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Introduction 

The physics of magnetic phenomena is a traditional area 
of condensed matter physics and, in particular, solid state 
physics. Recently, additional interest in magnets has arisen 
in connection with the synthesis of a large number of new 
compounds with a complex structure and unusual various 
properties, the so-called multiferroics. On the other hand, 
traditional magnets have attracted interest due to the possi-
bility of their application in new areas of microelectronics, 
which use the physical ideas formulated in spintronics and 
magnonics [1]. The miniaturization of microelectronic ele-
ments (information transmission lines, switches, transistors, 
transmission, recording and reading elements) led to the 
study of the possibility of using magnetic systems as these 
elements. In this case, information can be recorded, trans-
mitted, and read out using magnetic excitations of a topo-
logical nature: domain walls, magnetic vortices and skyr-
mions [2, 3]. The microsize of these objects and their 
stability associated with their topological nature make 
them promising for technological applications. Topological 
excitations represent the essentially nonlinear objects and 
their dynamics is also nonlinear. The nonlinear dynamics 
of magnets has been actively studied recently, both theoreti-
cally and experimentally. The most interesting objects of 
research are represented by magnetic solitons of various 
types, in particular, dynamic and topological ones [4–6]. 
The latter are represented, for example, by vortices in easy-
plane [7, 8] and skyrmions [9, 10] in easy-axis ferromagnets. 

In connection with the possibility of their use for transmit-
ting information in magnetic transmission lines [11], im-
portant problems arise in the interaction of vortices with 
defects in the magnetic structure and their movement in 
magnon waveguides. The question of the interaction of 
isolated vortices with defects was investigated in a number 
of works [12, 13]. As a rule, defects are considered point-
like and the oscillations of a vortex in an impurity field or its 
rotation in isolated magnetic nanodots are studied (mainly 
numerically) [14]. In [15], the interaction of individual 
magnetic vortices and vortex pairs with a finite-size defect 
was analyzed analytically. For this defect a model of cy-
lindrical inclusions of a magnetic phase with an exchange 
interaction different from the matrix one was proposed. 
The results were obtained regarding the rotation of vortices 
“trapped” by the defect and the scattering of vortex pairs 
on such a defect. But, as it was shown, the most interesting 
phenomena of the scattering and formation of pairs associ-
ated with a defect appear at small impact distances, when 
the distance from the vortices to the defect interface be-
comes of the order of the magnetic length. However, at such 
distances, the used approximation of vortex dynamics within 
the framework of the method of collective variables (Thiele 
equations [16]) lose its applicability. Similarly, when study-
ing the motion of vortices along magnetic channels and 
along the interfaces of magnetic media, the most interesting 
features of such dynamics arise when vortices move near 
the boundaries of magnetic media. In this case, the condi-
tions of applicability of the Thiele equations and their 
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equivalent Sonin equations [8] are also violated. Therefore, 
this communication proposes a different model of the inter-
face between magnetic media. In it, the transition area has a 
finite width, and the change in the parameters of the magnet 
in this domain of spatial inhomogeneity is considered small. 
These assumptions make it possible to consider the motion 
of vortices in the whole volume of the magnet, including 
the inner domain of the interface. A similar problem arises 
in the theory of dislocations in inhomogeneous media when 
calculating the shear stresses acting on dislocation [17, 18]. 
The study of this problem within the framework of the linear 
approach showed its inconsistency. With regard to magnetic 
media, the possibility of a consistent solution to the problem 
lies in the consistent consideration of the nonlinear proper-
ties of the magnet. 

1. Formulation of the model and basic equations 

First of all, we note that the problems of the structure and 
dynamics of vortices in a superfluid liquid and Bose–Einstein 
condensates, similar to the considered in this article, have 
been investigated in many works [19, 20], but for vortices in 
magnets, the problem reveals its own specificity. In a super-
fluid liquid, the inhomogeneity of the medium is related to 
the external field and does not affect the terms in the Hamil-
tonian, which depend on the field gradients. This leads to 
local external influences in dynamic equations and substan-
tially simplifies the problem. In addition, in superfluids, 
boundaries can only be impermeable, and a number of 
questions about the structure of boundaries are removed. In 
the theory of dislocations, concerning to their structure in 
the case of coordinate-dependent spatially inhomogeneous 
elastic moduli, the formulation of the problem is close to 
that considered in this article. This problem in the theory of 
dislocations has not yet been resolved [17, 18], and some 
results of present paper can be used in this theory. 

