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The quantum turbulence is a collection of the interacting quantum vortex loops and filaments. The main goal 
of this work is to systematize the information on the current state of the research on the reconnecting quantized 
vortex loops in the superfluid helium: the geometry, the dynamics, the properties of the vortex loops, the energy 
spectrum before and after the reconnections. The paper discusses the possible role of the reconnections in the 
formation of the turbulent spectrum. In addition, in this paper the main methods and approaches to the study of 
the reconnecting vortex loops and quantum turbulence are discussed. 
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1. Introduction 

If the helium isotope 4He is cooled to a temperature of 
2.17 KTλ ≈ , it undergoes a phase transition and becomes a 

quantum liquid. One of the manifestations of the quantum 
properties of a liquid is the phenomenon of superfluidity, 
i.e., the ability of the helium to flow without friction. Firstly 
the superfluidity was discovered in 4He. In this temperature 
range, helium has a number of unique properties that are 
associated with the quantum nature of this liquid. This phase 
state is usually denoted as He II. The mechanism for the 

onset of the superfluidity was explained by means of the 
Bose–Einstein condensation. The spin of the helium atom is 
zero. Therefore the helium atoms are the bosons, and the 
ensemble of the helium atoms obeys the Bose–Einstein 
statistics. 

An ideal gas of the bosons consist of particles with non-
zero rest mass. It can pass into the state of a Bose–Einstein 
condensate. At low temperatures, the particles tend to occupy 
a lowest energy level, forming a condensate. A similar 
effect is observed in a liquid helium. The formation of 
condensate associated with the superfluid component begins 
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at a temperature below the λ point. The ground state of 
He II is a completely superfluid liquid. The idea that the 
superfluid component is a single coherent quantum state 
was formulated by London (1938, 1954) [1–3]. Therefore 
its properties can be described by introducing a macro-
scopic wave function. 

The physical model of the hydrodynamics of a superfluid 
helium was built by Tisza (1938, 1947) [4, 5] and Landau 
(1941–1949) [6–9]. The essence of this model is the 
coexistance of two movements (the normal and superfluid 
movements) in the superfluid helium. Each of these 
movements is associated with its own effective density nρ  
and sρ , respectively. Then the density of the liquid helium 
ρ is determined by the following expression = n sρ ρ +ρ . 
The superfluid movement is a potential movement, it does 
not transfer entropy, there is no shear viscosity, and the 
chemical potential gradient is a driving force. The normal 
movement corresponds to the movement of a classical fluid. 
This is the other significant difference between a superfluid 
liquid and a classical liquid. At a temperature of about 1 K, 
the normal movement practically stops, and the portion of the 
normal component becomes less than one percent [10]. At 
these temperatures there is practically no energy dissipation. 

Another manifestation of the quantum properties of the 
He II is the presence of the quantum vortices in the super-
fluid component of a helium [11]. Various methods of in-
fluencing the liquid can lead to the development of the 
vortices [12–16]. A distinctive feature of these vortices 
from the vortices in a classical fluid is that the circulation 
of the velocity of the superfluid component is quantized: 

=sC
d n⋅ κ∫ v l



. The integration goes along a closed curve 

C (a curve without self-intersections) in a superfluid, 

4He= /h mκ  is the quantum of the velocity circulation, h is 

the Planck’s constant, He4
m  is the mass of a helium atom, 

n is an integer. The diameter d  of the core of these vorti-
ces is approximately the several interatomic distance 

810d −≈  cm. The vortex tangle consisting of these vortex 
lines is called the superfluid turbulence. 

A special interaction arises between the normal and 
superfluid movements, which is called the force of mutual 
friction. As a result, an additional energy dissipation arises, 
which is not in a classical liquid. The role of the quantum 
vortices is significant. They, in fact, determine the hydro-
dynamic and thermodynamic properties of He II. Today, an 
active study of the dynamics and properties of these vortices 
is continued [17–31]. A certain interest in them comes out 
beyond the region of the superfluid helium. For example, the 
idea that classical turbulence can be modeled by a set of 
thin vortex tubes is being actively discussed. In the paper 
[32] it is discussed the current state of this approach. 

The superfluidity also occurs in the many other sys-
tems: in the liquid of the isotope 3He at the temperatures 
below 310 KcT −≈  at a saturated vapor pressure [33], in 
the Bose–Einstein condensates [34–37], in the system of 

ultracold atoms [38], in the exciton-polariton superfluids 
[39–41], in the quantum liquids of light [42], in the system 
of the Bose–Einstein quasi-equilibrium magnons (the spin 
superfluidity) [43, 44] and etc. Ones demonstrate all the 
diversity of the superfluid behavior: the frictionless flow, 
the vortices, etc. For many years, quantum liquids were 
studied both experimentally and theoretically. Nowadays, 
it has become one of the main directions in the physics of 
low temperatures. The applications of the superfluidity 
phenomena are very diverse, one can see the work [22] and 
the references therein. 

The aim of this work is to present the current state of 
the art in the study of geometry, the dynamics, the properties 
of the vortex loops and the energy spectrum of the recon-
necting quantized vortex loops in the superfluid helium. 
Recently, new methods have been developed for a visualiza-
tion of the vortex filaments in the superfluid 4He [22, 45–47]. 
The development of these methods and their application is 
the great importance for the studying of the properties of 
vortex structures. As a result, significant progress in the 
understanding of quantum turbulence is possible in the near 
future. In addition, the real opportunity appears to compare 
the theoretical results with the experiments. 

2. Methods and approaches to study the quantum 
turbulence 

The articles devoted to the numerical modeling of the 
vortex tangle dynamics can be divided into the studies using 
the Gross–Pitaevskii equation [48], into studies using the 
vortex line method [49, 50], and into studies carried out 
within the framework of the equations of the hydrodynamics 
of the superfluid turbulence. Before proceeding with the 
analysis of the results of these works, let us recall the 
methods and approaches. 

2.1. Gross–Pitaevskii equation 

The Bose–Einstein condensate is a very useful model to 
study the dynamics of the vortices in quantum fluids near 
the absolute zero (in the absence of mutual friction in the 
3He and 4He fluids). However, some results should be used 
with caution. The point is that the Gross–Pitaevskii equa-
tion (the nonlinear Schrödinger equation) describes a 
weakly interacting Bose gas:  

 
2

2 2
ext

( , ) = | ( , ) | ( , ).
2

r ti V g r t r t
t m

 ∂Ψ
− ∇ + + Ψ −µ Ψ 

∂  



   

  (1) 
Here ( , )r tΨ  is the condensate’s complex wave function (the 
order parameter), g  is the strength of the interaction be-
tween the bosons, µ is the chemical potential, and m is the 
boson mass, extV  is the potential of the field in which the 
bosons move, r  is a coordinate, t  is a time. The condensate’s 
density sρ  and the velocity su  are related to ( )= | | e iΘΨ Ψ  

via Madelung transform: 2= | |s mρ Ψ , = /su m∇θ . It can 
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be shown that on the length scales R  when =R ξ  

/ 2m= µ  (ξ  is the “internal” length parameter, is the 
correlation radius [51]), the Gross–Pitaevskii equation is 
reduced to of the modified classical Euler equations for a 
compressible medium. 

