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We consider the finite ribbons of graphene with two principal orientations, zigzag and armchair, of their edges to 
study in detail impurity effects on their edge states. An alternative to the known description of quasiparticle 
states in terms of transversal standing waves is proposed in the recurrence relations for their spectra vs discrete 
numbers of atomic chains in the ribbon, permitting to simplify the Green function approach to the disorder ef-
fects in these systems. The derived analysis shows the microscopic mechanisms of perturbation by different 
types of impurities on low energy states and clarifies how the stability of topological states in zigzag systems to 
disorder is related to the discrete amplitudes of these states across the ribbon. An opposite possibility for Mott 
localization under local impurity perturbations is found for armchair type nanoribbons but at special values of 
their width. 
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1. Introduction 

A variety of physical structures result from the specific 
triple topology of carbon valence links. Beyond the most 
common graphite and diamond 3D crystals, the discoveries 
of last decades include a sequence of fullerene molecules 
[1], going to the limit of carbon nanotubes [2], and, of 
course, the remarkable family of graphene atomic plane 
materials [3–6] with their derivatives [7]. For an extended 
guide through the nanocarbon jungle see the review of 
D. Tománek [8]. 

Especially, a lot of interest was attracted by the topo-
logical electronic states formed at the edges of finite cuts 
of the graphene plane [9, 10]. These show a remarkable 
sensitivity to the lattice orientation of the nanoribbon ter-
minal edges. In particular, the possibility of topological 
protection of such edge states against the back-scattering, 
which gives rise to 1D metallic conductivity, was a subject 

of the intense experimental and theoretical studies [11–14]. 
Theory connected such stability with the specifics of the 
Berry phase dependence of the graphene Bloch states 
(resulting from the three-fold local symmetry of graphene 
links) on the wave vector orientation. 

The graphene nanoribbons (GNR’s) cut along its two 
principal crystalline axes, zigzag and armchair directions, 
are an important class of finite graphene systems. Corre-
spondingly, the related GNR types are commonly lumped 
the names — zigzag graphene nanoribbons (ZGNR’s) and 
armchair graphene nanoribbons (AGNR’s). Although both 
graphene descendants, their different edge terminations 
endow them with strikingly different physical properties. 
First of all, the topological protection is observed for 
ZGNR’s but not for AGNR’s, and concomitantly, the quasi-
particles spectra of AGNR’s are sensitive to the number of 
atomic chains across the ribbon (semiconducting vs metallic 
AGNR’s). This is another GNR’s specifics (beyond 
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the sensitivity to the edge orientation) and, notably, it is 
absent in the ZGNR case, marking another qualitative dis-
tinction between the two GNR types. 

The most complete analytic description of electronic 
states and their energy spectra for pure GNR’s was obtained 
within the approach of standing waves in transversal wave 
numbers [15, 16], referred to in what follows as Waka-
bayashi–Sasaki–Nakanishi–Enoto (WSNE) approach [17]. 

The stability of electronic states in GNR’s to disorder, 
particularly to the disorder by different types of impurities, 
was broadly discussed in various aspects, but the important 
issues of carriers lifetimes and the criteria for their locali-
zation were mostly treated by numerical methods [16, 18]. 
Therefore, it is of interest to consider these issues in a 
purely analytic way, within the general approach for disor-
dered systems in terms of Green functions (GF’s) [19, 20], 
permitting much more freedom to obtain various physical 
quantities. Such an analysis was done recently for the case 
of the plain 2D graphene with impurities [21, 22], and below 
we shall extend it for the GNR hosts, combining their origi-
nal WSNE description with its alternatives developed here 
for easier matching to the GF schemes. 

The paper is organized as follows, Sec. 2 includes the 
formulation of tight-binding Hamiltonians for ZGNR and 
AGNR types, and provides their diagonalization in terms 
of the longitudinal wave number k  (along the GNR edge), 
leaving the transverse spatial direction lumped by the trans-
verse (chain number) index j . A substantial part of Sec. 2 is 
devoted to the recurrence analysis for the corresponding 
secular determinants that give rise to the GNR eigenstates 
and their eigenvalues. Spectral analyzes and the dispersion 
laws for both GNR types are further investigated in Sec. 3, 

including, in particular, the quasi-dispersionless edge modes 
for ZGNR’s and Dirac-like 1D nodes in AGNR’s. Section 4 
uses the obtained spectral data to build the GF’s for each 
GNR type, especially the most relevant locator GF’s for 
the terminal sites located at the GNR edges. The obtained 
GF’s are further processed in Sec. 5 where perturbation 
Hamiltonians corresponding to different impurity perturba-
tion models (Lifshitz and Anderson) and impurity positions 
(top and bridge) in GNR’s are analyzed within the T matrix 
approximation. This analyzes shows how the stability of 
the ZGNR edge modes against the impurity disorder results 
from their specific dispersion laws, in contrast to the high 
sensibility of the AGNR Dirac-like states to such disorder. 
Finally, a brief discussion of the obtained results and their 
relation to the more general context of graphene physics is 
given in Sec. 6. 

This work is dedicated to the glowing memory of 
M. I. Kaganov and to his great contribution to the theory of 
metals, particularly to our present understanding of the 
relations between the topology of electronic states in metals 
and their observable characteristics [23, 24]. 

2. Hamiltonian and secular determinants 

A graphene nanoribbon can be considered as a set of M  
chains, each consisting of N  (supposed N M ) 1D seg-
ments. Each segment contains two types of atomic sites, 
sublattices, and therefore the respective local electronic 
states in the nth segment of mth chain are represented by 
the second quantization operators †

,m na  and †
,m nb  (see 

Fig. 1). Longitudinal periodicity is imposed through the 
Born-von Karman conditions connecting the 1st and N th 
segments within each chain. The electronic dynamics of 

Fig. 1. Graphene nanoribbons for two orientations of their edges: (a) zigzag, along the lattice vector 1a , and (b) armchair, along 1 2a a+ . 
Dashed lines delimit the unit segments along 2a  with 2M  atomic sites each, belonging to sublattice a  (white) and b (black). The carbon 
dangling bonds at the edges are passivated by hydrogens (smaller circles). 
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such systems depend on the ribbon orientation with respect 
to the 2D graphene lattice vectors 1a  and 2a . There are dis-
tinguished ZGNR’s extending along the 1a  or 2a  directions, 
and AGNR’s extending along the 1 2±a a  directions. 