Let us consider a two-dimensional ferromagnet with 
magnetic anisotropy of the easy-plane type within the 
framework of the classical approach. We assume that the 
exchange interaction constant is inhomogeneous in the 
plane of the sample. This situation is most easily achieved 
when the thickness of a deposited magnetic film depends on 
the coordinate in its plane. In this case the effective mag-
netization M  changes proportionally to the film thickness. 
Renormalization of this quantity leads to a coordinate de-
pendence of the effective exchange interaction constant, 
which also becomes dependent on the film thickness. Simul-
taneously the effective single-ion anisotropy constant also 
changes. But since the magnetic anisotropy is significantly 
less than the exchange interaction, its weak variation can be 
neglected. Since below we assume that the spatial change in 
the exchange interaction is also small. The energy of the 
magnet in this case has the form [4, 5] 

( ) ( ) ( )2 22
0

1 1, ,
2 2

E dxdy J x y a dxdy = ε = ∇ + β 
 ∫ ∫ M Mn  (1)  

where M  is the magnetic moment, ( )J r  is the coordinate-
dependent exchange interaction constant, and β is the sin-
gle-ion anisotropy constant ( 0)β > . The unit vector n is 
directed perpendicular to the “easy plane” XY  along the 
axis Z . (Below we restrict ourselves to the two-dimensional 
case). As equations of motion of the magnetization vector, 
we use the Landau–Lifshitz equations without damping 
(LLE) [21] 

 02
,

t
µ∂ δε =  ∂ δ 

M M
M

, (2) 

where 0µ  is the Bohr’s magneton. Since the magnitude of 
the vector M  is conserved and equal 0M=M , it is conven-
ient to choose as variables the normalized Z  component of 
the magnetization vector 0/zm M M=  and the azimuthal 
angle arctan ( / )y xM Mϕ =  of its rotation in the XY  plane. 
In an easy-plane ferromagnet, the value 0m =  corresponds 
to the ground state. In this case, the azimuthal angle is arbi-
trary, and the ground state is infinitely degenerate in the XY  
plane. The variables ( , )mϕ  play the role of canonically con-
jugate quantities for Hamiltonian (1) and the corresponding 
Hamilton equations have the form 

 0 0

0 0

2 2
, ,m

M m M
µ µ∂ε ∂ε

ϕ = − =
∂ ∂ϕ

 

 

  (3) 

and the Hamiltonian is written as 

( ) ( ) ( )( )
22

20 2 2 2
0 2 1 .

2 1
mM

E J a m m dxdy
m

  ∇  = + − ∇ϕ +β
  −  

∫ r  

  (4) 

The static vortex solution of the Landau–Lifshitz equations 
for a vortex at a point ( , )x X y Y= =  has the form 

 arctan arctan ,y Y y Yq
x X x X
− −

ϕ = = ±
− −

  

 ( ) ( ) ( )2 2 ,m m r p f x X y Y f = = − + − = ± 
 

 (5) 

where the parameter 1q = ±  determines the topological 
charge of the vortex (“vortex” with 1q =  and “antivortex” 
with 1q = − ), and the parameter 1p = ±  determines its po-
larization. The vortex core is localized in a region with a 
size of the order of magnitude of the “magnetic length” 
0 0 /l a J= β  and its field has asymptotics [7, 8, 22] 

( )( )2
1 01 / , 0;m p c r l r= − →   

 ( )2 0 0 0/ exp / ,m pc l r r l r l= − >>   (6) 

with numerical constants ~ 1ic . Due to the exponential 
localization of Z  projection of the magnetization in the region 
with a size of the order of 0l , in the rest of the magnetic 
area its influence can be neglected and the static configura-
tion of the vortex can be described within the framework of 
the modified Laplace equation: 
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 ( ) ( )( ) ( ) ( )div grad 0J J Jϕ = ∆ϕ+∇ ⋅∇ϕ =r r r r .  