Unlike a weakly interacting gas, the superfluid helium 
is a liquid, and interaction forces between its molecules are 
much greater then the interaction forces between bosons. 
In addition, only part of the superfluid component is con-
densed. Moreover, the parameters used in numerical studies 
based on the Gross–Pitaevskii equation lead to the following 
value of the ratio of the vortex core radius 0a  to the 
intervortex distance ξ  ( 0 / 0.1–0.3a ξ ) which is not ex-
tremely small. In the superfluid helium this ratio lies in the 
range 10–5–10–8. Therefore the velocity of the moving of 
the filament elements in the condensate is not too low 
compared to the speed of sound. Indeed, the value of the 
speed of sound c is of the order of 0/ aκ , the velocity of 
the filament elements is /l κ δv . Therefore, the Mach 
number 0= / /lM c a δv  is not an extremely small value. 
The intensity of the sound emission is related to the Mach 
number M . Thus, a large-scale movement of the filament 
(such as long Kelvin waves) emits a sound. In quantum liq-
uids, this process takes place only for the extremely short 
waves. Despite the differences described above, the solu-
tions of the Gross–Pitaevskii equation provide useful infor-
mation about the dynamics of the vortex filaments. 

At the high temperatures, the damping potential (an ana-
log of the mutual friction force) [52, 53] is introduced into 
the Gross–Pitaevskii equation. 

2.2. Vortex filament method 

This method was suggested by Schwarz [49, 50]. 
Schwarz made the assumption that the densities of the 
normal and superfluid components remain constant when 
the temperature of the liquid does not change. This means 
that all physical phenomena associated with the compres-
sibility of a liquid, in principle, cannot be investigated in 
this approach. This is an additional difference between the 
studies based on the Gross–Pitaevskii equation and studies 
that use the vortex line method. Assuming that the diameters 
of the cores of the quantized vortices do not change, and 
the vortices themselves are the infinitely thin filaments, the 
velocity for the points of the vortex filament was found in 
the works [49, 50]:  

 3
( ( ) ( )) ( )= ( ) ( ) ,

4 | ( ) ( ) |B
C

d
′ ′ ′κ ξ − ξ × ξ′′ ′β ξ × ξ + ξ

′π ξ − ξ∫
s s sV s s

s s
  

 1/4
0

2
= ln ,

4
l l

e a
+ − κ

β  
π   

 (2) 

where the parameter ξ  is the length of a filament segment. 
The integral accounts for the influence of the whole vortex 
configuration C, excluding the segments adjacent to ( )ξs . 

The prime in ′s  denotes the derivative with respect to the 
instantaneous arc length ξ , e.g., = /d d′ ξs s . 2 2= /d d′′ ξs s  
is the second derivatives by parameter ξ . Here, l±  are the 
lengths of elements length adjacent to ( )ξs , e = 2.71… is 
the base of the natural logarithm. The Biot–Savart inte-
gral (2) diverges at the points where ( , ) = ( , )t t′ξ ξs s . To 
avoid this divergence, a cutoff parameter was intro-
duced. The cutoff value is approximately equal to the core 
radius value [54–57]. The velocity of moving of the points 
of the vortex line LV  is the sum of the velocity of moving 
of the superfluid component of the fluid sV  and the veloci-
ty BV  induced by all vortex filaments. When the quantized 
vortices appear, they interact with the normal component 
(the mutual friction force), which leads to a change in the 
velocity of the vortex filament. Thus, the expression for 
determining the velocity of the points of the vortex line 
takes the following form: 

 = ( ) [ ( )],L s B ns B ns B′ ′ ′ ′+ + α × − −α × × −V V V s V V s s V V   

  (3) 

where α and ′α  are the temperature-dependent friction 
coefficients, =ns n s−V V V  is the counterflow velocity, nV  
is the velocity of the normal component of helium. To find 
the velocity of the elements of the vortex filaments, it is 
necessary to determine the value of the induced velocity BV . 
To find this velocity for each element of the filaments, it is 
necessary to determine the contribution from the entire 
configuration of the filaments, and this requires rather large 
computational load. Therefore, the so-called local approx-
imation is often used in the calculations, when the move-
ment of the vortex thread point is determined only by the 
adjacent segments of the vortex filaments: 

 loc loc 0= , = / 4 ln( / ).si c R a′ ′′β × β κ πV s s  (4) 

Aarts [57] showed that the best approximation of the ve-
locity of the vortex points [see Eq. (4)] is achieved when 
the constant = 1.1c . There is another important contribution 
to the velocity of vortex filaments, which is associated 
with the processes of reconnection of filaments. As a result 
of the reconnections, the topology of the vortex structure 
changes. Merging of two vortex loops forms a new larger 
loop. When the loops are broken, the smaller loops are 
formed. In both cases, the disturbances arise along the vortex 
filaments, so-called Kelvin waves. The processes of recon-
nection of vortex loops are not described analytically. In 
the numerical works, starting with the work of Schwartz, 
the various reconnection criteria are used [58–64]. These 
criteria base on physical intuition and numerical simulation 
results. The influence of reconnection processes on the 
properties of a vortex tangle (a set of vortex filaments) is 
studied in the work [19] in detail. In addition, the influence 
of various criteria for the realization of the reconnections 
on the properties and dynamics of a vortex is investigated 
in this work. 
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2.3. Hydrodynamics of superfluid turbulence 

The superfluid helium model proposed by Tisza [4, 5], 
Tisza and Landau [6–8] describes the hydrodynamics of 
the superfluid helium when the quantized vortices are ab-
sent. The effect of the quantum vortex filaments is taken 
into account by introducing the Gorter–Mellink force [11] 
into the right part of the Landau–Khalatnikov equations in 
the following form: 3= ( )sn s n nsA t ρ ρF V  (although this ap-
proach is incorrect). Here ( )A t  is the temperature depended 
constant of Gorter–Mellin. Further improvement was in the 
representation of this force in the following form: 

= ( )sn s n nsA t ρ ρF v . Here   is the density of vortex lines 
per unit volume. With this approach, the dynamics of the 
quantity   is assumed to be described by the Vinen equa-
tion [65–68]: 

 3/2 2= | | .ns
d
dt

α −βV
   (5) 

Here ,α β are the coefficients that depend on the tempera-
ture. However, this approach also has a limited applicability. 

Further, attempts to construct the hydrodynamics of He II 
led to the various variants of their production: the phenome-
nological approach [69], the stochastic approach [70], the 
variational approach [71]. In essence, these equations are 
the Landau–Khalatnikov equations, into which the Vinen 
equation is incorporated. Note that the structure of vortex 
lines is disordered in this case. These equations allowed us 
to describe many of the phenomena observed in experi-
ments, see, for example, [72–75]. 

