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A brief review of alternative phenomenological approaches to the spin dynamics of antiferromagnets are dis-
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1. Introduction 

Research on antiferromagnets began almost a century 
ago, in the 1930s, shortly after the creation of consistent 
quantum-mechanical theory of magnetic order due to the 
exchange interaction of spins [1, 2]. All these times, stud-
ies of antiferromagnetism constitute a significant part of 
the fundamental physics of magnetism. A detailed descrip-
tion of the physics of antiferromagnets can be found in the 
monograph by E. A. Turov with coauthors [3]. However, 
in the past century, there were practically no examples of 
the technical application of antiferromagnets. This situa-
tion is in a strict contrast with the tremendous successes 
achieved in the use of ferromagnets (or, equivalently, 
common ferrimagnets like Yttrium Iron Garnet, which are 
far from the compensation point) over the same period in 
microwave technology, magnetic sensors, and information 
storage and processing systems. Note especially spin-
tronics, in which the main role is played not by the electron 
charge but by the electron spin, and not by the electric cur-
rent, but by the spin current. The concept of spintronics ap-
pears in 90th mostly for ferromagnets, see for review [4–6]. 
The effects of spin current allow for the creation of various 
magneto-electronic devices with submicron sizes, e.g., in-
formation storages and solid-state nanogenerator, so-called 
spin-torque oscillator working in microwave region (up to 
tens of gigahertz). 

Investigations of spin dynamics of antiferromagnets be-
gan in the 1950s. First, the analysis was carried out on the 
basis of various quantum-mechanical approaches [7–10]. 
Here, however, a problem arising from the fact that the 
exact quantum-mechanical ground state is unknown for the 
antiferromagnets. A little bit later, a phenomenological 
approach, based on the application of the system of famous 
Landau–Lifshitz equations for the magnetizations of each 
of the sublattices, Mα, was proposed [11, 12]. All theoreti-
cal results were in good agreement with contemporary ex-
perimental data of linear spin resonance [13]. The main 
characteristic features of antiferromagnetic spin dynamics, 
in particular, much higher values of frequencies, were 
known to the 60th years of the past century. The results of 
these investigations of spin dynamics for ferromagnets and 
antiferromagnets were summarized in famous review arti-
cles of Akhiezer, Bar’yakhtar, and Kaganov, published in 
1960 [14, 15]. 

For a long time, the higher frequencies of antiferromag-
netic resonance were not considered as some advantage for 
practice, mostly as a great challenge for experimentalists, 
and only a few laboratories were able to work with antifer-
romagnetic resonance measurements, see [13, 16, 17]. The 
situation has changed significantly in the current century. 
New promising areas of applied physics of magnetism have 
emerged, which are based solely on the specific features 
of antiferromagnets; first of all, on their dynamic properties. 
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The fundamental point is that not only linear resonance but 
all types of the spin dynamics for antiferromagnets are much 
faster than for ferromagnets with the same values of micro-
scopic parameters (spin values, exchange integrals, constants 
of spin-orbit interaction). The characteristic enhancement 
parameter is determined by the quantity ex / 1aH H 

, 
where exH  is the antiferromagnetic exchange field and aH  
is the anisotropy field. The quantity aH  for common anti-
ferromagnets is determined by relativistic interactions and, 
as well as for ferromagnets, very rarely exceed 10 kOe [3]. 
Contrary, the uniform exchange field is unique for anti-
ferromagnets; its value is determined by the exchange in-
tegral between the spins of different sublattices. Being ex-
change in its nature, the value of exH  is huge, up to tens of 
megaOersteds [3]. Due to this circumstance, the frequencies 
of magnetic resonance in antiferromagnets lie in the range 
from hundreds of gigahertz to several terahertz, i.e., in the 
terahertz range. In recent years, the interest to this range 
increasing sharply, see [18–20] and the recent collective 
review [21], but there is a clear deficit of compact devices 
(generators, detectors, amplifiers, ect.) working in this range. 
It is a common belief that antiferromagnets are the best 
candidates for usage in terahertz devices, playing a role 
similar to that of famous Yttrium Iron Garnet for micro-
wave (gigahertz) devices [22, 23]. 

The employing of antiferromagnets in the terahertz tech-
nique is bases on various physical effects, for example, 
magneto-optical and galvanomagnetic effects. The usage 
of femtosecond lasers (with pulses shorter than 100 fs) 
makes it possible to realize non-thermal excitation of spin 
oscillations in transparent antiferromagnet [24–26]. The 
observed frequencies were as high as a few terahertz [27, 28], 
up to 9 terahertz [28]. These effects can be used to create 
generators of terahertz electromagnetic waves with the op-
tical pump and control [29–31]. Effects of ultrafast (in pi-
cosecond time scale) switching the directions of spins of 
antiferromagnets under the action of light pulses [32, 33] 
or spin current pulses [34, 35], were also observed. This 
opportunity opens up an avenue for ultrafast recording and 
processing of information using arrays of antiferromagne-
tic particles [35–37]. 