  (7) 

An important characteristic of a vortex is the vorticity 
density of the magnetization field in it 

 m m
x y y x

∂ ∂ϕ ∂ ∂ϕ
γ = −

∂ ∂ ∂ ∂
,  (8) 

which determines the total vorticity of the vortex Γ  and its 
gyrovector G  

 ( ), 2x y dxdy pqΓ = γ = − π∫ , 0

0
.

2z
M

= Γ
µ

G n


  (9) 

If the distances between the vortices and the distance be-
tween them and the boundaries of the magnetic medium 
significantly exceed the magnetic length 0l  and the veloci-
ties of the vortices are much less than the velocity of 
magnons 0 0(2 / )c M J= µ β , then the dynamics of mag-
netic vortices can be described within the framework of the 
method of collective variables and simplified equations 
proposed by Thiele [16, 23] for the coordinates ( , )X Y=R  
of the vortex centers. The Thiele equation has the form 

 
( )

, 0ii
i

i i

Ed
dt

∂ 
+ =  ∂ 

RR
G

R
.  (10) 

Equation (10) can be transformed into a slightly different, 
more convenient form proposed in [8]: 

 ( ) ( )0 0
ex

2i
i i

J Md
p

dt
µ

= − ∇ϕ =
rR

r R


,  (11) 

where exϕ  is the magnetization field distribution in the easy 
plane at the point of location of vortex with the number i , 
induced by external sources of the magnetization field de-
formation. In particular, it can be a “self-action” field in-
duced by this vortex itself due to inhomogeneities of the sys-
tem parameters. (The sequential derivation of equation (11) 
is given in the Appendix). 

The above systems of Eqs. (10) or (11) describe approxi-
mately the dynamics of a system of vortices in spatially ho-
mogeneous systems. In a spatially limited magnet, an iso-
lated vortex has the energy 2

0 0 0ln ( / )E JM l d= π , where l  
is the distance to the nearest boundary of the magnetic area, 
and 0d  is the size of the vortex core, which coincides in 
order of magnitude with the magnetic length 0l . 

In this paper, we will consider the dynamics of a magnetic 
vortex in spatially inhomogeneous systems consisting of two 
half-spaces with different exchange interactions. The main 
assumption will be that the exchange interactions in the two 
subsystems are slightly different: 2 1 1( ) / 1J J J− << , and the 
width of the interface, in which the exchange changes from 

1J  to 2J , significantly exceeds the magnetic length: 
0/ 1L l >> . 

2. Contact of two half-spaces with different values 
of exchange interaction 

For this system, the geometry of the problem is shown 
in Fig. 1. First of all, consider the case when the exchange 
interaction constant depends only on one spatial coordinate 
X  and takes values 1J J=  at x →∞  and 2J J=  in the 
limit x → −∞. For definiteness, we assume that. 2 1J J> . 
Since isolated vortices are considered below, we also as-
sume that the vortex has the chirality 1q = , polarization 

1p =  and it is located at a distance a from the center of the 
interface between the media. (Border coordinate: Sx a= − ). 

In the simplest case of an infinitely thin interface, when 
the distribution of the exchange constant has the form 

1 2 1( ) ( ) ( )J x J J J x a= + − Θ − − , where ( )xΘ  is the Heavi-
side function, and the vortex distance to the boundary is 
much greater than the magnetic length, the problem is simply 
solved by the “image method” [15, 24]: when the boundary 
conditions 1 2S Sϕ = ϕ  and 1 1 2 2/ /S SJ d dn J d dnϕ = ϕ  are 
satisfied the magnetization field in half-space 1 is deter-
mined by the vortex field and the field of a fictitious non-
quantized vortex with a “charge” 2 2 1 2 1( ) / ( )q J J J J= − +  at 
the point: 0,y =  2 .x a= −  

 1 2arctan arctan .
2

y yq
x x a

ϕ = +
+

  (12) 