For a ZGNR with M  chains and the nearest neighbor 
hopping t , the corresponding tight-binding Hamiltonian 
reads:  

 ( )
1

( , ) †
, , , 1 1,

=2 =2
=

N M
z M

m n m n m n m n
n m

H t a b b b
−

− −

  + + +
 

∑ ∑   

 ( )†
1, 1, 11, n nna b b −


+ + +


  

 ( )†
,1 ,,1

=1
h.c. .

M

m m Nm
m

a b b
+ + + 


∑  (1) 

Similarly, such Hamiltonian for an AGNR is:  

 ( )( , ) †
, , 1, 1 1,

=1 =2
=

N M
a M

m n m n m n m n
n m

H t a b b b+ − −

  + + +
 

∑ ∑   

 ( )†
1, 2, 11, n nna b b −


+ + +


  

 
1

†
1,,1

=1
h.c. .

M

m Nm
m

a b
−

+
+ + 


∑  (2) 

The last sums in Eqs. (1), (2) just generate longitudinal 
translation invariance, which suggests transition to the 
Fourier-transformed chain-wave operators. The longitudinal 
coordinates of ,m na  and ,m nb  sites, as in Fig. 1(a) (in units 
of the graphene lattice constant 1,2=| |a a ) define this trans-
form for the ZGNR case as:  

 (2 / )( /2 1/2)
, ,

=1

1= e ,
2

N
i k N n m

m k m n
n

a
N

π + −α ∑   

 (2 / )( /2)
, ,

=1

1= e ,
2

N
i k N n m

m k m n
n

b
N

π +β ∑  (3) 

with the longitudinal wave number = 1, 2, ,k N . The 
same for the AGNR case [as in Fig. 1(b)] reads:  

 (2 / ) 3( /2 1/3)
, ,

=1

1= e ,
2

N
i k N n m

m k m n
n

a
N

π + +α ∑   

 (2 / ) 3( /2 2/3)
, ,

=1

1= e .
2

N
i k N n m

m k m n
n

b
N

π + +β ∑  (4) 

These transforms readily diagonalize the Hamiltonians, 
Eqs. (1), (2), in the k  number. If the GNR length is macro-
scopically big, N →∞ , we can pass to a quasi-continuous 
momentum variable: 2 /k N kπ → , defined within 0 < < 2k π 
(in 1a−  units). Also, for a simplicity, the energy ε will be 
measured in units of t . 

Then the system dynamics in the transversal m index 
can be considered at a fixed k , but in a specific way for 
each type of nanoribbons. The known analytic WSNE ap-
proach [15–17] is based on taking eigenstates at given k  as 

standing waves in the transversal q momentum, subject to 
specific edge conditions for each GNR type. Their solution 
results quite simple for the AGNR case but more compli-
cated for the ZGNR case, where a non-trivial coupling 
between the k  and q momenta requires numerical calcula-
tion to obtain the final spectral data. This would also set 
difficulties for the further analytic studies of disorder effects 
on the most interesting ZGNR topological edge modes. Here 
we develop an alternative approach to the GNR systems, 
based directly on their m indices. It reproduces the WSNE 
results for pure GNR’s electronic states and their spectra 
but permits a simpler treatment of disorder effects in the 
ZGNR case. At the same time, the WSNE approach is 
found easier for this purpose in the AGNR case. 

2.1. Zigzag case 

Thus, the transformed ZGNR case Hamiltonian from 
Eq. (1) reads:  

 ( )† †( , )
, 1,, ,

=2
=

M
z M

k m k m km k m k
k m

H −


γ α β + α β +


∑ ∑   

 †
1,1, h.c. ,k kk + γ α β +   (5) 

with the phase factor 2= 2cos k
kγ . It can be also presented as  

 †( , ) ( , )ˆ= ,z M z M
kk

k
H Hψ ψ∑   

involving the row-vectors of chain-wave operators, † =kψ  

{ }† † † †
1, 1, , ,, , , ,k k M k M k= α β α β  (and the respective column-

vectors kψ ), and the 2 2M M×  matrix:  

 ( , )

0 0 0 0
0 1 0 0

0 1 0 0
ˆ = 0 0 0 1 ,

0 0 1 0
0 0 0 0

k

k

k
z M

k

k

k

H

γ 
 γ 
 γ
 

γ 
 
 

γ 
 γ 









     





 (6) 

that is tridiagonal with alternating kγ  and unit elements 
along the side diagonals and zeros on the main diagonal. 

Let us consider the secular determinant, =MZ  
( , )ˆdet ( )z MH= ε − , of the tridiagonal 2 2M M×  matrix:  

 

0 0 0
1 0 0

0 1 0
= 0 0 1 ,

0 0 1
0 0 0

k

k

k

M k

k

k

Z

ε −γ
−γ ε −

− ε −γ
−γ ε −

− ε γ
γ ε









     





 (7) 

and then the sequence of such MZ  for = 1, 2,M . 
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Evidently, 2 2
1 = kZ ε − γ , and yet formally 0 = 1Z . The 

general form of any term in this sequence can be found 
from recurrence relations between a given MZ  and some 
lower order determinants. 