Let us consider an alternative approach for obtaining a 
system of hydrodynamic equations in the presence of vortex 
quantized lines in He II. It is assumed that bundles of uni-
directional lines are formed in the volume of the liquid (for 
example, when the liquid flows around any obstacles, or 
there is the counterflow) as in the case of rotation of a liquid 
in a container. It is assumed that in this way the superfluid 

motion adapts to the normal motion. Further, it is assumed 
that = /ω κ  ( = rot sω V  is the vorticity). As a result, a 
system of hydrodynamic equations for the He II was ob-
tained [76–78] basing on the Hall–Vainen–Bekarevich–
Khalatnikov model for a rotating fluid:  

 ( ) =s
s s s s s nsp

t
∂ ρ + ⋅∇ −∇ −ρ ∂ 

V
V V f ,  

 2( ) =n
n n n n n s nsp

t
∂ ρ + ⋅∇ −∇ +µ∇ +ρ ∂ 

V
V V V f ,  

 ˆ ˆ= ( )ns s s ns s ns′α × × + α ×f ω ω V ω V . (6) 

Using these equations (for example, in [78–81]), the 
semiclassical behavior of the quantum turbulence is shown. 
The problems associated with the application of these ap-
proaches are discussed in the works [82, 83]. 

The processes directly related to the reconnection of vortex 
loops can be conditionally divided into the three main stages: 
the convergence of the elements of the vortex loops, the 
actual realization of the reconnection, and the relaxation of 
the disturbances arising during reconnection. Note that, 
despite the large number of the works devoted to the dy-
namics of reconnecting vortex loops, the exact theory of 
this process has not yet been built. Thus, all the existing 
results were obtained in the experiments, or using numerical 
simulation or semi-empirical models. 

2.4. Evolution of the vortex loops before the reconnection 

Let us consider in more detail the first stage of reconnec-
tion — the stage of convergence of the elements of the vor-
tex loops. Due to the interaction between the vortex loops, 
they can approach to each other. The pyramid-like protru-
sions appear on the approaching elements of the vortex 
loops, see Fig. 1 [84]. Such protrusions are called kinks. 

Fig. 1. Geometric configuration of kinks (a) and vortex loops (b) before reconnection. The linear dimensions are measured in centimeters. 
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As the vortex loops approach, the kinks begin to grow. 
The curvature at their nearest points (the tops of the kinks) 
also increases. An increase in curvature leads to an increase 
in the induced velocity of the nearest vortex loop elements 
[see Eq. (4)] and, accordingly, to an acceleration of their 
convergence. For the mathematical description of this pro-
cess, two characteristics are usually used: the dependence 
of the minimum distance between the elements of the vortex 
loops on time ( )tδ  and the geometric parameters of the 
kinks. The first characteristic is of particular interest since it 
is closely related to the rate of reconnections (the number of 
reconnections per unit time). In turn, the second characteristic 
plays a decisive role in the formation of a three-dimensional 
velocity field induced by the reconnecting vortices. 

For the first time, Schwarz [49, 50] pointed out the ne-
cessity to take into account the vortex loop reconnections 
when calculating quantum turbulence. In these works, he 
also proposed a vortex filament model, which is subsequently 
actively used in the numerical study of the reconnections. 

2.4.1. Time dependence of the minimum distance between 
the elements of the vortex loops 

Developing Schwartz ideas, Koplik and Levine [85] 
perform the first numerical simulation of the quantum vortex 
reconnections solving the Gross–Pitaevskii equation (1). As 
a result, it was found that the vortex filaments should re-
connect when approaching to each other at a distance of the 
order of several radii of the vortex filament core. 

A little later, De Waele and Aarts [86] investigate the 
dynamics of the vortex filaments before the reconnection 
at zero temperature using the vortex filament method in the 
local approximation of the Biot–Savart equation (4). Their 
calculations show that the time dependence of the distance 
between the nearest elements of the vortex loops does not 
depend on the initial conditions and has an universal form:  

 ( ) = ( / 2 )( ),t t t∗δ κ π −  (7) 

here t∗ is the reconnection time, (the interval between the 
initial moment of the modeling and the moment of recon-
nection). For the first time experimentally the reconnec-
tions in He II are studied in the temperature range from 1.7 to 
2.05 K by Paoletti et al. [87]. In this work, solid hydrogen 
particles are used as tracers to visualization the motion of 
the vortex filaments. The obtained data (before and after 
the connections) for all temperatures are described by the 
dependence:  

 ( ) = | |(1 | |),t A t t c t t∗ ∗δ κ − − −  (8) 

here 1.25A ≈  and 10.5 sc −≈ . It should be noted that the 
standard deviation of the obtained coefficients A  and c is 
large enough in comparison with their average value to 
finally draw a conclusion about the nature of the studied 
dependence. 

After the experiment, a series of numerical works 
appeare which are performed both within the frame of 

the Gross–Pitaevskii equation [88–93] and within the vor-
tex filament method [89–98]. Next, we consider the main 
results obtained in them. 

Information on the convergence of the elements of the 
vortex filament before reconnection was obtained in the 
work of Tsubota [95] based on the vortex filament method 
and the complete Biot–Savart equation (2). So the data is 
well described by the Eq. (8). However, the obtained coef-
ficient 3A ≈  significantly exceeds the experimental values 
obtained in [87]. 

Tebbs et al. [88] confirm the root law of the conver-
gence of the vortex loop elements by numerically solving 
the Gross–Pitaevskii equation, but their data are better de-
scribed by the Eq. (8) with different values of the coeffi-
cients for the different conditions. 

Kursa et al. [89] perform the numerical simulations of 
the reconnections of the quantum vortex loops, solving both 
the Gross–Pitaevskii equation and the Biot–Savart equation. 
As was found in their work the reconnection of two almost 
antiparallel vortices can lead to the creation of a cascade of 
vortex rings in the condition of the enough small angle be-
tween the planes of the vortices. Thus, a significant depend-
ence of reconnections on the initial conditions is demonstrated. 
It should be noted that, unlike the reconnections in super-
fluids, the exponents in equations like (7), (8) for the classi-
cal fluids before and after reconnection are different [99]. 