The second term in this expression can be considered as 
an “external field” exϕ  acting on the vortex from the side 
of its image and appearing in Eq. (11). In this case, the 
dependence of the vortex velocity on the distance to the 
interface between the media is determined by the following 
equation (below, to simplify the formulas, we set 

0 0 / 1Mµ = ): 

 1 2
1 , 0y xV J q V
a

= − = .  (13) 

A vortex placed in half-space 2 moves in the same direc-
tion with the velocity 2 2 /yV J q a= − . The given depen-
dence of the vortex velocity on its position in the system is 

Fig. 1. Magnet with spatially inhomogeneous distribution of ex-
change interaction: contact of two magnetic half-spaces. 
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shown in Fig. 2(a). It should be borne in mind that the re-
sults obtained, as well as expression (12), are applicable 
only at distances greater than the magnetic length from the 
boundary [dashed lines in Fig. 2(a)]. 

We specially note that the decrease of the velocity is in-
versely proportional to the distance to the interface between 
the media: ~ 1/V a. This property, obviously, should be 
preserved for any interfaces with a sufficiently fast decrease 
of the interface characteristics in the depth of both half-
spaces, since this is a manifestation of the nonlocal nature 
of the magnetic vortex fields. 

To consider the motion of a vortex at any point in the 
system, including the region inside the interface, we con-
struct a magnet in which the exchange interaction constant 
smoothly changes from the value 2J  to the value 1J  at dis-
tances 0L l>>  (Fig. 1). In addition, we assume that the total 
change in the value of the exchange integral is small: 

2 1 2J J J− <<  (or 2 1q << ). This assumption allows us to 
use the perturbation theory based on the smallness of this 
parameter. In this case, the solution for the vortex field in 
an inhomogeneous medium can be approximately written 
in the form 
 ( ) ( ) ( )0 exϕ ≈ ϕ + ϕr r r ,  (14) 

where 0ϕ  is the vortex solution 0 arctan ( / )x yϕ =  in a ho-
mogeneous medium with an exchange constant 1J , and exϕ  
is the weak self-action field of the vortex due to the presence 
of exchange inhomogeneity. The magnetostatic equation (7) 
can be approximately written in the form 

 ( )1 ex 0 0.J J∆ϕ +∇ ⋅∇ϕ =r   (15) 

Just in this form the problem of the dislocation field in a 
similar spatially inhomogeneous geometry was traditionally 
considered [17, 18]. 

We represent the coordinate dependence of the exchange 
integral in the form 

 ( ) ( ) ( )1 2 1J x J J J F x= + − , ( ) dFx
dx

Φ = ,  (16) 

where the functions ( )F x  and ( )xΦ  have a qualitative 
form, presented in Figs. 3(a) and 3(b). 

Equation (15) can then be rewritten as 

 ( ) ( ) ( )0
ex 22q x

x
∂ϕ

∆ϕ = − Φ
∂

r
r , 0 arctan .y

x
ϕ =   (17) 

It is important to note the following essential circum-
stance. The vortex position is assumed at the coordinate 
origin 0x y= = , and the function ( )xΦ  appearing on the 
right-hand side of Eq. (17) is defined in the entire space of 
the magnetic medium. In [17], the value of this function 

(0)Φ  was substituted into equation (17) at the point where 
the vortex is located. This led to an incorrect result: the 
spatial derivatives of the addition to the field variable had a 
singularity at the center of the vortex. (The work [17] dealt 
with a formally similar problem of stress fields around a 
dislocation in an inhomogeneous elastic medium with spa-
tially varying elastic moduli). In fact, due to the slowness 
of the decay of the fields around the vortex (or disloca-
tion), the entire volume of the medium contributes to the 
self-action field, and there is no singularity in the field gra-
dients at the center of the vortex (dislocation). 

We use the Green’s function of the two-dimensional 
Laplace equation [25] and represent the solution of the La-
place equation with the right-hand side of (17) in the form: 

Fig. 2. Dependence of the vortex velocity on its distance to the 
interface: (a) in the model of the atomic thickness boundary, 
(b) in the boundary model (26) for a vortex with a singular core. 