Great expectations are associated with antiferromagnetic 
spintronics, a branch of magnetic electronics based on the 
usage of spin current in antiferromagnet, see Refs. 38–43. 
For this area, it is fundamentally important that efficiency 
of the action of spin current on the spin system of antiferro-
magnets, as well as efficiency of the conversion of the en-
ergy of antiferromagnetic spin oscillations into a useful ac 
signal, are comparable for ferromagnets and antiferromag-
nets [44]. To realize that for standard dielectric antiferro-
magnets, familiar spin Hall effect and inverse spin Hall 
effect can be used [39]. Resonant spin pumping at frequ-
encies up to hundreds of gigahertz was already realized for 
antiferromagnet/heavy metal bilayer, with antiferromagnet 
as an active element with resonant frequencies in the sub-

terahertz region [45, 46]. Several schemes of spin-torque 
antiferromagnetic generators, which can efficiently operate 
in the subterahertz and terahertz ranges, have been pro-
posed [41, 42, 47–51]. For antiferromagnets, the effect of 
amplification of the spin current (to the best of our know-
ledge, it is not known for ferromagnets) was recently pre-
dicted [52] and observed experimentally [53]. 

Concept of antiferromagnetic spin dynamics can be ap-
plied to some interesting magnetic materials, having pro-
perties of antiferromagnets. Long ago it was found that some 
magnets (for example, FeRh, Mn2GaC, and Mn2–xCrxSb 
with 0.025 < < 0.2x ) can demonstrate phase transition bet-
ween ferromagnetic and antiferromagnetic states at some 
temperature [54]. Antiferromagnetic-to-ferromagnetic phase 
transition for iron-rhodium FeRh under the action of fem-
tosecond laser pulses was realized on subpicosecond time 
scale at the very beginning of the femtomagnetic research 
[55, 56]. Recently strong and fast spin-pumping effects 
were found for this material that making it very promising 
candidate for perspective optical spintronics [57, 58]. FeRh 
in its antiferromagnetic phase is a typical two-sublattice 
antiferromagnet with the structure of CsCl, with large mag-
netic moments (3.3 Bohr magnetons) of the iron spins and 
zero magnetic moment of rhodium [54]. Thus two-sublat-
tice picture, typical for standard antiferromagnets, is ade-
quate for this material, but with significantly (till the values 
of anisotropy field) reduced exchange field between sub-
lattices in the vicinity of this transition. 

These modern successes, experimental and technological, 
are based on the theoretical description of spin dynamics 
of antiferromagnets. The problems of interest are mostly 
nonlinear, and phenomenological approach has no alterna-
tive for their analysis. As it is frequently happened, the ap-
proach developed long ago becomes in a very high demand 
nowadays. When writing this article, the authors took 
the opportunity of briefly reviewing the history of the de-
velopment of the theory of antiferromagnetic spin dynamics, 
which was already understood in the 50s of the last century, 
with the invaluable contribution made by M. I. Kaganov. 

2. Phenomenological approach to the spin dynamics 
of an antiferromagnet: the development of a concept 

The antiferromagnetic magnetic order is commonly de-
scribed on the basis of the idea of magnetic sublattices, 
which have nonzero magnetizations, but the antiferromag-
net as a whole without magnetic field is characterized zero 
total magnetization, at least in the purely exchange appro-
ximation. In the simplest case, there are two such sublattices; 
they corresponds to equivalent crystal positions and contain 
identical magnetic ions. The sublattice magnetizations 1M  and 

2M  are both equal in length, 1 2 0| |= | |= MM M , but they are 
oriented antiparallel, with the zero total magnetization 

1 2 = = 0+M M M . Antiferromagnetic order is determined 
by the so-called antiferromagnetic vector 1 2= −L M M . 
The condition = 0M  can be fulfilled in a wide range of 
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external conditions (temperature, pressure, etc.) if and only 
if the sublattices are equivalent. This means that at least 
one element of the antiferromagnetic crystal group should 
produce permutation for atoms belonging to different sub-
lattices (following Turov, call it as an odd element). The 
importance of this condition was understood already at the 
end of the 50s; it is the basis of common modern definition 
of antiferromagnets [3]. In particular, this condition allows 
one to distinguish between antiferromagnets and ferrimag-
nets at the compensation point, see, for example, the recent 
review [59]. 

As we already mentioned, first results in the field of an-
tiferromagnetic spin dynamics were obtained on the ground 
of various quantum-mechanical approaches [7–10]. Here, 
however, a problem, connected to the fact that the exact 
quantum-mechanical ground state is unknown for antiferro-
magnets, arose. As an alternative, a phenomenological ap-
proach, based on the application of the system of famous 
Landau–Lifshitz equations for the magnetizations of each 
of the sublattices, αM , was proposed [11, 12]. For two-
sublattice antiferromagnets =α  1, 2 these equations reads, 
see, e.g., [14–16] 

 (eff) (eff)= [ ] , = ,W
t
α

α α α
α

∂ δ
−γ × + −

∂ δ
M

M H R H
M

 (1) 

where = /Bgγ µ , g  is the Lande factor (g -factor), Bµ  is 
the Bohr magneton modulus, γ ≈  2.8 MHz/Oe at = 2g , 
R describes the energy dissipation. The effective magnetic 
fields (eff)

αH  are defined through the variational derivatives 
of the energy (more precisely, of the nonequilibrium ther-
modynamic potential) of the two-sublattice antiferromag-
net, 1 2= [ , ]W W M M , written as a functional of the sub-

lattice magnetization densities 1,2 1,2= ( , )tM M r . This func-

tional has the standard form =W wd∫ r, with the density w  

depending on both magnetizations 1,2M  and their gradients. 
Additionally to standard terms with nonuniform exchange, 
magnetic anisotropy, ect., common to that for ferromagnets, 
this energy contains uniform exchange interaction of sub-
lattices, proportional to scalar product of their magnetiza-
tions, ex ex 0 1 2= ( / 2 )( )w H M ⋅M M . Here the exchange field 
of antiferromagnet, exH , chosen such that in exchange ap-
proximation the antiferromagnetic order is destroyed (sub-
lattices become parallel and 1 2= = 0)−L M M  at exH H≥ , 
see more about this parameter in the monograph [3] The total 
energy of antiferromagnet coincides with 1 2= [ , ]W W M M . 
For = 0R , the energy is an integral of motion for antiferro-
magnetic dynamics. 