Zuccher et al. [90] simulated the reconnections using 
the Gross–Pitaevskii and Biot–Savart models at zero tem-
perature. The dynamics of vortices before and after recon-
nection are studied for the different angles β between the 
planes of their initial location. The obtained results (for the 
Gross–Pitaevskii model) are described by the equation:  

 ( ) = | | .t A t t α
∗δ −  (9) 

On average, before a reconnection ave 0.39−α ≈  and 
ave 1.39A− ≈ , after a reconnection ave 0.68+α ≈  and ave 1.54.A+ ≈  

When the angle value =β π: 0.3−α ≈  and 1.36A− ≈ ; 
0.66+α ≈  and 1.88A+ ≈ . If the value is = / 2β π : 0.36−α ≈  

and 1.41A− ≈ , 0.67+α ≈  and 1.01A+ ≈ . Here the exponents 
before and after a reconnection are different, as in the clas-
sic fluids [99]. In addition, it is shown in [90] that small 
rings appear at the time of reconnection, as in [89]. Moreo-
ver, at that time the Kelvin waves appear also. In the case of 
the Biot–Savart equation, only the values of the angle =β π 
and = / 2β π  are studied. The root dependence ( )tδ  is pre-
served, however, after reconnection of the vortices, the ob-
tained results are described by the dependence:  

 ( ) = | |,t t t∗δ κ ⋅π −  (10) 

thus the divergence of the nearest elements of the vortex 
loops occurs at a higher speed than their convergence be-
fore the reconnection. 

Using the vortex filament method, Hanninen [94] inves-
tigated the dynamics of the vortex filaments before and 
after the reconnection at different temperatures. 
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The resulting relationship is described by Eq. (9), with 
= 1/ 2α  and = /16A− κ , = 8A+ ⋅ κ , that slightly differs 

from the coefficients obtained in [90] [see Eq. (10)]. 
Also, numerical studies of the dynamics of the vortex 

filaments are carried out in the works [91–93]. The Gross–
Pitaevskii equation is chosen in them as basic model. 

Allen et al. [91] obtained at all temperatures the values 
of δ  that are described by Eq. (9): = 0.41 0.02−α ± , 

= 0.66 0.02+α ±  and =A κ . As in the work [90], different 
exponents are obtained here before and after reconnection 
of the vortex lines. 

For the initial value of the angle =β π  between the 
planes of the vortex loops Rorai et al. [92] obtained the 
relation 1/2| |t t∗δ −

 , for = / 2β π : 1/3( )t t−
∗δ − , 

2/3( )t t+
∗δ − . 

In the work of Villois and Proment [93], an independent 
of the initial configuration of the vortex loops relation was 
obtained: 1/2( )t t∗δ −

 , but the coefficient A depends 
on the initial configuration of the vortex loops. 

The dynamics of vortex filaments before and after the 
realization of the reconnection at the different temperatures 
and initial conditions is also studied in the frame of the 
vortex filament method using the full Biot–Savart equation 
in a series of works [96–98]. As a result of systematic 
modeling, the time dependences of the minimum distance 
between the elements of the vortex loops are obtained for 
the various temperatures and initial configurations. Addi-
tionally, during simulation of the dynamics of the quan-
tized vortices before the reconnections, the nature of their 
convergence is established. In particular, three characteristic 
stages in the evolution of the vortices before the reconnec-
tions were identified, and the boundaries between them 
were established. In each of the stages, the dynamics of the 
nearest elements of quantized vortices is conditioned by 
the ratio of the forces of intervortex interaction and the 
forces of interaction between the vortices and the normal 
component of helium. It is found that only the dynamics of 
the vortex filaments immediately before the reconnection 
(starting from the distances 00.07 0.08R−  from the recon-
nection point, where 0R  is the initial radius of the vortex 
ring) has a universal character, independent of the tempera-
ture and the initial location of the vortex filaments. Only 
on these scales the velocity of the nearest elements of the 
vortex loops is well described by Eq. (7). At the larger dis-
tances from the reconnection point, the friction has a more 
significant effect on the dynamics of the vortex loops. In this 
case, the dynamics of the elements of the vortex loops is 
described by an equation of the type (8), which agrees with 
the experimental data [87]. Farther away from the reconnec-
tion point, the dynamics of the vortex loops is generally not 
universal. Right up to the situation when at the high tem-
peratures the vortex loops can collapse (decrease in size, 
turning into thermal excitations or emitting a second sound) 
even before the reconnection occures. 

Thus, for the approaching vortex loops, the several time 
dependences of the minimum distance between the elements 
of the vortex loops are obtained. For the dependences ob-
tained by the vortex filament method, the differences are 
only quantitative, i.e., 1/2( ) ( )t t t∗δ −  both before and 
after reconnection. This circumstance can be associated 
with the choice of the time interval for the approximation 
of ( )tδ , since for points far from the reconnection point, the 
dependence ( )tδ  is influenced by the initial conditions [97]. 
It is important to note that the initial conditions in all of the 
listed works were different. For the dependences obtained 
from the solutions of the Gross–Pitaevskii equation, the 
differences of both quantitative and qualitative nature are 
observed. So for ( )tδ  various exponents for time depend-
ences are obtained. In addition, in most works, the expo-
nent before the realization of the reconnection is less than 
after that, namely 0.3 0.4−  vs 0.6 0.7− . The qualita-
tive and quantitative discrepancies can be associated with 
the different choices of the trap potentials extV  in Eq. (1), 
as well as accounting or not the chemical potential. 

2.4.2. Geometric configuration of the vortex loops 
before the reconnections 

Let us turn to the consideration of the geometric con-
figuration of the quantized vortices before the reconnec-
tions. The studies show that in the process of evolution the 
vortex loops approach to each other and their nearest 
elements are deformed, forming a pyramidal structure 
[86, 88, 96, 97, 100]. In the works [86, 88], the geometric 
characteristics of the pyramidal structure formed by the 
nearest elements of the vortex filaments are determined. At 
the same time, in the work [86], the vortex filament method 
and the Biot–Savart equation are used in the local approx-
imation, and in the work [88] the Gross–Pitaevskii equa-
tion is solved numerically. The data obtained in them are 
quantitatively inconsistent with each other. In particular, 
the angles at the top of the pyramidal structure (adjacent to 
the nearest points of the vortices) are 61° and 112° [88], in 
contrast to 25° and 115°–135° obtained in [86]. In the 
work [97], the temperature dependence of the angles at the 
top of the pyramidal structure is obtained in the frame of 
the vortex filament method using the full Biot–Savart 
equation. The values of angles obtained at zero temperature 
agree with good accuracy with the values obtained in [86]. 
The study of the dynamics of the pyramidal structure of the 
approaching vortex filaments showed that immediately 
before reconnection the angles at the apex of the pyramidal 
structure do not change with time and practically do not 
depend on the temperature and the initial conditions [97]. 
In addition, their values correspond to the values of the 
angles at zero temperature. This phenomenon is due to the 
fact that when the vortex loops are directly approached, the 
forces associated with their mutual influence begin to dom-
inate over the forces associated with the interaction of the 
vortex loops with the normal component of helium. 
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It is also worth noting that when performing the recon-
nection, the approaching segments of the vortex filaments 
are reoriented so that the direction of their circulation vec-
tors is opposite [97]. This circumstance is very important, 
because, in order to preserve a helicity, the direction of the 
circulation of these segments must be antiparallel, as noted, 
for example, in the works [101, 102]. 