Fig. 3. Coordinate dependence of the exchange integral at the 
interface domain (a) and the derivative of this dependence (b). 
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( )ex ,x yϕ =  

( ) ( ) ( ) ( )2 202 ,
ln ,

x yq x a x x y y dx dy
x
′ ′∂ϕ  ′ ′ ′ ′ ′= − Φ + − + − ′π ∂  ∫  

  (18) 
where the integration is carried out over the entire volume 
of the magnet. Using Eq. (11), it is easy to obtain an ex-
pression for the velocity of motion of the vortex (remind 
that the vortex is located at the point 0x = , and the coordi-
nate of the center of the interface is x a= − ): 

( )ex ,x y
y

∂ϕ
=

∂
 

( )
( ) ( )

2
2 2 2 2 ,

q y y yx a dx dy
x y x x y y

′ ′−′ ′ ′= Φ +
′ ′π + ′ ′− + −∫  

  (19) 

 
( ) ( )

2
2

2 2

2 0J q yV x a dx dy
x y

 ′
′ ′ ′= Φ +  ′ ′π + 

∫ .  (20) 

Integration over y′ is easily performed, which gives us 
the final result for the dependence of the velocity of the 
vortex along the interface on its distance from the center of 
the boundary: 

 ( ) ( )
20

x a
V J q dx

x
′Φ +

′=
′∫ .  (21) 

This expression is written in a system of coordinates 
centered at the point where the vortex is located. In the 
frame of reference centered in the middle of the interface 
( )x a= − , expression (21) will be rewritten as 

 ( ) ( ) ( )
2

x
V a J a q dx

x a
′Φ

′=
′ −∫ ,  (22) 

where a is the distance of the vortex from the center of the 
interface. 

For the boundary of atomic thickness with ( ) ( )F x x= Θ −  
and ( )xΦ = −δ , expression (22) reduces to result (13). 
(Note that, as can be seen from (16), for 0a >  the exchange 
constant is 1(0)J J= , and at 0a <  the exchange is equal to 

2(0)J J= ). But it should be kept in mind that formula (13) 
is valid for any values of the parameter 2q , and the expres-
sion for the velocity, which follows from formula (21), 
which corresponds to the perturbation theory, is valid only 
under the condition 2 1q << . Substituting the expression 

( )x aΦ = −δ +  into formula (19), easy to get for 0x > : 

 ( )
( )

ex
2 22

2

2

x a
q

y y x a

+∂ϕ
=

∂ + +
,  (23) 

and a similar expression for ex / x∂ϕ ∂ : 

 
( )

ex
2 22 2

yq
x y x a

∂ϕ
= −

∂ + +
.  (24) 

Formula (12) follows from (23) and (24), but it is applica-
ble only for 2 1q << . 

Let us consider another example with a strict spatial lo-
calization of the parameters of the defect domain, for 
which the space outside this region is strictly homogeneous. 
But, in contrast to the previous example, we will consider 
the boundary domain as a finite width area. In the simplest 
case, we choose the following distribution of the exchange 
constant (see Fig. 4): 

 ( ) 2 1 2 1

2
J J J JJ x x

L
+ −

= − , / 2 / 2L x L− < < .  (25) 

For such a spatial distribution of the exchange constant 

( ) ( )1 2 / / 2F x x L= − , 1 / LΦ = − , / 2 / 2L x L− < < . (26) 

In this case, the expression for the vortex velocity (22) 
is reduced to the following: 

 ( ) ( ) 2 / 2ln
/ 2

J a q a LV a
L a L

− =  + 
, / 2a L> .  (27) 

At large distances from the defect, the asymptotes has 
the form (13), as well as for the interface of the atomic size, 
i.e., 1 2 /V J q a= − , but the singularity at the boundaries of 
the separation region is also preserved, although it becomes 
weaker: ~ ln( / 2)V a L−  as it is shown in Fig. 2(b). This 
behavior (a decrease in velocity, inversely proportional to 
the distance from the defect and a singularity at the inter-
face) is retained for any profiles of the parameters of the 
boundary strictly localized in a finite interval. The infinite 
increase in the velocity at the interface is associated with 
the divergence of the kernel ~ 1/ x a′ −  in expression (22). 
It is a consequence of taking into account only the distribu-
tion of the vortex field in the easy plane of the magnet. 
Until now, we have not taken into account the nonlinear 
properties of the medium, which lead to the removal of the 
singularity in the vortex core. The size of the vortex core is 

Fig. 4. Characteristics of the interface between the media in the 
model (25). 
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of the order of magnitude of the exchange length 0l  (6). 
Let us introduce in formula (22) the cutoff of the integral 
near the singularity at a distance of 0l , which will be justi-
fied below. 