It is convenient to rewrites the equation (1) through 
normalized vectors M  and L , instead of the magnetization 
vectors of the sublattices 1,2M :  

 0 0= / 2 , = / 2 .l L M m M M  (2) 

These vectors are constrained as  

 2 2 = 1, = 0.+l m ml  (3) 

The equations of motion for the vectors l and m can be 
easily obtained from the set of Landau–Lifshitz equations (1). 
These equations (here and below the relaxation processes 
are be neglected) take the form 

= [ ] [ ],m lt
∂

γ × + γ ×
∂
m m H l H    = [ ] [ ] ,m lt

∂
γ × + γ ×

∂
l h l H m  

  (4) 

where we introduce effective fields,  

 
0 0

1= , = ,
2 2m l

W W
M M

δ δ
− −

δ δ
lH H

m l
 (5) 

and = [ , ]W W m l  is the energy functional of antiferromag-
net rewritten through the new variables, m  and l . In par-
ticular, the density of the uniform exchange interaction, 
with accounting for constraint (3), takes the form 

2
ex ex 0=w H M m . It is clear that two sets of equation, Eq. (1) 

with = 0R  and Eqs. (4) are completely equivalent, and the 
choice of this or that depends on the convenience only. 

The great advantage of the above phenomenological 
approach is the possibility of the description of nonlinear 
dynamics. Nonlinear dynamical states, antiferromagnetic so-
litons, were considered by many authors on the equivalent 
footing of Eq. (1) or Eqs. (4) [62–66]. It is interesting to 
note that the authors of Ref. 11 saw the main motivation 
for using the phenomenological approach in the possibility, 
at least in words, to overcome the problem of the ground 
state of the antiferromagnets. Indeed, the knowledge of the 
quantum ground state is not necessary within this approach. 
This approach is based only on the assumption of the exist-
ence of sublattices, not necessary with saturated magnetiza-
tions, which could be considered an experimental fact. The 
authors of the phenomenological approach themselves un-
derstood that their results are not rigorous proofs, but only 
“arguments in favor” of sublattice picture of antiferromag-
nets. M. I. Kaganov recalls the discussion of the work Ref. 11 
with L. D. Landau “Getting acquainted with our work, 
Landau “threatened” that he would show us how to construct 
a theory of weakly excited states of antiferro-magnets” [67]. 
M. I. Kaganov also discussed the article of Andreev and 
Marchenko [68]; he had estimated this work as a step for-
ward to the Landau’s idea about construction of fully-phe-
nomenological theory of AFM [67]. 

Indeed, the work Ref. 68 is based on the natural idea, 
general for various area of macroscopic theory of electro-
dynamics of continuous media: if the microscopic charge 
density, averaged over some media, equals to zero, this 
media must be described in terms of moments of this den-
sity; dipole, quadruple, etc. As applied to magnets, the role 
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of scalar quantity, charge density is played by the vector 
quantity, microscopic spin density. Following [68], within 
macroscopic approach spin state of all antiferromagnets 
can be described by a few unit vectors (maximum three), 
which are orthogonal to each other. For standard antiferro-
magnets with two sublattices, the corresponding “dipolar 
moment of the magnetization vector” is one normalized 
(unit) vector l , 2 = 1l , with transformation properties com-
pletely analogues of that for the antiferromagnetic vector 
L  introduced above. (Despite of some differences in the 
definition of the unit vector l  here and normalized antifer-
romagnetic vector L  above, we are using the same notations 
for both them, for the reason discussed below.) It turns out 
that a closed effective equation for the vector l , which de-
scribes the dynamics of an antiferromagnet, can be obtained 
by consideration of symmetry [68]; now this equation is 
commonly called as the sigma model equation. The sigma 
model equation for antiferromagnet can be written by the va-
riation of the Lagrangian = Ld∫ r  as the following  

 [ ]( / ) = 0,× δ δl l   

where density L  has the form [68]:  

 
2

2= ( , ),
2

L w
t t

⊥ ⊥χ χ∂  ∂    + ⋅ × − ∇    ∂ γ ∂γ     

l lH l l l  (6) 

0 ex= 2 /M H⊥χ  is the transversal susceptibility of antifer-
romagnet, exH  is the aforementioned exchange field of 
antiferromagnet, H  is the magnetic field, and the density 
of static energy ( , )w ∇l l  can be taken of the form  

 
2

2( , ) = ( ) ( ) ,
2 2a

i

Aw w
x

⊥  χ∂
∇ + + ⋅ ∂ 

ll l l H l  (7) 

where the first term is the energy of non-uniform exchange 
(written here in the simplest, isotropic over space coordi-
nates form), second term describes the magnetic anisot-
ropy and the last term determines specific contribution of 
the magnetic field, which can be treated as a renormaliza-
tion of the anisotropy energy. The second term in the 
Lagrangian (6) determines the gyroscopic dynamics, which 
for antiferromagnets occurs because of the magnetic field 
only. Note the absence of uniform exchange interaction in 
this energy at zero magnetic field, instead exchange field 
enters inertial term with 2( / )t∂ ∂l . 

