered CDM structures. The other, for stable s=1

WS /e =

vortex CDM structures, one can assume that the baryonic
matter can gather in the central region of the galaxies, fol-
lowing the analogy to atomic BEC and thermal atoms fill-
ing vortex threads. We hope that research on this topic can
shed a light on the problem of the formation of a super-
massive black hole, which is seen at the centre of almost
every large galaxy.

Novel, increasingly accurate observational evidence com-
bined with essential progress in theoretical and computa-
tional methods are promising in terms of confirming, con-
straining or discarding the superfluid model of CDM in the
nearest future. We believe that the results, described in the
present work, will help to elucidate important properties of
dark matter, which is a problem of fundamental interest.
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Appendix A: Variational analysis, energy for s> 1

Here we present the details of the variational results for
vortex solitons. It appears, that the result of integration
Eqg. (13) when n >1 differs from the one when 0 <n<1.
For s =1 dimensionless total energy in each case is as
follows:

51/ = No(1+4n?) N2

+WST /g,
4R™*  8J2n¥?R%

where the last term is gravitational energy of interaction
and it is sensitive to the value of n:

NZ  3n(1-2n2)yn? -1+ (11-24n? +16n*) arccosh(n)

n>1

_\/ETC3/2R

64(1’]2 _1)5/2

Wnsfll/s:—

\/ETE3/2R

NZ  3n(1-2n?)y1-n? +(11-24n2 +16n*) arctan (y1/n? -1)

64(1—112)5/2

For s = 2 dimensionless total energy in each case is as follows:

_ No(1+ 67]2)

3N

=2
ES=¢/e= IR

+WS2 /g,

32727%%R3

where the last term is gravitational energy of interaction and it is sensitive to the value of n:

NZ  myn? —1(201-794n? +1080n* —592n°) ~

anlz le=—

\/ETC3/2R

4096(n* -1)¥2

\/§n3/2R

NZ  [585+32n%(~77+126n? - 96n* +32n°) | arccosh (n)

4096(n% —1)%/2
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Ng  myl-n’(201-794n” +1080n* -5921°)

W2 e = -

\/§n3’2R

4096(1—n?)%/?

N2 [585+32n2(~77+126n - 960" +32n°) |arctan (y1/n? ~1) |

_\/§n3’2R

4096(1-n?)%/2

For s = 3 dimensionless total energy in each case is as follows:

5N¢

ES3 /g = No(1+8n°)
4R%n?

+WST3 /¢,

64\/57'(3/2R3T]

where the last term is gravitational energy of interaction and it is sensitive to the value of n:

_ONZ NP -1(2n% ~1)[ 3147+ 8n?(~1546 + 2521n ~1960n* + 736n°) |

AR N 65536(n2 —1)32 *
. N2 [—8267 +51480n° —16n* {8469 + 64n?(~189+156n* — 72n* +16n6)}] arccosh (1)
V2r¥?2R 65536(n 1)1/ '
s o NE M 1-n? (2n? ~1)| 3147 +8n?(~1546 + 2521n? ~1960n* + 736n°) ] .
T 2n¥2R 65536(1—n2)12
LN [—8267 +51480n? ~16n* {8469 +64n?(~189+156n% — 721" +16n6)}] arctan (y1/12 -1)
J2n¥?R 65536(1—n2)™*/2

It is noteworthy that the results for different n can be
achieved using analytic continuation of the function

arctan(y/1/m? —1) in region, where n>1 and vice versa.

We have calculated analytically total energy for the case
s=4 as well, but the results are too cumbersome to be

presented here.

Appendix B: Numerical method for dynamical
simulations

Here we present details of the numerical methods used
for dynamical simulations in our work. For a recent review
of the numerical methods used for modelling self-gravi-
tating BECs see [27]. There are two different types of nume-
rical methods to deal with the partial differential equations
with the Laplacian term. One is to use a finite difference
scheme, determining the value of the Laplacian at each point
of the grid. Another possibility is to compute the Laplacian
in Fourier space, while the other terms in coordinate space.
This is accomplished by implementing the split-step Fouri-
er method (SSFM), which profits from the efficiency of the
fast Fourier transform (FFT) algorithm. In this case, zero
boundary conditions for @ can be convenient in preventing
the influence of its periodical structure. Using FFT at each
time step we have solved the Helmholtz equation:

AD(r,t) = | P(r,t) |> + a?D,
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which is free of the mathematical singularity of the Cou-
lomb potential in Fourier space. The parameter o, respon-
sible for screening, has been chosen so that the potential
@(r,t) of the dynamical GPP fits the solution of the Pois-
son equation ®(r) for the stationary state in a region of the
high density. Note that the potential of the stationary GPP
has been solved numerically with no screening, as describe-
ed in Sec. 3.2. To fit the amplitude of the potential even
better we used additional normalizing parameter  as fol-
lows: @, =pd, where O is the solution of Egs. (19) for
s =0 and Egs. (23) for s > 0. In our simulations we choose
the parameters o and B for each initial condition to obtain
an appropriate correspondence between exact potential and
approximate screened potential in the region where con-
densate density |y |* has significant support.
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CrabinbHui Buxop KoHaeHcaTy bose—EnHwTenHa
y TEMHIn maTepil

Y. O. Nikolaieva, A. O. Olashyn, Y. I. Kuriatnikov,
S. I. Vilchynskii, A. I. Yakimenko

Ipupona remHoi Matepii (TM) noTenep 3aHIIAETHCS OJXHUM
3 HaWOLIbLI 3araJKOBUX MUTaHb cydacHol ¢i3uku. OaHa 3 Teopiit
nojArae B ToMy, mo TM ckmafaerbes 3 yIbTpalerkux 0030HIB
y crani konzaencary bose-Eiinmreitna (BEK). Hagmnuuua mpu-
pona BEK cyrreBo BrmBae Ha BiactuBocTi TM, 00yMoBIo04n,
HANPHKIAJL, TAKy BOXJIMBY XapaKTEPUCTHKY, K KBAHTYBAHHS MO-
MEHTY KiIbKOCTI pyxy. KBaHT KyTOBOrO MOMEHTY, SIKMil SIBIISIE
co0010 BUXPOBY JIiHIIO, MOXXe 3[ifCHIOBATH 3HAYHUI BIUIMB Ha
CBITHY PCYOBHHY B raJlaKTHKaX, 3yMOBIIOIOYH OCOOIUBOCTI KpH-
BUX O0OepTaHHs Ta PO3MOALTY TyCTHHH. J{OCIIPKCHO EBOJIIOLII0
xMapu TM, 1m0 06epTaeThCs 3 TUIIOBUMHE IS TAJIAKTHYHOTO Iajio
Macor i paaiycoM. AHANITHYHO Ta YUCEIHHO MPOaHaTi30BaHO
CTaI[lOHapHi COJITOHHI PO3B’SI3KH 3 PI3HUMH TONOJIOTIYHUMH 3a-
psimamu. BeraHoBneHo, 110 xo4da Bei GaraTo3apsiiHi CTaHH € He-
CTIHKUMH, OJJHO3apsITHUI BUXOp € JyXe CTaOLIbHUM 1 MoXe ic-
HyBaTHU IIPOTATOM YChOTO 4acy >KUTTs BeecBiry.

KimrodoBi ciioBa: ynbpTpa-jerka TeMHa MaTepis, KoHJaeHcaTr boze—
EliHireiina, ranakTHYHe rajio, BUXPOBI COJIITOHH.
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