In general, in the existing works there is no disagree-
ment on the dynamics of the formation of pyramidal struc-
tures in the vicinity of the point of reconnection. In the 
obtained results there are some differences in the values of 
the angles at the apex of the pyramidal structures, which, 
most likely, is associated with the different methods of the 
studying of the reconnecting vortex loops. 

With further evolution, the rapidly approaching kinks 
intersect at the apex of the pyramidal structure. At their 
intersection, the reconnection is occured. 

2.5. Evolution of the vortex loops after the reconnection 

The reconnection leads to a change in the topology of 
the vortex system. As a rule, from the two vortex loops, the 
one larger vortex loop is formed. However, under certain 
initial conditions, the one or several additional smaller loops 
[89, 98] may form. As shown in these works, such a scenar-
io is realized when the angle between the planes in, which 
the vortex loops are located, is sufficiently small before the 
reconnection. In this case, small loops subsequently quickly 
move away from the place of their origin or quickly collapse 
at a nonzero temperature. A significant deformation forms 
during the reconnection of the loop leads to a rapid mutual 
divergence of the loop elements located near the point of 
reconnection. As mentioned above, the divergence of the 
nearest elements occurs according to the root law (8). In this 
case, the coefficients A  after reconnection take on larger 
values than before the reconnection. In addition, the Kelvin 
waves are induced during reconnection. Subsequently, they 
propagate along the formed loops. 

2.5.1. Dynamics and properties of the vortex loops after 
the reconnection 

Let us consider the dynamics and properties of the vor-
tex loops after the reconnection: the average radius of cur-
vature, the total kinetic energy of the liquid, the power of 

energy dissipation due to the force of mutual friction, and 
the vortex momentum. We know of two works in which 
these issues are considered in detail — these are the works 
[94] and [103]. In these works, the simulation of the dy-
namics of the vortex loops are carried out on the basis of 
the vortex filament method using the full Biot–Savart 
equation. In the field of reconnection, the vortex loop can 
evolve according to two main scenarios, depending on tem-
perature. The first scenario is realized at the temperatures 
close to absolute zero, the second is realized at the higher 
temperatures. 

At the temperatures close to absolute zero, the normal 
component of the liquid is practically absent, and, there-
fore, there is an absent the force of mutual friction. In this 
regard, the conservation of the kinetic energy and the vor-
tex momentum of the loop should be expected, which are 
obtained in the works [94, 103]. The conservation of these 
quantities leads to the fact that the vortex loop, after the 
reconnection, moves with a constant average velocity. 
However, the conservation of the energy and momentum 
also means that the Kelvin waves generated during the 
reconnection are not damped. Moreover, these wave dis-
turbances propagating along the vortex loop form a periodic 
structure, which is associated both with the involvement of 
new points of the loop in the additional motion and its de-
formation. It is also worth noting that the mean radius of cur-
vature (see Fig. 2(a), [103]) and the length of the vortex loop 
are conserved, as was established in [103]. This circumstance 
testifies to the motion of the generated disturbances with the 
preservation of their structure (see Fig. 3, [104]). 

At an elevated temperature of the system, the vortex 
loops shrink and collapse under the action of the force of 
mutual friction, in turn, and the Kelvin waves on the vortex 
loops are decay (see Fig. 4, [104]). Two characteristic stages 
in the evolution of the vortex loops can be distinguished here. 

At the first stage, there is an increase in the radius of 
curvature [see Fig. 2(b) and 2(c)] and the characteristic dis-
tance between disturbances, as well as a rapid decrease in 
the length of the vortex loop [103]. This process is associ-
ated with the relaxation and redistribution of disturbances 
that arose before and immediately during the reconnection. 
In addition, at this stage, there is a sharp decrease in the 
total kinetic energy due to the action of the force of mu-

Fig. 2. (Color online) Average radius of curvature of the vortex configurations for the different initial angles between the loop planes 
and temperatures. 
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tual friction, which is confirmed by the increased energy 
dissipation [94, 103]. In this case, the ratio of the total ki-
netic energy to the length of the vortex loop remains al-
most constant [103], i.e., the kinetic energy decreases in 
proportion to the length of the filament (as in the case of a 
straight vortex line) [see Fig. 5(a)].  

The next stage is characterized by the fact that the redis-
tributed disturbances begin to attenuate actively. The de-
crease in the average radius of the curvature is found to be 
proportional to the root of the time [see Fig. 2(b) and 2(c)]. 
Moreover, at this stage, both the length of the vortex loops 
and the characteristic distance between the disturbances 
[103] decrease as the square root of time. The observed 
relationships do not depend on the initial mutual arrange-
ment of the loops. These are similar to the relationships for 
a single vortex ring [105]. This behavior is associated with 
the damping of the disturbances propagating along the vor-
tex loop, the compression of the vortex loop and its trans-
formation into a vortex ring. The force of mutual friction 
between the vortices and the normal component of super-
fluid helium is responsible for all these processes. This 
assumption is confirmed by the faster decay of the arisen 
disturbances and the accelerated compression of the vortex 
loops with an increase of the system temperature, and, as a 
consequence, the friction force. At this stage, the power of 
the energy dissipation is practically constant, and the total 
energy decreases linearly [103] [see Fig. 5(a) and 5(b)]. 
This circumstance also indicates that the dissipation of the 
energy is due to the force of mutual friction, and the kinetic 

energy of the liquid directly converts into thermal energy. 
In this case, the ratio E(t)/l [see Fig. 5(c)] gradually be-
gins to grow, which indicates the end of the redistribution 
of disturbances. 

Thus, the dynamics of the vortex loops is determined by 
two main factors: the initial conditions and the tempera-
ture. The initial conditions determine the size and number 
of the disturbances arising after the reconnection, and the 
temperature determine the rate of their relaxation. The 
boundary between the observed intervals can be condition-
ally associated with the moment when the process of com-
pression of the vortex loop under the action of the friction 
force from the normal component of superfluid helium 
begins to dominate over the process of the redistribution of 
the vortex disturbances [103]. 

3. Energy spectra of the velocity fields created 
by the various vortex configurations 

The energy spectrum shows the distribution of a kinetic 
energy on the various scales. One of the reasons for studying 
the energy spectrum is that a set of the quantized vortex 
lines can imitate the classical turbulence. In a number of the 
experiments, there is a similarity between the properties of 

Fig. 3. An example of the vortex configurations at different 
times, s: 0 (a), 1.5⋅10–3 (b), and 3⋅10–3 (c). The initial angle be-
tween the planes of the loops is π/2. The helium temperature is 
close to absolute zero. 

Fig. 4. An example of the vortex configurations at different 
times, s: 0 (a), 6⋅10–4 (b), 1.2⋅10–3 (c), 1.8⋅10–3 (d), and 2.4⋅10–3 (e). 
The initial angle between the planes of the loops is π/2. The helium 
temperature is 1.9 K. 