Within the sigma model approach, the only vector l  
plays the role of dynamical variable; the magnetization M  
is a “slave” variable and it is fully determined by l  and its 
time derivative [68],  

 1= ( ) .
t⊥

 ∂ χ − ⋅ + ×  γ ∂  

lM H l H l l  (8) 

Generally speaking, here and above in the Lagrangian (6), 
the effective magnetic field  

 eff 0= D→ +H H H H   

should be used. Here 0H  is the external magnetic field and 
DH  is so-called Dzyaloshinskii field, intrinsic symmetry-

determined vector characteristics of AFM, responsible for 
canting of sublattices (weak ferromagnetism), see [3, 68]. 
It is interesting to note that Dzyaloshinskii field in the simp-
lest antisymmetric form, ( )D ∝ ×H d l , where the vector d 
is determined by the symmetry of the magnet [3], contribute 
to the weak magnetic moment, see (8) but not contribute to 
the gyroscopic term in Eq. (6) [68]. Note that some more 
general forms of Dzyaloshinskii field leads to specific gyro-
scopic dynamics, see for more details the recent review [69], 
but we will not discuss their effects here. 

The Lagrangian of the sigma model (6) rewritten as 
= T G U+ −  has a clear mechanical analogy: the first 

two terms in (6) are “kinetic energy” T  and gyroscopic 
term G  and the last term has the sense of “potential energy”. 
The energy of the antiferromagnet W  within the sigma mo-
del approach contains two terms = [ ] =W W T U+l ,  

 
2

2
l= , = ( , ) .

2
T d U w d

t
⊥χ ∂  ∇ ∂γ  ∫ ∫r l l r  (9) 

Two aforementioned phenomenological approaches, the 
first one, based on the set of Landau–Lifshitz equations, 
and the second one, based on the sigma model, look quite 
different. Even orders of time derivatives are different for 
these equations. Dynamical variables are also formally 
different: two constrained vectors m and l , 2 1≤l  for (4) 
and unit vector l  for sigma model (7). But in fact these two 
approaches are quite common, and it is possible to find an 
important link between them. For this reason we are keep-
ing the same designation for both vectors, it will not lead 
to confusing below. Using the condition that the exchange 
interaction is much stronger that all other interactions in 
the system, equations for sublattice magnetizations 1,M  

2M  can be reduced to the sigma model equation [69, 70]. 
Let us explain this briefly, more detailed description can be 
found in original articles [70, 71], and also in the books 
and reviews [69, 72, 73]. 

First note that all terms in the equation for /d dtl  in the 
system (4) are bilinear on the components of the vectors l  
and m (this general feature is dictated by the different 
transformation properties of these vectors and, correspond-
ingly, effective fields mH  and lH  under the action of an 
odd element of the crystal symmetry group). In the pres-
ence of the exchange term ex ex= HH m, all other small 
relativistic terms with the common structure can be ne-
glected in this equation. If we omit these small terms, the 
equation simplifies to the form  

 ex eff(1/ ) / = ( ) ( ),t Hγ ∂ ∂ × + ×l l m H l   
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that directly leads to the equation for magnetization (8), 
characteristic for the sigma model. Then we can use (8), ex-
clude magnetization from the equation for /d dtm  and ob-
tain the equation for the vector l  alone, which coincides 
with the sigma model equation. If the dynamics is slow 
enough ( ex| / |d dt Hγl  ) and the magnetic field is small 
comparing with the exchange field, the value of the nor-
malized magnetization m is small, 2 2m l , and the vector l 
can be treated as unit vector. Note that the typical values of 
the resonance frequency for antiferromagnets, AFMω  

ex exaH H Hγ γ   and typical characteristic fields, like 
spin-flop field ex exSF aH H H H  , satisfy the above in-
equalities. Thus the sigma model equation is equivalent to 
the set of Landau–Lifshitz equations of the form of (1) or (4); 
at least, in the first approximation over small parameter 

ex/aH H . 
It is instructive to compare these two approaches to an-

tiferromagnetic spin dynamics. Sigma model equation is 
quite convenient, especially having in mind the formal Lo-
rentz-invariance of this equation in many interesting sys-
tems and consequent simplification of the description of 
common moving magnetic solitons [69]. For standard anti-
ferromagnets, the value of the parameter ex/aH H  is ac-
tually small, but some important exception can be men-
tioned also. Note the description of ultrafast phase transition 
between ferromagnetic and antiferromagnetic states in iron-
rhodium FeRh [55, 56], which is of large interest for modern 
spintronic applications [57, 58]. This transition is caused 
by the change of the sign of the uniform exchange interac-
tion between sublattices, and the value of exchange field 
significantly reduced in the vicinity of the transition [54]. 
Of course, this transition is of the first order, and exchange 
field is not exactly zero, but the values comparable with 
relativistic(anisotropy) fields are expected. For description 
of spin dynamics for such materials the analysis of full set 
of two equations sublattice magnetizations have no alterna-
tive. It is worth to note that the constant of non-uniform 
exchange A  is determined by both inter-sublattice and intra-
sublattice exchanges; it is not, in general, small near this 
transition. For this reason, the characteristic length scale 

0= / ( )aA M H∆  exceed the lattice constant a and macro-
scopic approximation is still valid. 