 ( ) ( ) ( ) ( ) ( )0

0

2 2

a l

a l

x x
V a J a q dx J a q dx

a x x a

− ∞

−∞ +

′ ′Φ Φ
′ ′= +

′ ′− −∫ ∫ .  

  (28) 

For example, let us consider a wide (with 0L l>> ) but 
strictly localized boundary with a fast (exponential) decree-
sing of the function Φ  outside the volume of the interface: 

( ) 2 1 2 1 tanh
2 2

J J J J xJ x
L

+ −  = −  
 

, ( ) 1 1 tanh
2

xF x
L

  = −  
  

, 

  ( ) 21 sech
2

xx
L L

Φ = − . (29) 

It can be seen from formula (28) that, in the considered 
model, the vortex velocity is limited and reaches a maxi-
mum value at the center of the boundary of the order of 
magnitude 

 ( ) ( )max 1 2 2 0ln / / 2V J J q l L L≈ + .  (30) 

At large distances a L>> , the second integral in (28) is 
approximately reduced to an integral exponential function 
with known asymptotes at 0l L<<  and is equal to 

2 0(2 / ) exp ( 2 / ) ln (2 / )Jq L a L l L− − γ , where γ  is the Euler’s 
constant. It exponentially depends on the distance to the 
border. The first integral in (28) at / 1a L >>  has the form 

 ( )
( )

0

1 2 1 2
2

/
2 /l L

J q J qdzV a
L az ch z a L

∞

= − ≈ −
−∫ .  (31) 

Thus, despite the local character of the dependence of the 
parameter J  at the interface, the decrease in velocity with 
distance is not exponential, but power-law, since it is an 
integral quantity. The asymptotes of the velocity at large 
distances have a standard form, as for a wall of atomic 
thickness. However, there is no infinite increase in velocity 
at the interface. But, from expression (30) it can be seen 
that the maximum velocity is determined by the thickness 
of the interface, and the expression for it diverges with a 
decrease in this thickness. The dependence of the vortex 
velocity on its position relative to the center of the inter-
face is shown in Fig. 5(a). 

Let us also present the dependence of the vortex velocity 
on its position with respect to the interface between the 
media in the case of the boundary model described by 
functions (26) (see Fig. 4). In this example, all dependencies 
are obtained in a simple analytical form: 

 2 2 2ln
2

J q a LV
L a L

−
= −

+
, 02

La l< − − , (32) 

 ( ) 2

0

2ln
2

J a q L aV
L l

−
= − , 0 02 2

L Ll a l− − < < − + ,  (33) 

 
( ) 2 2

2
2
0

4ln
4

J a q L aV
L l

−
= − , 0 02 2

L Ll a l− + < < − , (34) 

  1 2 2ln
2

J q a LV
L a L

−
=

+
, 02

La l> + .  (35) 

This dependence is shown in Fig. 5(b). It has qualitatively 
the same form as in the case of the model with a smooth 
dependence of the exchange integral on the coordinate. The 
maximum vortex velocity inside the interface is 

 ( )max 2 02 ln / /V Jq l L L≈ ,  (36) 

those, it has the same order as in the previously considered 
model. 