Fig. 5. (Color online) Time dependencies of the total kinetic energy (a), the power of energy dissipation due to the force of mutual fric-
tion (b), the ratio of the total kinetic energy to the size of the vortex loop (c) at a temperature T = 1.3 K and various angles between the 
initial planes of the loops. 
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a quantum turbulence and of the vortices in a classical fluid. 
For example, the experiments on the decay of a vortex tangle 
[106–109] show the semiclassical behavior of a quantum 
turbulence. To date, there is no clear explanation for this. 
The obtained numerical results of the study of the quantum 
turbulence decay [110, 111] using the Hall–Vinen–
Bekarevich–Khalatnikov equations (6) demonstrate the 
Kolmogorov spectrum. In this case, the vortex line density 
decreases with time as follows, 3/2t−∝ . 

The decay of quantum turbulence is investigated in the 
framework of the vortex filament method [112, 113] as 
well as in the framework of the Gross–Pitaevskii equation 
for the Bose–Einstein condensate [114–116]. In these 
works, the Kolmogorov spectrum is also obtained. A nu-
merical study of the decay of a vortex tangle is carried out 
in the work [117]. It is shown that at zero temperature the 
decay of a concentrated dense vortex tangle in the infinite 
space is caused by the escape of small loops from the tangle. 
In the presence of the walls the vortices mainly “die” on 
them. On the other hand, as follows from the Vinen equa-
tion (5), during the free decay, the density of the vortex 
tangle decreases according to the following dependence 

1t−∝ . The similar behavior of the density of the vortex 
tangle is observed both in the experiments and in the calcu-
lations [118–121]. A comparative analysis of these studies 
is carried out in the works [20, 122–124]. These studies are 
related to the study of the decay of a dense vortex tangle. It 
should be noted that the Kolmogorov spectrum is observed 
when the vortex tangle becomes rarefied. In this case, the 
vortex tangle is a set of the weakly interacting vortex 
loops. The another purpose of this work is to consider the 
energy spectrum before and after reconnection of the vortex 
loops. Possibly, a detailed study of the interaction of the 
several vortex loops will be explain the similarity of the 
behavior of quantum and classical turbulence. 

3.1. Methods for calculating the spectrum of the velocity 
field 

The spectrum of the velocity field can be calculated by 
the various methods. In addition to the direct Fourier trans-
form, knowing the configuration of the vortex structure, it 
is possible to determine the energy spectrum of the system. 
The energy of the fluid E  in the presence of the vortex fila-
ments ( )ξs  is determined by the following expression [125]:  
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Hence, the kinetic energy spectrum is determined as fol-
lows:  
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where 2= sink k k kd k d dΩ θ θ Φ  is the elementary volume 
in the spherical coordinates. In the isotropic case, the spec-
tral density is determined by the following expression [126]:  
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The another method for the determining of the spectral 
density is the statistical approach [9, 127]. To find the 
spectrum, the velocity field must first be determined. Then 
it is required to calculate the velocity correlators: 
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The angle brackets mean an averaging over the ensemble, 
that is, over all pairs of the points separated by the distance l , 
for the all possible values of r . The dependencies 

 22 ( ) ( )S l S l l⊥ α∝ ∝   

in the coordinate space ones corresponds the dependence  

 ( ) mE k k −∝   

in the space of the wave numbers ( = 1m α + ) [9, 127]. 
From the dimensional considerations Kolmogorov [128] 
for the longitudinal and transverse structure functions of 
the second order obtained: 

 2/3 2/3
22 ( ) ( ) .S l S l l⊥∝ ∝ ε   

This is the famous “two-thirds“ law. In the space of wave 
numbers, this expression corresponds to:  

 1 5/3( ) =E k k k−α− −∝ .  

3.2. Energy spectra of the velocity fields  
created by the vortices before a reconnection 

Before the moment of a reconnection, the kinks are 
formed on the vortex loops (lines) (see Fig. 1). As is noted 
above the time dependence of the minimum distance between 
the elements of vortex loops is closely related to the recon-
nection rate, and the geometric parameters of the kinks play a 
decisive role in the formation of the three-dimensional velo-
city field induced by the reconnecting vortices. 

In the work [124] it is assumed that exactly the recon-
nection processes are responsible for the fact that the energy 
spectrum in a quantum liquid is similar to that in a classical 
liquid. The quantum vortices can not stretch and contract, 
unlike the classical ones. At the time of the reconnection, 
the part of a vortex filament is “burned out”, that mimics 
the energy transfer into a tiny area near the point of a col-
lapse. In a classical liquid, the vortex stretching plays a 
similar role in the energy transfer into small scales. Today, 



Dynamics, properties and spectrum of reconnecting vortex loops in superfluid helium 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 9 813 

both in the quantum and classical fluids an exact geometric 
shape ( )s ξ  of the vortex lines before a reconnection is not 
obtained analytically. An asymptotic solution of the dyna-
mics of the quantum vortex loops just before the reconnec-
tion is obtained in [100]. Using this solution and the Eq. (11) 
to calculate the energy spectrum the dependence ( )E k  is 
obtained in the work [124] numerically. Further, using the 
asymptotic expansion method [129] the integral (11) is 
roughly estimated at large k . As a result, the spectrum ( )E k  
was obtained analytically. Both obtained curves are shown 
in Fig. 6 [84]. As you can see from Fig. 6 in either case 

1 5/3( ) =E k k k−α− −∝ . This circumstance allowed the authors 
of this work to connect the possible cause of the appearance 
of the Kolmogorov spectrum with the shape of the recon-
necting vortex filaments. The obtained dependence ( )E k  is 
approximate, since it is based on an asymptotic solution. 
The spectrum ( )E k  is valid only on small scales. On a 
large scale, the energy spectrum should be obtained by 
integrating the formula (11) over the entire vortex configu-
ration, including the very distant elements of the vortex 
line. It is clear that this can be done in the case where a 
large-scale organization of the structure of the vortex tangle 
is known (at least in the statistical sense).  

In the work [84], using the vortex filament method and 
the full Biot–Savart equation, the configurations of the 
vortex filaments was obtained before the reconnections. 
Using a statistical method (12), the spectrum of the velocity 
field induced by the different configurations of the quantum 
vortex filaments was obtained. These configurations were 
obtained at the various time before the reconnections. The 
spectrum were obtained on the scales of the order of the 
sizes of the pyramidal structures. In Fig. 7 the obtained 
dependences of the second order longitudinal correlation 
functions on l  are presented. Note that the notation 

2 ( ) ( )llS l C l=  given in the various papers are equivalent. 
It is shown in [84] that the small changes in the loop 

configurations lead to the rather significant changes in the 
( )E k  dependence. In the same work, the influence of the 

spatial inhomogeneity (kink) on the energy spectrum on the 
scales larger than the kink itself is determined. For this, the 
second order structure function was calculated in the region 
where both vortex loops were located before the reconnec-
tion. The obtained result of the llC  is shown in Fig. 8. 