Thus, MZ  given by Eq. (7) is expanded through its two 
2nd order minors. The first of them, (1,2;1,2)

MZ  (with excluded 
the rows 1, 2 and the columns 1, 2 from MZ ), equals just 

1MZ −  and has the cofactor 1Z  and the second, (1,2;1,3)
MZ  

(excluded the rows 1, 2 and the columns 1, 3), has the 
cofactor ε resulting in:  

 (1,2;1,3)
1 1=M M MZ Z Z Z− + ε  (8) 

(while the (1,2;2,3)
MZ  minor has zero cofactor and does not 

contribute). 
We notice that Eq. (8) already gives the recurrence 

from MZ  down to 1MZ − , while the resting 2nd order minor 
(1,2;1,3)
MZ  is expressed as:  

 (1,2;1,3) (1;1)
1= ,M MZ Z −−  (9) 

that is through the 1st order minor of 1MZ −  (excluding its 
row 1 and column 1) but entering here with the cofactor 1− . 
And this latter is again expanded in its two 1st order mi-
nors to provide the next recurrence already to 2MZ − :  

 (1;1) (1;1)
21 2= .MM MZ Z Z−− −ε −  (10) 

Iterating such expansion for (1;1)
2MZ −  and so on, we come 

finally to the complete recurrence relation:  

 
1

2
1 1 1

=1
= ( 1) .

M
j

M M M j
j

Z Z Z Z
−

− − −+ ε −∑  (11) 

Notably, Eq. (11) permits its explicit general solution:  

 
22

1
=0 =1

= ( 1)

M j
M

M M j k
M

j k
Z Z

− 
 −  

− −+ − ×∑ ∑   

 2
1

1
,

1
j kM j k j k

Z
k k
− − − +  

× ε  −  
 (12) 

where [ ]  is the integer part and = m! = [n!(m..n)!]
m
n

 
 
 

 

the binomial coefficient. 

2.2. Armchair case 

A similar approach to the armchair case is done with 
the Hamiltonian:  

 †( , ) ( , )ˆ= ,a M a M
kk

k
H Hψ ψ∑  (13) 

where kψ  are the same vectors as before, but now ( , )ˆ a MH  is 
the 2 2M M×  matrix which is tridiagonal in 2 2×  blocs. The 
corresponding secular determinant ( , )ˆ= det ( )a M

MA Hε −  
reads:  

 

ˆ ˆ 0 0 0
ˆ ˆ ˆ 0 0

ˆ ˆ ˆ0 0
ˆ ˆ ˆ= 0 0 ,

ˆ ˆ ˆ0 0
ˆ ˆ0 0 0

k k

k k k

k k k

M k k k

k k k

k k

A

ε η
η ε η

η ε η
η ε η

η ε η
η ε









     





 (14) 

where the 2×2 blocks:  

 2

2

0
ˆ ˆ= , = ,

0
k k

k k
k k− −

−η ε −η   
η ε   −η −η ε   

  

involve the phase factors /2 3= eik
kη . 

The recurrence relation for MA  is built up from six 2nd 

order minors upon its first two rows: (1,2;1,2)
MA , (1,2;3,4)

MA , 
(1,2;1,3)
MA , (1,2;2,4)

MA , (1,2;2,3)
MA , and (1,2;1,4)

MA . The straightfor-

ward contributions from (1,2;1,2)
MA  and (1,2;3,4)

MA  are, respec-

tively, 1 1MA A −  and 2MA −  (here we define 2
1 = 1A ε −  and 

set 0 = 1A ). Next, the contribution from (1,2;1,3)
MA  contains, 

besides 2MA −  and its minor (1;1)
1MA −  as in Eq. (9), yet its an-

other minor (1;2)
1MA −  (excluded 1st column and 2nd row from 

1MA − ). Equation (10) still applies for expansion of (1;1)
1MA − , 

but this for (1;2)
1MA −  appears different:  

 (1;2) (2;1)
2 31 2= ,k MM MA A A−− −−η −  (15) 

where (2;1)
2MA −  is the complex conjugate to (1;2)

2MA − . Continuing 
this by analogy for:  

 (2;1) (1;2)
2 42 3= ,k MM MA A A− −− −−η −  (16) 

we can close the recurrence for (1;2)
1MA − :  

 (1;2) (1;2)
2 3 2 41 3= .k M k MM MA A A A− − −− −−η + η +  (17) 

Then the contribution from (1,2;2,4)
MA  is treated in a simi-

lar way and this leads to the full recurrence relation for MA  
as follows:  

 ( )1 1 1 2= 2 2M M k MA A A A A− −− + + ζ −   

 ( )

3
3 2

1 3 3 2
=0 =0

2 1 ( 1) 2

M
M

j
M j M j

j j
A A A

− 
 −  

− − − −− + − − −∑ ∑   

 

2
2

4 2
=0

M

k M j
j

A

 −  

− −−ζ ∑  (18) 

(where 3
2= 2cosk kζ ). Though this is much more in-

volved than Eq. (11) and its general solution like that of 
Eq. (12) is not so straightforward, one can obtain from 
Eq. (18) a series of MA  for the subsequent M  values, be-
ginning from 0A  and 1A . Actually, they follow as:  
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 4 2
2 = 4 (2 ),kA ε − ε + − ζ   

 6 4 2
3 = 7 (11 2 ) (5 2 ),k kA ε − ε + ε − ζ − − ζ   

 8 6 4 2 2
4 = 10 (29 3 ) (30 10 ) (3 ) ,k k kA ε − ε + ε − ζ − ε − ζ + − ζ   

 10 8 6 4 2
5 = 13 4 (9 ) 8 (10 3 ) 4 (19 5 )k k kA ε − ε + ε − ζ − ε − ζ + ε − ζ −   

 (10 3 )(2 ),k k− − ζ − ζ  (19) 

However, this problem is more suitably tackled with the 
WSNE approach [15, 17]. It gives the system of 2M  eigen-
states at given longitudinal momentum k  as pairs of stand-
ing waves in consecutive values of transversal momentum:  

 = , = 1, , .
1j

jq j M
M
π
+

  (20) 

These states are just the combinations (symmetric and 
antisymmetric in a and b  sites) of 1D projected graphene 
states and their related eigenenergies will be analyzed below. 