The situation is not completely clear even for standard 
antiferromagnets with 2

ex/ 10 1aH H −
  . The presence 

of a small parameters and expansion over them is an un-
avoidable procedure for solution of any physical problem. 
But the theorist should be careful when using this proce-
dure, especially looking for some delicate problems like 
soliton theory or nonlinear oscillations in systems with a few 
degrees of freedom, see, e.g., [74–79]. In particular, for 
non-integrable dynamical systems omitting of some small 
parameters could restore integrability and thus change the 
principal properties of the dynamics of this system [74]. 
For the complete analysis it is useful to control the small 

corrections to the standard sigma model (6) that can be 
done by the analysis of the full set of Eqs. (4). 

Note one interesting example, nonlinear waves in iso-
tropic antiferromagnet, when the sigma model in its sim-
plest form is not valid. For such antiferromagnets, sigma 
model allows nonlocalized nonlinear wave of the form of 
nonuniform in space precession of the vector l ,  

 2= exp( ), = const = 1 ,x y k zl il l i i t l l⊥ ⊥+ − ω ± −kr   

where the frequency kω  depends on the “wave vector” k  
in the same way as for linear wave, but this frequency is 
independent of the wave amplitude l⊥ for any allowed values 

1l⊥ ≤ . Of course, this property witnesses the strong dege-
neration of this version of the sigma model as a nonlinear 
system. As well, in this system traveling-wave localized 
solutions, which are most typical nonlinear excitations (so-
litons), are absent. Contrary such solitons, common to 
well-known Lieb states, appears in isotropic antiferromag-
net being described beyond the sigma model [80]. On the 
other hand, sigma model approach is quite effective for 
many nonlinear effects, like domain wall dynamics in bi-
axial antiferromagnets [73], inertial spin switching under 
an action of laser pulses [24, 32], spin currents effects [52] 
and many others. Thus the answer on the question, whether 
or not these “abnormal” solitonic states absent for the sigma 
model for isotropic antiferromagnets survives for the general 
models of antiferromagnets, is of large interest. 

3. Lagrange and Hamilton approach to dynamics 
of sublattice magnetizations  

Equation of motion for the vectors l  and m  are deter-
mined by the density of energy. General form of this energy 
can be written as follows  

 2 2 2
ex 0= ( ) ( ) ( , ).

2 2 a
A Aw H M w+ ∇ + ∇ +m l m m l  (10) 

Here exH  is the exchange field of antiferromagnet, A  and 
A  are the constant of nonuniform exchange, and ( , )aw m l  
is anisotropy energy, its form will be specified for the con-
crete models discussed below. In the following, we will not 
consider the effects of external magnetic field and Dzyalo-
shinskii–Moria interaction; thus all the contributions to the 
anisotropy energy are some functions of invariants, biline-
ar over components either l  or m. Note that contrary to 
sigma model approximation, two independent constants of 
nonuniform exchange are present here. 

Application of Lagrange formalism is quite convenient 
for the description of nonlinear dynamics, either for uni-
form oscillations or for solitons. It is enough to mention 
that the knowledge of Lagrangian allows building energy-
momentum tensor for the system and writing basic inte-
grals of motion. In principle, dynamic part of Lagrangian 
for the above set of Landau–Lifshitz equations has the 



Phenomenological description of spin dynamics in antiferromagnets: short history and modern development 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 9 835 

form of the sum of two independent contributions for 1M  
and 2M , their form is well known [77, 78], but these con-
tributions are singular and inconvenient for analysis. Equa-
tions (4) for the irreducible vectors l  and m keep all the 
properties of the set of Landau–Lifshitz equations, and 
they allow direct comparison with the sigma model results. 
For the case of interest, highly-nonlinear spin dynamics 
with accounting for constraint (3), the following para-
metriczation through angular variables is convenient: 

 3 1 2= cos , = sin ( cos sin ),µ µ ψ + ψl e m e e  (11) 

where the auxiliary set of orthogonal unit vectors is intro-
duced  

 
3

1

2

= cos sin ( cos sin ),

= sin cos ( cos sin ),

= sin cos ,

z x y

z x y

x y

θ+ θ ϕ+ ϕ

− θ+ θ ϕ+ ϕ

− ϕ+ ϕ

e e e e

e e e e

e e e

 (12) 

, ,x y ze e e  determine Cartesian coordinate system, which 
can be chosen along the crystalline axis. 

The physical sense of these variables is quite clear: the 
angles θ and ϕ  determine the direction of the vector l , and 
the angle µ determines the modules of the vectors m and l . 
It is easy to see that the equations for m and l  can be ob-
tained by the variation of Lagrangian with the kinetic part 
of the form of 2

0(2 / )( [ / ])/ | |M tγ ⋅ ×∂ ∂m l l l . The density 
of Lagrangian for these four angular variables can be writ-
ten as [ , , , ] = Ldθ ϕ µ ψ ∫ r . Lagrangian density is as the 
following  

 02
= sin sin cos sin ,

M
L w

t t
∂θ ∂ϕ ψ − θ ψ µ − γ ∂ ∂ 

 (13) 

where w  is the density of energy of antiferromagnet writ-
ten through angular variables and their gradients. The en-
ergy of the antiferromagnet is determined by the standard 
equation  

 = .E wd∫ r  (14) 

In particular case = / 2θ π  and = 0ψ , this Lagrangian 
transforms to the Lagrangian describing simple particular 
case of planar spin dynamics [80]. Contrary to that for the 
sigma model (6), this Lagrangian contains singular terms 
of the form common to that for ferromagnets. This singu-
larity is reflected in the formula for the linear momentum 
of spin field P,  

 02
= sin ( sin cos sin ) .