From Fig. 8 it follows that on the scales of the order of 
the kink size is 0.6( )llC l l∝  and 1.6( )E k k −∝ . On the large 
scales 0,45( )llC l l∝  and 1.45( )E k k −∝ . On the scales of the 
order of the characteristic vortex size 3( )llC l l−∝ , that cor-
responds to 2( )E k k∝ . It is the energy spectrum from a 
straight line on the small k . 

The results of the studies considered above show that 
the Kolmogorov energy spectrum is observed on scales of 
the order of pyramidal structures formed as a result of the 
intense interaction of vortex filaments before the reconnec-
tion. On smaller scales, an observed spectrum corresponds 
to the spectrum produced by a smooth vortex filament. 
Thus, a single kink-type inhomogeneity cannot create a 
velocity field with a spectrum similar to the Kolmogorov 
spectrum, especially on the scale of the system. However, 
in all considered cases, the presence of kinks leads to char-
acteristic features in the energy spectrum. It should be ex-
pected that the presence of many kinks, for example, in a 
dense vortex tangle characterized by a large number of 

reconnections (reconnection rate 5/2rdN
dt

∝   [19]) could 

create a Kolmogorov-type spectrum. 

Fig. 6. (a) Spectrum E(k) is obtained analytically. (b) Spectrum   
E(k) is obtained numerically. The straight line has a slope of 5/3. 

Fig. 7. Dependences of the second order longitudinal correlation 
functions on l. Solid lines are the dependence of the structure 
functions of the velocity fields in the vicinity of the kink on the 
scale l. The dashed and dotted lines are some functions propor-
tional to l2/3. The upper solid line corresponds to the vortex con-
figuration closer to the reconnection point than the lower one. 

Fig. 8. Structural function for a system of the two interacting 
vortex loops initially lying in the same plane. The structure function 
corresponds to the dotted line with round markers. Dashed lines are 
power approximations: 0.6l ,  0.45l , –3l  on the corresponding scales l. 
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On scales of the order of the characteristic sizes of the 
vortex loops in the work [130] the spectral characteristics of 
the velocity fields generated by the different configurations 
of the vortex loops were calculated before the reconnection. 

The configurations differed from each other in the ini-
tial arrangement of the planes in which the vortex loops 
were located, see Fig. 9. The slope of the approximating 
tangents (solid lines in Fig. 9) increases with the decreasing 
of the angle between the planes of the original position of 
the loops. It turned out that the angles of the slope longitu-
dinal structural function of the second order llC . ( )llC l  
vary in the range from 0.45 to 0.66, which corresponds to 
the spectra 1.45( )E k k −∝  and 5/3( )E k k −∝ , 1.45( )E k k −∝  
and 5/3( )E k k −∝ .  

Thus, during reconnection vortex loops can create a velocity 
field with spectral characteristics close to the Kolmogorov 
spectrum, at least in a certain range of wavenumbers k . 

3.3. Energy spectra of the velocity fields created 
by the vortices after the reconnection 

In the work [104], using the statistical method, the nature 
of the energy spectrum of the velocity fields corresponding 
to the moving vortex loops formed after the reconnection 
of two vortex loops was determined. The numerical studies 
were carried out at the various temperatures and initial 
arrangements of the vortex rings. The dynamics of the vortex 
loops was obtained within the framework of the vortex line 
method using the full Biot–Savart equation. It turned out 
to be surprising that in all cases the structure functions of 
the second order have the same form 1/2( )llC l l∝ . In the 
k space, this dependence corresponds to the energy spectrum 

3/2( )E k k −∝ , that is a spectrum of a smooth vortex ring. 
At zero temperature, the spectral characteristics of the 

vortex loops do not change over time due to the absence of 
energy dissipation. The only difference is that the ampli-
tudes of the structure functions of the second order is 
somewhat different for the different initial conditions, that 
corresponds to the presence of various perturbations arising 
on the vortex loops during reconnections. The configura-
tions of the vortex loops at the temperature near absolute 

zero at the different times are given in Fig. 10. For these 
configurations, Fig. 10 shows the dependences of the lon-
gitudinal structure functions of the second order from the 
scale l . 

The numerical results of the influence of the initial con-
ditions are shown in Fig. 11(a).  

As you can see from this figure, the initial data do not 
affect the power exponent α . The influence of tempera-
ture also does not affect the values of the exponent 2 ( )S l  
as shown in Fig. 11(b). 

Moreover, the longitudinal structural functions of the 
second order do not change when the vortex loop collapses. 
The amplitudes of the structure functions decrease with the 
temperature, which corresponds to a higher rate of energy 
dissipation. The mechanism of the vortex loops decay is 
similar to the decay of the mechanism of the single smooth 
vortex rings. The perturbations arising during the reconnec-
tion somewhat can speed up this process [105]. 

4. Summary 

On the whole, most of the existing results concerning the 
dynamics of reconnecting loops are in qualitative agreement 
with each other. Thus, the dependence of the minimum 
distance between the elements of the vortex loops before 
reconnection has a root form. The divergence of the nearest 
elements of the vortex loop after the realization of recon-
nection also occurs according to the root law, but several 
times faster. The specific values of the obtained coeffi-
cients are somewhat inconsistent with each other, which 
may be due to the consideration of the different time inter-
vals, as well as the different initial conditions. In addition, 
today there is no disagreement regarding the geometric con-
figuration of the vortex loops before the reconnection — 
the sections of the threads near the point of reconnection 
are oriented antiparallel to each other, and the elements 

Fig. 9. Dependence of the structure functions on l before recon-
nection for the different initial angles between the loop planes. 

Fig. 10. Longitudinal structure functions of the velocity fields 
corresponding to the vortex configurations Fig. 3. The black solid 
line is the approximating curve 1/2( )llC l l∝ . In k space, this de-
pendence corresponds to the energy spectrum: 3/2( )E k k−∝ . 
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adjacent to them form a pyramidal structure. The number 
of works considering the properties of reconnecting vortex 
loops is significantly less than the number of works con-
sidering their dynamics. However, even here in the available 
works, there are no significant divergences. At zero tem-
perature, the vortex loops continue to move with the preser-
vation of their properties, and the Kelvin waves generated 
during reconnection propagate along with the vortex loops 
without dumping. At elevated temperatures, due to the force 
of mutual friction, the vortex loops collapse, and the Kelvin 
waves generated during reconnection rapidly decay. These 
processes are accelerated with the temperature increasing. 

One of the main remaining open questions is the ques-
tion of the role of the reconnecting vortex loops in the for-
mation of the turbulent spectrum. The other mechanisms 
may be responsible for the formation of the turbulent spec-
trum. So, for example, in many of the numerical studies 
carried out near absolute zero, at the end of the decay of a 
vortex tangle, the remained vortex loops and lines begin 
and end usually on the walls of the experimental cell. The 
Kelvin waves or the solitons are formed along these lines 
during their dynamics. The paper [30] discusses the role of 
such waves and solitons in a vortex system. It is assumed 
that “a turbulent vortex tangle in the limit of zero temperature 
can be represented as a gas of solitons and Kelvin waves on 
the vortex lines interacting with a gas of the vortex rings and 
photons in the bulk — with frequent interconversion of the 
ring into solitons and vice versa” [30]. 