3. Quasiparticle spectra of nanoribbons 

3.1. Zigzag case 

Now we are in position to describe the quasiparticle 
spectra for each nanoribbon type using the related secular 
equations, = 0MZ  or = 0MA . Generally, there are M  
roots for 2ε  (at a given k ), giving 2M  bands symmetric 
with respect to zero energy: M  conduction bands, , > 0j kε , 

= 1, ,j M  and M  valence bands, , ,= < 0j k j k−ε −ε . 
Limiting ourselves to the positive bands, we notice that 

their spectra possess a mirror symmetry with respect to 
=k π, so the following consideration can be safely limited 

to the BZ half, 0 k≤ ≤ π. Then, a qualitative distinction of 
the two types of spectra will be seen below in that the 
ZGNR bands do not intersect within this range (except for 
their node at its limit, =k π), but such intersections occur 
in the AGNR case. Therefore, the ZGNR bands can be 
labeled in the ascending order of energy:  

 1, 2, ,0 < < < < ,k k M kε ε ε   

while these in AGNR are more naturally labeled in the 
ascending order of transversal momentum as in Eq. (20). 

The most important physical feature of the considered 
spectra is the behavior of the lowest energy mode, closest to 
the Fermi level (understood unbiased, zero, in what follows). 
And such modes are also qualitatively different for the 
ZGNR and AGNR cases. 

Thus, from the general ZGNR solution, Eq. (12), it fol-
lows that the lowest mode reaches zero at =k π, where 

= 0πγ  and correspondingly the secular determinant is fac-
tored here as:  

 ( ) 12 2= 1 ,
M

MZ
−

ε ε −  (21) 

resulting in 1, = 0πε . Then the dispersion of the lowest 
mode in the vicinity of =k π is found from the expansion 
of Eq. (12) up to the 1st order in 2ε :  

 ( )2 2 2 2( 1) 1 ,M M M
M k kZ M − ≈ − γ − ε + γ   (22) 

and since k kγ ≈ π −  here, the lowest mode dispersion is 
well approximated as:  

 1, .M
k kε ≈ − π  (23) 

Such highly non-linear dispersion law for the two middle 
modes, 1,k±ε  near their joining at the Fermi level is the 
main spectral distinction of ZGNR vs the common linear 
dispersion of the plain 2D graphene near its Dirac points, 
permitting us to refer these modes as special. They assure 
the gapless (semi-metallic) type of electronic spectrum for 
any ZGNR width M  and the approximation given by 
Eq. (23) applies as far as 1k − π  , while their evolution 
farther from =k π is discussed below. 

Another root of Eq. (21) indicates that the remaining 
(non-special) modes form the above mentioned ( 1)M −  
fold node at =k π: , = 1j πε  for all 2 j M≤ ≤ . Their further 
development along BZ can be described by the general 
WSNE solution [17], using the 2D graphene dispersion law:  

 2
, = 1 cos ,j k k j kqε + γ + γ  (24) 

with jq  chosen as the ( 1 )M j+ − th root of the equation:  

 sin sin ( 1) = 0,kqM q M+ γ +  (25) 

which just presents the aforementioned coupling between 
the k  and q momenta in ZGNR. So, the formula by 
Eq. (24) cannot be used straightforwardly but requires first 
to find numerically all the roots of Eq. (25) for each k , 
while it results in the same dispersion laws as from the 
recursive solution by Eq. (12). 

Next, the recursive solution for the special 1,kε  mode 
describes continuously its transition in k  from the peculiar 
regime given by Eq. (23) to the WSNE solution by 
Eq. (24) (see Fig. 2), while the latter is only defined for 

< = arccos[ / 2( 1)]ck k M M +  and requires the use of an 
alternative set of equations for > ck k . 

In our approach, this transition occurs within the 
(ln ) /k M M∆   interval near the 1D “Dirac point” 

= 2 / 3k π  (see Fig. 2), qualitatively agreeing with the 
WSTE transition: 2 / 3ck k∆ − π .  

For each eigenmode ,j kε , the related eigenvector 
( , ) ( , ) ( , )( , )
1 2 2= { , , , }j k j k j kj k

MΦ φ φ φ  (normalized to unity) has 

its amplitude ( , )j k
lφ  on the l th position along each unit 

segment so that an odd, = 2 1l m − , relates to the a type 
sites and an even, = 2l m, to the b  type sites from the mth 
chain [see Fig. 1(a)]. It should solve the equation of motion:  

 ( )( , ) ( , )
,

ˆ = 0.z M j k
j k Hε − Φ  (26) 
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In particular, for the special mode 1,kε  with longitudinal 
momenta satisfying 1kγ   (a focus for interesting phys-
ics around the unbiased Fermi level), the odd amplitudes of 

(1, )kΦ  (a type sites) are found to decay exponentially from 
their maximum initial value, (1, )

1
kφ , inwards the nanoribbon 

as:  

 (1, ) (1, )1 1
2 1 1( 1) .k km m

km
− −

−φ ≈ − γ φ  (27) 

In contrary, the even amplitudes (b  type sites) begin 
from an exponentially small initial value (1, )

2 =kφ  
(1, )

1, 1( / ) k
k k= ε γ φ  and grow as  

 (1, ) (1, )
2 2 ,k km

km
−φ ≈ γ φ  (28) 

until reaching the maximum (1, ) (1, )
2 1=k k

Mφ φ  on the other 
edge of the nanoribbon. From the normalization condition, 

22 (1, )
=1

= 1M k
ll

 φ ∑ , we find the edge value:  

 
2

(1, )
1

1
.

2
k k− γ

φ ≈  (29) 

The resulting sharp dominance of the edge amplitudes 
of the eigenmode 1,kε  at | | 1kγ   permits us to refer in 
what follows that mode as the edge mode. 