M
dµ ∇ϕ θ ψ −∇θ ψ

γ ∫P r  (15) 

In particular, this singularity appears at the value = / 2µ π , 
when sublattices are parallel and = 0l . Such singular terms 
leads to some nontrivial dynamical properties of magnetic 

solitons, for example, soliton energy becomes a periodic 
function of the linear momentum [80]. 

Within Hamilton approach, angular variables θ and ϕ  
are generalized coordinates, with the conjugated canonical 
momenta pθ and pϕ,  

0 02 2
= sin sin , = sin sin cos

M M
p pθ ϕµ ψ − µ θ ψ

γ γ
. (16) 

The canonical momentum pϕ is proportional to z  projec-
tion of the magnetization 0= 2z zM M m , it is equal to the 
density of z  projection of the spin angular momentum, 

= /z z Bs M g− µ . If z  axis is chosen along the principal axis 
of uniaxial antiferromagnet, this quantity is the density of an 
integral of motion, z  projection of the total spin. 

4. Solitons in anisotropic antiferromagnets beyond 
the sigma model 

Now we are in the position to apply this general forma-
lism to the analysis of concrete models of antiferromagnets. 
First note that the wide class of dynamical states, describ-
ing so-called planar solution and discussed for isotropic 
antiferromagnets [80], is present for wide class of anisotro-
pic antiferromagnets, including uniaxial and biaxial (with 
rhombic symmetry) magnets. For this class, m is parallel 
to one of the crystal axis (say, z  axis) and l  is laying in the 
orthogonal plane (xy  plane); thus, two variables are fixed, 

= / 2θ π  and = 0ψ . To proof this nontrivial property (by 
the way, such planar solutions are absent for ferromagnets) 
consider the general form of magnetic anisotropy for bi-
axial magnet (with rhombic symmetry), which can be written 
as an expansion over squares of Cartesian components of 
vectors m and l . All terms like 2 2,x yl l  or 2

zl  are independent 
of ψ  and they are proportional to 2sin θ or 2cos θ , thus, 
their contribution to both /aw∂ ∂θ and /aw∂ ∂ψ  vanish on 
the planar solution with = / 2θ π . It is straightforward to 
show that on the planar solution the values of 2 / = 0mα∂ ∂θ  
and 2 / = 0mα∂ ∂ψ , where index α take the values x, y, and z. 
After long but simple algebra the same conditions can be 
proofed for the contributions of inhomogeneous exchange 
interactions of both types, 2( )∇l  and 2( )∇m . Thus the vari-
ations of the energy over these two variables, θ and ψ , 
vanish on the planar solution. Two equations obtained by 
variation of   over θ and ψ  with substituting cos = 0θ  
and sin = 0ψ  to their right-hand sides acquire the form  

 / = ( / )sin , / = ( / )sin ,w t w tδ δθ − ∂ψ ∂ µ δ δψ ∂θ ∂ µ   

and at / = 0t∂θ ∂  and / = 0t∂ψ ∂  they become identities. 
Thus, the planar solution exists for quite general form of 
the energy of antiferromagnets, including various contribu-
tions like 2 2 2, ,z x zl l m , ect. 

For isotropic antiferromagnet, the class of planar solu-
tions includes various magnetic soliton states, one-dimensio-
nal moving solitons, common to Lieb states known for non-
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ideal Bose gas and two-dimensional vortex-like solitons [80]. 
Let us discuss now solutions for real models of antiferro-
magnets, which contain magnetic anisotropy. 

The form of planar solutions is governed by the simple 
Lagrangian  

 02
= sin ,

M
d w

t
 ∂ϕ
− µ− γ ∂ ∫ r  (17) 

where w  is the energy density (10), presented through an-
gular variables µ and ϕ , with the substitution cos = 0θ  and 
sin = 0ψ   

 ( )22 2= sin cos
2 2
E Aw µ + µ ∇ϕ +   

 ( )22 21 sin cos ,
2 aA A w + µ + µ ∇µ +   (18) 

where = ( , )a aw w µ ϕ  is the anisotropy energy, which can 
depend on both angular variables. This system has two 
integrals of motion, energy and linear momentum P. The 
linear momentum is determined as the total field momen-
tum of two-component field, ,µ ϕ ,  

 02
= ( )sin .

M
d ∇ϕ µ

γ ∫P r  (19) 

The dynamical part of the Lagrangian (17) and the ex-
pression for momentum (19) contain singularities common 
to that for ferromagnets and connected with non differenti-
ability of the azimuthal angle ϕ . Note that this planar 
model looks similar to the Landau–Lifshitz equation for 
ferro-magnet in angular variables Θ and Φ , with the corre-
spondence sin cosµ ⇔ Θ and ϕ⇔ Φ . The difference is in 
the form of non-uniform terms, for ferromagnet the contri-
bution of 2( )∇Θ  [i.e., 2( )∇µ  in (18)] is independent of Θ. 
This feature produces great difference in mathematical pro-
perties of these two model: Landau–Lifshitz equation for 
ferromagnet with biaxial anisotropy of the simplest type is 
exactly integrable by inverse scattering method [75], and 
allow construction of multi-soliton solutions [76], see also 
[77–79], whereas it is probably not the case for the model (18) 
with A A≠ ¯ . On the other hand, at =A Ā  the results known 
for Landau–Lifshitz equation can be directly applied to the 
planar model of antiferromagnet. 