3. Influence of the vortex core structure 

Another approach to the problem consists in calculating 
the vortex energy in the field of the interface between the 
media and taking into account the removal of the singularity 
of the field when the magnetization vector goes out of the 
easy plane. Let us return to expression (4) for the total en-
ergy of the magnet. It is easy to estimate the first term in 

Fig. 5. Dependence of the vortex velocity on its distance from the 
center of the interface for (a) the model shown in Fig. 3, see formu-
las (29), and (b) for the model shown in Fig. 4, see formulas (26). 
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parentheses. Using the approximation (6) for the spatial 
distribution of magnetization in the vortex core and inte-
grating over the region of 0r l< , we find the contribution 
of this term to the energy of the system and the vortex ve-
locity, which is calculated within the framework of the 
Thiele equation (10), which in this case has the form 

( / ) /yV E X G= − ∂ ∂  with G = −π: 

 ( )2
1 1 02E c M J X= π , ( )1 1 1 24V c J q a= Φ .  (37) 

Note that this contribution to the vortex energy does not 
depend on its size 0l  and remains finite for a point-like 
vortex. In an example with a local interface of the form (29), 
this contribution to the vortex velocity reads  

 1 2 2
1 12 sech ,

J q aV c
L L

 = −  
 

 (38) 

and at large distances it is exponentially small: 
1 ~ exp ( 2 / )V a L− . The maximum value of this contribution 

to the vortex velocity is of the order of 1max 2~ /V Jq L, i.e., 
it is significantly less than the main contribution, which is 
of the order of 2 0ln ( / ) /Jq L l L . The contribution to the 
vortex velocity from this term of the energy corresponds to 
the change in the exchange interaction at the interface. It 
does not take into account the integral contribution of the 
magnetization distribution caused by the presence of the 
boundary. It arises from the second term in energy (4). Let 
us calculate this, taking into account that the multiplier 

2(1 )m−  in this term can be considered nonzero only in the 
region of 0r l> . 

( )( ) ( )

0 0

2 2 2
20 0 0

2 2 22 2r l r l

J x aM a M
E J dxdy dxdy

x y> >

+
= ∇ϕ ≈

+∫ ∫r . 

  (39) 

The contribution to the vortex velocity from this part of 
the energy is as follows: 

 
( )

0

1 2
2 2 2

r l

x aJ qV dxdy
x y>

Φ +
≈

π +∫ .  (40) 

Figure 6 shows the areas of integration of expression (30) 
(the gray filling indicates the area of the interface between 
the media). 

The contribution of region 1 to the integral is 

 ( ) ( )21 1 2 1 24 / 1.17V GJ q a J q a≈ Φ π ≈ Φ ,  (41) 

where 0.916G ≈  is the Catalan’s constant, i.e., it is of the 
order of 1V . In region 2, the corresponding contribution is 

 ( )

0

22 1 2
l

x a
V J q dx

x

∞ Φ +
≈ ∫ ,  (42) 

which for model (29) at a L>>  gives the value 
22 1 2 0 1 2(2 / ) exp ( 2 / ) ( 2 / ) (2 / )V J q L a L Ei l L J q L≈ − − − ≈ ×

0exp ( 2 / ) ln (2 / )a L l L× − γ , where γ  is the Euler’s constant. 

In the same model, the contribution of region 1 is equal to 
21 1 2(2.35 / )V J q L≈ − exp ( 2 / )a L− , i.e., it is less according 

to 0ln ( / )l L . Finally, the contribution of region 3 to the 
expression for the velocity has the form 

 ( )

0

23 1 2
l

x a
V J q dx

x

∞ Φ −
≈ ∫   (43) 

and the integration corresponds to the interface region. In 
this case, for model (29) at a L>>  we obtain the expression: 

23 1 2 /V J q a≈ − . This expression coincides with the result (13) 
for the interface of the atomic thickness. Thus, the contri-
bution of this region to the vortex velocity at large distances 
is the main. It depends on the integral characteristic of the 
interface, does not depend on the coordinate-dependent 
exchange constant at the vortex position. Note that in a 
similarly formulated paper [19], in which the dynamics of 
a vortex in the Bose–Einstein condensate was considered, 
the authors obtained a result of which is followed that the 
vortex velocity depends on the local value of the field at 
the vortex point, since in the condensate the field inhomo-
geneity is local characteristic. 