In the limit of 1M  , the dispersion laws for the re-
maining 1M −  modes, found from either Eq. (12) or from 
Eqs. (24), (25), tend to cover the uniform 1D projections of 
2D graphene spectrum. 

3.2. Armchair case 

For the alternative of AGNR’s, already their spectra 
found from the examples in Eq. (19) differ significantly 
from the above ZGNR case. Their most general form is 
given in the WSNE approach by simple uniform 1D pro-
jections of the 2D graphene spectrum at transverse mo-
mentum values jq  by Eq. (20):  

 2
, 2 2= 1 ,j k k q qj j

ε + ζ γ + γ  (30) 

for conduction bands (and ,j k−ε  for valence bands). This 
leads to the general form of respective secular determinant:  

 ( )2 2
,

=1
= ,

M

M j k
j

A ε − ε∏  (31) 

which is readily verified to match all the particular forms 
from Eq. (19). 

Also the general form of eigenstates associated with 
these modes are the transversal standing waves [17] having 
their amplitudes:  

 
( 1) ,

( , ) ( 1) e= sin ,
1

lil j k
j k

l jl m q
M

− ϕ
−

φ
+

 (32) 

where the phases are defined by the relation  

 
3
2

, 3
2 2

sin
tan 2 = ,

cos

k

j k k
q j

ϕ
γ +

  

the parity ( 1)l−  of l th position again defines its a or b  type 

and 1
2= l

lm +    is the number of chain to which this posi-
tion belongs. 

The first notable feature of Eq. (30) is that it admits gap-
less modes if the AGNR width satisfies the condition [15]:  

 ( )1 mod 3 0.M + =  (33) 

For such a width, = 3 1M r − , the modes with = 2j r  
reach zero at the BZ edge = 0k  as:  

 2 ,
3 3= 2 sin
4 2r k

k kε ≈  (34) 

[see Figs. 3(a) and 3(d)], and those with =j r  reach zero at 
the opposite BZ edge = 2k π as:  

 ,
3(2 ) 3= 2 cos 2 .

4 2r k
k kπ−

ε ≈ π−  (35) 

The dispersion laws by Eqs. (34), (35) formally coincide 
with the standard linear dispersion near the Dirac points of 
2D graphene, and hence they can be seen as definitions of 
effective 1D Dirac points in AGNR spectra.  

Notably, the strict selection rule, Eq. (33) defines an 
important difference between AGNR and its ZGNR coun-
terpart. Also, the striking difference between the gapless 

Fig. 2. Energy dispersion of the zigzag nanoribbon modes vs 
longitudinal momentum k . The special mode 1,kε  (solid red line) 
is compared with the non-special ,j kε , 2 j M≤ ≤  (solid black 
lines), here for = 5M . The Dirac mode Dε  of 2D graphene, ob-
tained by a cut along the Γ-K line of its BZ (blue dashed line), 
crosses the special mode near the transition point ck  [discussed 
after Eq. (25)]. In the limit of M →∞, the special mode approaches 

Dε  along < 2 / 3k π  and approaches zero along > 2 / 3k π . The 
negative, energy mirrored valence band modes are not shown. 
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spectra represented by Eqs. (23) and (34), (35) underlines 
the high sensitivity of the GNR quasiparticle spectra to their 
edge orientations. 

For all the M  values that do not satisfy Eq. (33), the 
AGNR spectra display finite energy gaps. 

Another peculiar feature of the spectra by Eq. (30) is 
the possibility for fully dispersionless modes at any odd 
AGNR width, = 2 1M r − , realized then for =j r  as 

, 1p kε ≡  [see Figs. 3(b) and 3(d)]. This occurs if a q projec-
tion exactly fits through two neighbor M points of 2D 
graphene BZ and, since those relate to saddle points of 

the graphene energy surface, such modes can be also re-
ferred to saddle modes. 

Despite the AGNR saddle mode flatness looks similar to 
that of the ZGNR edge mode by Eq. (23), there is a radical 
difference in their amplitude profiles. For the AGNR saddle 
mode ( , )p kΦ , it is essentially defined only by the parities of 
the position number l  and the related chain number lm :  

 
3( 1) 4( , ) ( 1) e , for odd,=

1 0, for even,

ll i k
p k ll

l

m
M m

−− φ 
+ 

 (36) 

in contrast to the exponential localization of the ZGNR 
edge mode (1, )kΦ  by Eqs. (27), (28). 

4. Green functions 

4.1. Zigzag nanoribbon 

Our main target is a study of disorder-induced effects 
on the nanoribbon lowest energy bands, we do that by em-
ploying the common GF approach applied separately to the 
ZGNR and AGNR cases. To begin with, we use the result for 
the ZGNR by Eq. (12), from which one can obtain the most 
relevant diagonal elements of the underlying GF matrix,  

 ( ) 1( , ) ( , )ˆ ˆ= .z M z MG H
−

ε −  (37) 

Considering the tridiagonal structure of the 2 2M M×  
matrix ( , )ˆ z MH , see Eq. (6), each j th diagonal element of 

( , )ˆ z MG  is expressed as a combination of MZ  and its 1st 
order minors, specific for even or odd j :  

 
(1;1)

( , )
, = , for = 2 ,z M m M m

j j
M

Z Z
G j m

Z
−   

 
(1;1)

( , )
, = , for = 2 1.z M m M m

j j
M

Z Z
G j m

Z
− +  (38) 

Here in the numerators, each Z  comes straightforwardly 
from Eq. (12), while the 1st order minor can be combined 
from the two subsequent Z ’s. Thus, for = 2j m, the factor 

M mZ −  comes straightforwardly while (1;1)
mZ  is expressed 

from Eqs. (8), (9) as:  

 1 1(1;1) = .m m
m

Z Z Z
Z +−

ε
 (39) 

Otherwise, for = 2 1j m + , the mZ  is straightforward and 
(1;1)
M mZ −  is expressed through M mZ −  and 1M mZ − + . 