The analysis shows that these solitons are present for 
anisotropic antiferromagnet with pure uniaxial anisotropy 
of the easy-plane type. For such magnets, anisotropy energy 
is a function of 2

zl  and 2
zm  only, and for antiferromagnetic 

state the minimum of the energy corresponds to = 0m  and 
the vector l , perpendicular to the hard axis z . In this case, 
the anisotropy energy within the class of planar solutions 
depends on µ only, = ( )a aw w µ , and one more integral of 
motion, namely, the conservation law of the z  projection of 
the total spin, is present 

 2
02 sin = div ( )cos .M A

t
∂  µ −γ ∇ϕ µ ∂

 (20) 

The presence of this integral of motion allows construc-
tion of one-dimensional soliton solution of the type of 
traveling waves with one parameter, velocity v. For such 
solitons, = ( )µ µ ξ , = ( )ϕ ϕ ξ , = x tξ − v , and far from the 
soliton, at ξ → ±∞ , ( ) 0µ ξ → , while ( )ϕ ξ  has constant 
values, ±ϕ . Equation (20) together with the aforementioned 
boundary conditions gives an explicit formula for /d dϕ ξ  
in the following form: 

 0
2

2 sin= .
cos

Md
d A
ϕ µ
ξ γ µ

v  (21) 

Then this expression can be substituted to the Lagrange 
equation obtained by variation / = 0Lδ δµ  that gives ordi-
nary second-order equation for µ. It can be integrated ones, 
and then the equation for ( )µ ξ  in soliton solution acquires 
the following form: 

 
2

2 2( cos sin ) =A A  ∂µ
µ + µ  ∂ξ 

  

 
2 2

02
2

2
= sin 2 ( ) .

cos a
M

E w
A

  
 µ − + µ γ µ   

v  (22) 

For the simplest case of uniaxial anisotropy of the form 
of 2 22 ( ) = = sina zw Km Kµ µ, Eq. (22) has the same form 
as for the isotropic case, with the trivial renormalization of 
the exchange constants, E E K→ + . Even for more gen-
eral form of anisotropy ( )aw µ  [such that ( ) > 0aw µ  at 

2sin 0µ ≠ ], the soliton solution of this equation can be 
written in quadratures. But unfortunately, even for the 
simplest form of the anisotropy, the functions ( )µ ξ  cannot 
be written in the explicit form through some elementary 
functions. Anyway, some important properties of these 
solitons can be found by qualitative analysis. 

Note that these soliton states exist only at > 0A ; it is a 
formal confirmation of the fact that for their analysis one 
should go beyond the sigma model, where this constant is 
not presented at all. It is easy to see that the soliton veloci-
ty cannot exceed some limit value. For any anisotropy en-
ergy with the asymptotic behavior 2( ) / 2aw Kµ → µ , this 

value is 0= ( / 2 ) ( )c M J K Aγ + . This limit velocity coin-
cides with phase velocity of linear excitations (magnons) 
for this model of antiferromagnet. The structure of the pla-
nar solitons in anisotropic antiferromagnets, as well as the 
energy dependence on the soliton velocity and linear mo-
mentum, is common to that for solitons in isotropic anti-
ferromagnet [80]. Hence, we will not discuss it in details and 
we limit ourselves with description of the results obtained. 

First of all, the form of the solution depends strongly on 
the value of soliton velocity v. For any nonzero velocity 
the function ( )µ ξ  has standard bell-like shape with the 
maximal value max < / 2µ π . If the velocity v is nearly c, 
the soliton amplitude maxµ  is small, proportional to 

2 2 .c − v  The maximal value of maxµ  is reached at zero 
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velocity of the soliton, it equals to / 2π . The values of ϕ  at 
the right and left of the soliton differ by a certain value ∆ϕ. 
For any values of A A≠ , the limit value =∆ϕ π appears at 

= 0v , but <∆ϕ π for 0≠v ; ∆ϕ vanishes at c→v . In 
principle, all these features are common to that for many 
solitons in the media with spontaneous break of continuous 
symmetry, like rotary waves for easy plane ferromagnets 
[81, 82] dark solitons in nonlinear optics [83, 84], or Lieb 
states in one-dimensional non-ideal Bose gas with repul-
sive interaction [85]. The discussion of common properties 
of all these solitons can be found in review article [77]. 

The energy of a soliton and its dependence on the 
soliton linear momentum is one of most important soliton 
characteristics. Using Eqs. (21) and (22), the soliton energy 
E  can be written as a definite integral over µ from = 0µ  
till its maximal value maxµ . The explicit value of this integral 
cannot be present through analytical function. The exception 
is again the special case =A A and 22 ( ) = sinaw Kµ µ, for 
which the explicit form for soliton energy as a function of 
its velocity can be written as a simple square root dependence,  

 
2

0 2= 1E E
c

−
v , (23) 

where c is the spin wave speed, 0 = 2 ( )E E K A+  is the 
maximal soliton energy, corresponding to = 0v . For a ge-
neral model, it is possible to show that this square-root 
dependence is hold at 2 2 2c c− v  and the energy is max-
imal at zero velocity = 0v . 