The statistical properties of quantum turbulence are also 
being studied experimentally. Thus, in the works [27, 131], 
the transverse structure functions of the second order are 
found, which made it possible to determine the spectrum of 
the vortex tangle. In numerical studies of the spectral charac-
teristics of the vortex loop after reconnection [104] and the 
vortex ring [105], similar results are obtained. The [131] ex-
periment shows the dependence of the index of the structural 

functions on external parameters: the temperature and the 
counterflow velocity. In stationary situations, the depend-
ences were obtained, respectively, in k space ( ) mE k k −∝ , 
m > 1.88 ( = 1m α + ). It is found that the values of the index 
α increase with increasing the heat flux density. When the 
temperature of the liquid changes, the index α changes; it 
can decrease or increase depending on the value of the heat 
flux density. In the work [28], a semi-quantitative theory of 
stationary, homogeneous, isotropic turbulence developed in 
the presence of counterflow. The results of the developed 
theory are compared with the experimental results [131]. 
Good qualitative agreement is found between theory and 
observations for T = 1.85 K [131]. 

In the work [130], the spectrum of the vortex tangles 
arising in the counterflow of the superfluid and normal 
components of helium is also investigated by the method 
of the structure functions. The vortex configurations are 
obtained by the vortex filament method using the full Biot–
Savart equation. The results are obtained at the various val-
ues of the counterflow velocities from 0.3 cm/s to 1.2 cm/s 
and the temperatures from 1.3 to 1.9 K. As a result, it is 
found that an increase in the counterflow velocity leads to 
an increase in the dissipation rate, but does not affect the 
nature of the spectrum. Note that the obtained results in 
this work do not agree with the results of the [131] experi-
ment. In turn, that the temperature increase leads not only 
to an increase in the rate of energy dissipation but also af-
fects on the spectral characteristics of the system on the 
intervortex scale. The energy spectra show different power 
law: 1.3( )E k k −

 , 1.35( )E k k −
 , and 1.4( )E k k −

 , m = 
= 1.3, 1.35, 1.4, respectively. Monotonicity is observed in 
the increase in the modulus of the exponent with increasing 
temperature. On large scales, the spectrum 1( )E k k −

  is 
observed for all considered temperatures. Note that in the 
experiment [131] m > 1.88. An increase in the index with an 
increase in the temperature is associated with an increase in 

Fig. 11. (a) Structural functions of the velocity fields corresponding to the configurations of the vortex loops after reconnection at dif-
ferent initial angles between the planes of the loops. (b) Structure functions of the velocity fields for the vortex loops at different tem-
peratures. The fluid temperature is 1.9 K, t = 0 s.The angle between the initial planes of the loops is π/2. Black solid lines — approxi-
mating curves 1/2( )llC l l∝ . In k space, this dependence corresponds to the energy spectrum: 3/2( )E k k−∝ .  
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the number of the reconnections, since kinks near the recon-
nection point can create a velocity field with spectral charac-
teristics close to Kolmogorov’s. Accordingly, the reconnec-
tions can possibly play a significant role in the formation of 
quantum turbulence, at least on the intervortex scales. 

In connection with the development of new methods for 
the experimental study of the quantum vortex filaments, it 
will become possible soon to determine the validity of the 
developed models and hypotheses, as well as to establish 
the mechanism responsible for the formation of the turbulent 
spectrum: the vortex loops, the solitons, the Kelvin waves, 
the reconnections, or something else. 
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 ___________________________ 

Динаміка, властивості та спектр вихрових петель 
після реконнекції у надплинному гелії 

(Огляд) 

L. P. Kondaurova, V. A. Andryushchenko 

Квантова турбулентність — це сукупність взаємодіючих 
квантових вихрових петель та ниток. Систематизовано інфор-
мацію про поточний стан досліджень квантових вихрових 
петель після реконнекції у надплинному гелії: геометрія, 
динаміка, властивості вихрових петель, енергетичний спектр 
до та після реконнекції . Обговорено можливу роль реконнек-
ції у формуванні турбулентного спектра, а також основні 
методи та підходи до вивчення вихрових петель після рекон-
некції та квантової турбулентності. 

Ключові слова: надплинний гелій, вихрові петлі, реконнекція, 
енергетичний спектр.

 

https://doi.org/10.1103/PhysRevLett.71.2583
https://doi.org/10.1209/epl/i1998-00314-9
https://doi.org/10.1007/s10909-005-2257-4
https://doi.org/10.1088/1742-6596/318/4/042014
https://doi.org/10.1088/1742-6596/318/4/042014
https://doi.org/10.1103/PhysRevB.84.184505
https://doi.org/10.1209/0295-5075/97/34006
https://doi.org/10.1103/PhysRevLett.89.145301
https://doi.org/10.1103/PhysRevLett.89.145301
https://doi.org/10.1209/epl/i2002-00588-3
https://doi.org/10.1103/PhysRevLett.78.3896
https://doi.org/10.1103/PhysRevLett.94.065302
https://doi.org/10.1103/PhysRevB.84.054525
https://doi.org/10.1103/PhysRevB.86.134506
https://doi.org/10.1103/PhysRevB.44.7563
https://doi.org/10.1103/PhysRevLett.71.2583
https://doi.org/10.1209/epl/i2001-00321-x
https://doi.org/10.1209/epl/i2001-00321-x
https://doi.org/10.1103/PhysRevE.67.047302
https://doi.org/10.1007/s10909-012-0791-4
https://doi.org/10.1103/PhysRevB.90.104506
https://doi.org/10.1103/RevModPhys.67.37
https://doi.org/10.1063/1.2354675
https://doi.org/10.1063/1.2354675
https://doi.org/10.3367/UFNr.0185.201506b.0593
https://doi.org/10.1063/1.4976638
https://doi.org/10.1063/1.4976638

	1. Introduction
	2. Methods and approaches to study the quantum turbulence
	2.1. Gross–Pitaevskii equation
	2.2. Vortex filament method
	2.3. Hydrodynamics of superfluid turbulence
	2.4. Evolution of the vortex loops before the reconnection
	2.4.1. Time dependence of the minimum distance between the elements of the vortex loops
	2.4.2. Geometric configuration of the vortex loops before the reconnections
	2.5. Evolution of the vortex loops after the reconnection
	2.5.1. Dynamics and properties of the vortex loops after the reconnection

	3. Energy spectra of the velocity fields created by the various vortex configurations
	3.1. Methods for calculating the spectrum of the velocity field
	3.2. Energy spectra of the velocity fields  created by the vortices before a reconnection
	3.3. Energy spectra of the velocity fields created by the vortices after the reconnection

	4. Summary
	References