When focusing again on the low energy range of the 
edge mode 1,kε  and since ( , )ˆ z MG  is written in the position 
j  indices, we consider the most relevant terminal element:  

 
(1;1)

( , ) 1 1
1,1 = = ,z M M M M

M M

Z Z Z ZG
Z Z

+−
ε

 (40) 

where the difference in the numerator counts two double 
sums from Eq. (12), which at the end reduce just to a single 
sum (the = 0j  term):  

Fig. 3. Energy bands in AGNR at M : 2 (a), 3 (b), 4 (c), and 5 (d), 
showing Dirac-like modes for = 2.5M  and flat saddle-point 
modes for = 3.5M . 
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[ ]

( )
( 1)/2

1 2
1 1

=1
= ( 1) .

M
lM l

M M M l
l

Z Z Z B
+

−
+ −− − −ε∑  (41) 

The latter sum explicitly follows from the formula:  

 
(2 1)

2 1 2 1
2

=0

2= ( 1 4 1) ( 1 4 1) ,
1 4

n n
l l n n
n l

l
B x x x

x

− +
+ +

−  + + + + − +
∑   

  (42) 
and then its expansion to the first order in the small param-
eter 2=x −ε , together with that by Eq. (21), leads to the 
simple result:  

 ( , )
1,1 2 2

1,
.z M

k
G ε

≈
ε − ε

 (43) 

This expression already permits us to analyze possible 
impurity effects on the underlying ZGNR edge modes. 

4.2. Armchair nanoribbon 

The construction of GF matrix for the AGNR system is yet 
simplified due to its full diagonalization by Eqs. (30)–(32). 
The corresponding GF matrix has only diagonal elements:  

 ( , )
,

,

1= ,a M
j j

j k
G

ε − ε
 (44) 

but now, unlike the previous ZGNR case, the j  indices 
already count the transversal momenta as by Eq. (20) and 
also their opposites j−  (2M  altogether). 

Besides this, for consideration of local impurity pertur-
bations, we should yet to define the eigenmode operators 

,j kA  and ,j kA− , expanded in the position indexed operators 
,m kα  and ,m kβ  [given by Eq. (4)], in order to reproduce 

these modes amplitudes by Eq. (32):  

 ( ), ,
, , ,

=1

1= sin e e ,
1

M
i ij k j k

j k j m k m k
m

A mq
M

− ϕ ϕ
− α + β

+
∑   

 ( ), ,
, , ,

=1

1= sin e e .
1

M
i ij k j k

j k j m k m k
m

A mq
M

− ϕ ϕ
− α + β

+
∑   

  (45) 

Using these operators, the GF matrix elements can be 
considered in the more general framework of two-time 
GF’s [19, 20] as:  

 { }† †( 0)
, , ,,

0

1| ( ) = e ( ), (0)it i
j k j k j kj kA A dt A t A

∞
ε−

′ ′〈 〉 ε
π ∫   

  (46) 

with the Heisenberg picture operators ( , )
( ) = e

a MiH tA t ×  
( , )

e
a MiH tA −×  under anti-commutator {.,.} and quantum-

statistical average 〈 〉 . In particular, it gives ( , )
,
a M

j jG ≡ 
†

, ,|j k j kA A ′ ′= 〈〈 〉〉. 

Then the orthogonality relation:  

 ,
=1

1 sin sin = ,
1

M

j j m m
j

mq m q
M ′′ δ

+ ∑  (47) 

permits also the inverse expansions of position operators:  

 ( ),
, ,

=1

1= sin e ,
1

M
i j k

m k j j k
j

mq A
M

ϕ −α
+
∑   

 ( ),
, ,

=1

1= sin e ,
1

M
i j k

m k j j k
j

mq A
M

− ϕ +β
+
∑  (48) 

in symmetric and antisymmetric combinations of eigenmode 
operators ( ) ( ) ( )

, , ,=j k j k j kA A A± + −
− ± . The latter expansions are just 

helpful for treating the AGNR perturbations from local 
impurity centers. 

5. Impurity perturbations 

5.1. Zigzag edge modes 

Focusing on the impurity effects in ZGNR on its most 
interesting edge modes, we begin it in the framework of 
the simplest Lifshitz perturbation model, where the pertur-
bation Hamiltonian:  

 †
L 1,1,= pp

p
H V a a′ ∑  (49) 

is restricted to the substitutional impurities at a type sites 
in the 1st chain (in mind to add the same effect from impu-
rities at b  type sites in M th chain). Here V  is the local 
atomic energy shift on carbon atom belonging to the 
sublattice a that is located at a random pth segment within 
the 1st chain and we assume the concentration of such per-
turbed sites small: 1= 1 1

p
c N − ∑ 

. 

Then the perturbed dispersion equation for the edge 
mode includes the self-energy term that can be written in 
the T matrix approximation as follows:  

 1,Re = 0.
1 ( ) k

M

cV
Vg

ε − − ε
− ε

 (50) 

In the above expression ( )Mg ε  stands for the ZGNR locator 
function:  

 
2

( , )
1,1

0

1( ) = ( )
2

z M
Mg G k dk

π

ε
π ∫  (51) 

(taking account of both conduction and valence edge 
modes). Using Eqs. (43), (51), and the approximated dis-
persion law, Eq. (23), we present it as:  

 
( )

1

2
0

1( ) ,
1

M M
dxg

u xε
ε ≈

ε −∫
 (52) 

with 1/= / Muε π ε . The latter integral is expressed analytically:  
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( )

1
2

2 12
0

1 1= 1, ; 1 ; ,
2 21

M
M

dx F u
M Mu x

ε
ε

 + 
 −

∫  (53) 

as the hypergeometric function 2 1F  [25]. Its asymptotics at 
low enough energies, 1/ 1Mε   hence 1uε  , reads:  

 2
2 1

1 1 11, ; 1 ; ,
2 2

MF u
M M uε

ε

 + ≈ 
 

  

which provides a simple approximation for the locator 
function:  