The calculation of the linear momentum meets some 
principal difficulties, due to the singular character of the 
Lagrangian. This problem can be analyzed with usage to-
pological properties of this Lagrangian represented through 
Dirac monopole field on the manifold of field variables 
of the planar solution, which is two-dimensional sphere 

2 2 2 = 1x y zl l m+ +  in three-dimensional spin space 
{ , , }x y zl l m  [80]. Note that the same method was used for 
domain walls in general model of ferromagnets [86, 87]. 
This kind of calculation of the linear momentum for 
solitons in planar model of antiferromagnet is model-free. 
It is practically the same as for isotropic antiferromagnet; 
and we will not discuss details and just present the results. 

The dispersion law for one-dimensional planar solitons 
in antiferromagnets ( )E P  is periodic, 0( ) = ( )E P P E P+ , 
where the value of this period 0 0= 4 /P Mπ γ. For the model 
of literally one-dimensional antiferromagnet, spin chain with 
antiferomagnetic interaction of spins S  and the period a, 
the value 0 = 2 /P S aπ ; thus, this period is commensurate 
with the size of Brillouin zone, = 2 /BP aπ . Such periodic 
dependence is characteristic for various solitons in ferromag-
nets, for example, domain walls and spin complexes [77, 78], 
but never appears for one-dimensional antiferromagnetic so-
litons within the sigma model approach, even with Lorentz-
invariance broken by Dzyaloshinskii field or external mag-
netic field [69]. 

One more interesting type of solitons, planar vortices 
with ferromagnetic core, has been found for two-dimen-
sional isotropic antiferromagnet [80]. It is straightforward 
to generalize these solutions to the case of easy-plane 
antiferromagnets, and we will not discuss their properties 
in many details. Note only that dynamic properties of these 
planar vortex are quite unusual for antiferromagnetic vortices. 
Moving planar antiferromagnetic vortex is subjected to the 
gyroscopic force [ ]zG ×e v , equivalent to the Lorentz force 
for a charged particle in the uniform magnetic field. This 
property is in a strong contrast to standard antiferromag-
netic vortices with three-dimensional distribution of the 
vector l , see for review [69], but it is common to that for 
ferromagnetic vortices. Again, this property is model-inde-
pendent, and for antiferromagnet with square lattice of 
spins S  the value of gyroconstant 2= 2 /G S aπ ; it de-
pends on sublattice spin density 2/S a  only (here S  is the 
atomic spin, a is the lattice constant). 

5. Conclusion 

The phenomenological concept of spin dynamics of 
antiferromagnets, the foundations of which were laid more 
than 60 years ago, now has turned into a theoretical basis 
for an interesting and important area of fundamental and 
applied physics. Despite the successes of the sigma model, 
the initial form of this theory, based on the system of equa-
tions for the sublattice magnetizations, is also in great de-
mand now. We have already mentioned practically im-
portant materials demonstrating the transition from antifer-
romagnetic to ferromagnetic states, where exchange field 
is abnormally weak and sigma model is hardly applicable. 
Even for standard antiferromagnets with large parameter 

ex / aH H , this version of the phenomenological theory is 
also of a large practical interest. As we have shown in this 

Fig. 1. Schematic view of the dispersion relation for one-di-
mensional planar soliton. Here 0E  and 0P  are maximal soliton 
energy and the value of period, correspondingly. 
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article, for some model of antiferromagnets important non-
linear features are lost within sigma model description. It is 
also important that the initial version of the phenomeno-
logical approach can be easily used for description of anti-
ferromagnet with standard programs of micromagnetic si-
mulation code like MuMax3 [88], which are quite effective 
but written for ferromagnets. To do this, antiferromagnet is 
modeled by some system of parallel plates of ferromagnets 
coupled antiferromagnetically, see, e.g., [89, 90] This trick 
is working pretty well, whereas direct simulation of the 
sigma model needs is principally different software; on the 
best of our knowledge, such software is not developed yet. 
To resume, the first phenomenological approach for spin 
dynamics of antiferro-magnet, developed more then a half 
of century ago with an important contribution of M. I. Ka-
ganov, still to be an important tool in modern physics of 
antiferromagnets and their applications. 

We would like to dedicate this work to the blessed 
memory of Moisei Isaakovich Kaganov. This work was par-
tially supported by the Department of Targeted Training of 
Taras Shevchenko National University (Kiev) affiliated with 
the National Academy of Sciences of Ukraine (project 1F, 
registration No. 0119U101609). 
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Феноменологічний опис спінової динаміки 
в антиферомагнетиках: коротка історія 

та сучасний розвиток 

E. G. Galkina, B. A. Ivanov 

Короткий огляд альтернативних феноменологічних під-
ходів до спінової динаміки антиферомагнетиків обговорюється 

в зв’язку з сучасним інтересом до надшвидкої спінової дина-
міки та її застосування. Описано специфічні властивості анти-
феромагнетиків, в першу чергу можливість спінової динамі-
ки, більш швидкої, ніж у феромагнетиків. Обговорюються нові 
типи солітонів у анізотропних антиферомагнетиках. 

Ключові слова: антиферомагнетик, солітон, надшвидка спінова 
динаміка.
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