 1 1/
1( ) 1 ,

2M M
ig
M−
π ε ≈ − πε  

 (54) 

being of the order 1/ 1ε   and dominated by its real part. 
Note this behavior to be in a striking contrast with that for 
the limit of a single isolated zigzag chain (1 nanoribbon):  

 1 2 2 2
0

( ) = ,
2k

dk ig
π

ε ε
ε ≈ +

π ε − γ π∫  (55) 

being dominated by its imaginary part of the order 1 . 
When the result of Eq. (54) is used in the dispersion 

equation, Eq. (50) (supposing 1V  ), it defines the impurity 
perturbation of the edge mode, and this turns to be very 
weak, 1, 1, 1,k k kε → ε −∆ , where:  

 1 2/
1, 1, 1, .M

k k kc −∆ ≈ π ε ε  (56) 

Along with this small energy shift, there also emerges 
yet smaller inverse lifetime: 1

1, 1,/k k kc M−τ ε ∆   , both 
effects resulting in fact negligible. This analysis explains 
the microscopic mechanism for the topological protection 
of the zigzag edge states.  

From another perspective (e.g., impurity adatoms in-
stead of substitution impurities), the impurity effect on the 
edge modes can be considered within the Anderson hybrid 
model. Therein, an adatom impurity (described by its Fermi 
operator pc ) at a random point p becomes characterized by 
its energy level 0ε  and its hybridization ω with a type (or 
b type, on the opposite edge) carbons in its nearest neighbor 
vicinity. 

Two possible impurity positions with respect to the rib-
bon edge can be indicated: (a) top position [Fig. 4(a)] when 
the impurity is hybridizing with a single carbon atom from 
the edge chain, and (b) bridge position [Fig. 4(b)] when the 
impurity sets symmetrically between two neighboring a type 
host atoms. This generates the perturbation Hamiltonian:  

† ( ) †
A 0 1

,
= e ( ) h.c. ,ik p

p p p
p k

H c c c a k
N

+δ

δ

 ω′ ε + +  
 

∑ ∑  (57) 

where δ  is an impurity separation from a neighboring host 
site, measured along the edge. In the top case (a), we set 

= 0δ  in Eq. (57) and the T matrix approximation for the 
edge mode dispersion equation takes the form:  

 
2

1,2
0

= 0.
( ) k

M

c
g

ω
ε − − ε

ε − ε −ω ε
 (58) 

Within the same approximation, ( ) 1/Mg ε ≈ ε, this presents as:  

 
2

1, = 0,
( )( ) k

c

+ −

ω ε
ε − − ε

ε − ε ε − ε
 (59) 

where  

 
2 2

0 0 4
= .

2±
ε ± ε + ω

ε   

Then, considering the lowest energy range, 2 2 2
1, ,k ±ε ε ε   

this simplifies to:  
 1,(1 ) = 0,kcε + − ε   

showing the same extremely weak perturbation of the edge 
mode as in the Lifshitz model. 

Finally, for the bridge position of impurity, the case (b), 
the T matrix is built from the scattering amplitudes, 

=k kΩ ωγ , and takes the form:  

 
2

2
0

= ,
( )

k
k

M
T

g
Ω

ε − ε −ω ε

 (60) 

with the modified locator function  

 
2

2 2
1,0

( ) = .k
M

k

dk
g

π γε
ε

π ε − ε∫   

In similarity to Eq. (51), this locator is approximated as:  

 
2

2
2 1

1 1( ) 1, ; 1 ; ,
3 3 3

M
Mg F u

M M ε
π  ε ≈ + ε  

  (61) 

and from the corresponding asymptotics at 1uε  :  

 2
2 1 2/3

1 1 11, ; 1 ; ,
2 2

MF u
M M uε

ε

 + ≈ 
 

  

Fig. 4. Different positions of the Anderson impurity near the edge 
of a graphene ribbon: (a) top position and (b) bridge position. 



Yuriy G. Pogorelov, Denis Kochan, and Vadim M. Loktev 

828 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 9 

we find it as:  

 
4/3 7/(3 )

1 2/(3 )
1( ) ,

3 2

M

M Mg i
M−

 π ε
ε ≈ + 

ε  
  (62) 

that is again of the order 1/ ε  and dominated by its real 
part. Using this result in the dispersion equation, Eq. (58), 
we obtain the impurity effect as 4/3 1 4/(3 )(3 / ) M

k c +∆ ≈ π ε , 
even weaker than for the above considered Lifshitz or An-
derson-top cases. 

All the considered examples of impurity perturbations 
suggest that the topological protection from disorder is quite 
a universal property of the zigzag edge modes. 

5.2. Armchair Dirac-like modes 

Turning to the AGNR spectrum, we again focus on its 
lowest Dirac-like modes at a proper nanoribbon width, 

= 3 1M r − . For simplicity, we restrict the analysis to the 
Lifshitz model expressed in the relevant ,r kA±  operators as:  

 ( )( ) , ,
L

,

2= e e
3

iip k k r k r k
p

k k

VH
rN

ϕ −ϕ′− ′

′

′′ ×∑ ∑   

 ( )( )† †
, ,, , ,p r k p r kr k r kA s A A s A′ ′−−× − −  (63) 

where 
p
′∑  is restricted to only impurity cites p from odd 

chains and = 1ps ±  for p being of a or b  type, repectively. 
This Hamiltonian generates a perturbation of the GF matrix 

( , ) ( , )ˆˆ a M a MG G→  , the latter being defined in the T matrix 
approximation as:  

 ( ) ( )
1 1( , ) ( , )ˆ ˆ ˆ= .a M a MG G cT
− −

−   

It involves the 2 2× -fold T matrix in the basis of Dirac-like 
states, , ,{ , }r k r k−ϕ ϕ  (at each given k ): 1

ˆˆ ˆ= (1 )pT s T− σ , with 
the Pauli matrix 1σ̂  and the scalar 1= / [1 ]T cV Vg−  where 
the locator is just that by Eq. (55), 1 / 2g i≈ . Then the modi-
fied dispersion laws follow from the standard GF secular 
equation [26], ( , ) 1ˆRe [det ( ) ] = 0a MG −

 , as:  

 2 2
, ,= ( Re ) Re ,r k r k c T c T±ε ± ε + +  (64) 

but their validity should be checked with the Ioffe–Regel–
Mott (IRM) criterion [27, 28]:  

 , Im .r kk c T
k ±
∂
ε

∂
   (65) 

The condition that the IRM criterion fails gives an estimate 
for the width of the mobility gap around zero energy:  
 ( ),m cf V∆   (66) 
where the function  

 ( )2
2

2( ) = 2 1 1 (4 / )
4

Vf V V
V

+ +
+

  

grows with the perturbation strength as 3/2( ) / 2f V V≈  at 
1V   up to ( ) 2f V ≈  at 1V  . 

The result by Eq. (66) defines the most important impurity 
effect on the AGNR Dirac-like modes — all the modes with 
eigenenergies within < mε ∆  are localized on impurity 
centers while the modes outside this range stay conductive, 
which should produce metal/insulator transitions if the 
Fermi level crosses the corresponding mobility edges, 

= mε ∆  (either from conduction or valence side). 
The same considerations can be also developed for other 

impurity models but they will not change the qualitative 
result of the above Lifshitz model. 

The above analysis underlines again the differences be-
tween the two GNR types, here in the AGNR high sensitivity 
to the impurity disorder ( vs the ZGNR topological protec-
tion), then in its specific sensitivity to the atomically de-
fined width of a nanoribbon and, at last, to the parity of the 
numbers of atomic chains where impurities reside. 

6. Discussion 

The obtained results demonstrate how the difference of 
electronic states in graphene nanoribbons defined by their 
edge orientations is reflected in their stability against im-
purity disorder. Physically, this opens the possibility for 
specific electronic phase transitions and for their controls, 
e.g., by combining the disorder and external bias effects. 
The present study was limited to the simplest framework of 
tight-binding model for pure nanoribbons and the simplest 
models for impurity perturbations on them. In principle, it 
can be extended to account for many other physical factors, 
as electron-electron Hubbard correlations, different types of 
spin-orbit coupling, spin-ordering effects, external electric 
and magnetic biases, finite temperatures, and so on. Also, 
the effects from passivating hydrogens, known to be com-
monly present at the edges of experimental nanoribbon sam-
ples, may influence the dynamics of host nanoribbon carriers. 
This factor can be naturally included into the above developed 
recursive algorithms and resulting Green functions, to be 
possibly an object of future study. At the very least, the ex-
perimental testing of intended effects, such as the mobility 
of carriers and their collapse in certain directions, should be 
of considerable interest. 
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Електронні спектри, топологічні стани та домішкові 
ефекти в нанострічках графену 

Yuriy G. Pogorelov, Denis Kochan, Vadim M. Loktev 

Розглянуто обмежені стрічки графену з двома основними 
орієнтаціями їхніх бокових країв, «зигзаг» та «крісло», для 
детального вивчення впливу домішок на їхні крайові стани. 
Альтернативою до відомого опису їхніх спектрів у термінах 
стійних поперечних хвиль запропоновано рекурентні спів-
відношення спектрів від дискретних чисел атомарних лан-
цюжків у стрічці, що уможливлює спрощення опису функціями 
Гріна ефектів розупорядкування в цих системах. Здійснений 
аналіз показує мікроскопічні механізми збурення різними 
типами домішок низькоенергетичних станів і висвітлює, як 
стабільність топологічних станів до розупорядкування у 
«зигзаг» системах пов’язується із дискретними амплітудами 
цих станів упоперек стрічки. Навпаки, можливість моттовської 
локалізації під впливом домішкового збурення знайдено для 
нанострічок типу «крісло», але тільки для особливих значень 
їхньої ширини. 

Ключові слова: графенові нанострічки, топологічні стани, 
домішковий розлад, модель Ліфшиця, мо-
дель Андерсона.

 

https://doi.org/10.1039/b201196d
https://doi.org/10.1016/S0921-4526(02)00869-4
https://doi.org/10.1002/zaac.19623160303
https://doi.org/10.1103/PhysRevB.72.201401
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1039/C4TA01183J
https://doi.org/10.1088/bk978-1-627-05273-3ch1
https://doi.org/10.1103/PhysRevB.73.195408
https://doi.org/10.1103/PhysRevB.89.121401
https://doi.org/10.1103/PhysRevLett.111.103901
https://doi.org/10.1016/j.synthmet.2015.06.026
https://doi.org/10.1364/OE.25.022587
https://doi.org/10.1103/PhysRevLett.120.156402
https://doi.org/10.1143/JPSJ.65.1920
https://doi.org/10.1143/JPSJ.65.1920
https://doi.org/10.1088/1367-2630/11/9/095016
https://doi.org/10.1088/1468-6996/11/5/054504
https://doi.org/10.1016/j.carbon.2015.04.065
https://doi.org/10.1070/PU1960v003n03ABEH003275
https://doi.org/10.1007/978-3-662-11900-6
https://doi.org/10.1103/PhysRevB.97.075417
https://doi.org/10.1103/PhysRevB.102.155414
https://doi.org/10.1070/PU1979v022n11ABEH005648
https://doi.org/10.1070/PU1985v028n03ABEH003860

	1. Introduction
	2. Hamiltonian and secular determinants
	2.1. Zigzag case
	2.2. Armchair case

	3. Quasiparticle spectra of nanoribbons
	3.1. Zigzag case
	3.2. Armchair case

	4. Green functions
	4.1. Zigzag nanoribbon
	4.2. Armchair nanoribbon

	5. Impurity perturbations
	5.1. Zigzag edge modes
	5.2. Armchair Dirac-like modes

	6. Discussion
	Acknowledgments