Finally, let us calculate the maximum velocity of the 
vortex in the middle of the interface between the media. It 
is easy to find that it equals to ( ) ( )max 1 2 02 / ln / ,V J q L l L≈  
which coincides in order of magnitude with the 

( ) ( )max 1 2 0/ ln /V J q L l L≈  obtained in the previous ap-
proach (28). Thus, it is possible to propose an interpolation 
formula for the vortex velocity in the form 

( ) ( )2 2
1 2 0/ / , /V J q L a f l L a L= − +  in which the dimen-

sionless function f  increases at the interface to a measure of 

the parameter ( )0ln /l L  and tends to unity at large distances 
from the boundary. 

The total dependence of the vortex velocity on the dis-
tance from the center of the interface is given by the formula 

( ) ( ) ( )

0 0

1 2
l l

x a x a
V J q C a dx dx

x x

∞ ∞ Φ + Φ + ≈ Φ + +
 
 

∫ ∫ ,  (44) 

Fig. 6. Integration domains of calculating in the integral in 
expression (39). 
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where 14 / / 2C G c= π+ . The first term in parentheses dis-
tinguishes two different approaches to the problem. In the 
first simplified approach, this term was absent. However, 
we have shown that in the asymptotes of the solution out-
side the region of the boundary, this term decreases expo-
nentially in comparison with the power-law decrease of the 
main contribution to the velocity, and inside the region it is 
small in comparison with the main contribution to the 
measure of the small parameter 01/ ln ( / )L l . This justifies 
the use of a simplified approach within the framework of 
Eqs. (14), (15), (18) with cutting off the resulting integrals 
on the dimensions of the vortex core to solve problems on 
the dynamics of vortices in inhomogeneous systems with 
more complex geometry. For interface model (29), expres-
sion (44) is reduced to the following: 

( ) ( )
0

0 2 2
/

2 1
/ /l L

V V dz
ch a L zch z a L

∞
≈ − + +
 −

∫  

 
( )

0

2
/

1 ,
/l L

dz
zch z a L

∞ 
+
+ 

∫   (45) 

where 0 2 / 2V Jq L= . Since the exact value of the constant 
1c  is unknown, we set it equal to one. The expression in pa-

rentheses depends on the value of /a L  and on the parameter 
0 /l L . It is easy to find it numerically. Figure 7 shows the 

dependence ( / )V V a L=  for the values 0 / 0.2l L =  (a) and 
0 / 0.01l L =  (b). We recall that we assumed that this value 

was small. 
In Fig. 7, the bold lines represent the dependence for the 

complete expression (45), and the thin lines of the depen-
dence (45) without the “local” first term, i.e., when using the 
approximation (15), (17), (18), (28). It can be seen that with 
an increase in the thickness of the boundary, i.e., decreasing 
the parameter 0 /l L , these dependences are close. The lower 
curve 2 in Fig. 7 corresponds to the qualitative graph in 
Fig. 5(a). For large values of the parameter /a L , the asymp-
totics with high accuracy has the form 0/ 2 /V V L a= . It is 
shown by a dotted line (curve 3) in Fig. 7. It can be seen 
that at small distances the divergence of the dependences 
increases with the thickness of the boundary, which is natu-
ral, since the asymptotics 0/ 2 /V V L a=  corresponds to an 
infinitely thin boundary. 

Conclusion 

In the paper we investigate the motion of a magnetic vor-
tex along the contact boundary of two magnetic media with 
different exchange interactions. In the case of a thin boundary 
of atomic size, the study of such dynamics within the frame-
work of the usual approach using the Thiele equations is 
impossible in the region near the boundary, where the vortex 
velocity tends to infinity, exceeding the spin waves velocity. 
However, in the case when the spatial change of the ex-
change integral is small in comparison with its value, and the 
width of the boundary is much larger than the size of the vor-
tex core, an approximate solution of the problem is possible. 

It allows you to find the vortex velocity at any distance, 
including the area inside the boundary. An approach to 
solving the problem is developed that takes into account 
the nonlocality of the magnetization fields of the magnetic 
vortex. It is shown that at large distances from the boundary, 
the dependence of the velocity on the distance retains a 
power-law form, as well as for the boundary of the atomic 
size. However, there is no infinite increase in the velocity 
inside the interface between the media. The maximum vor-

tex velocity reaches the value 0 0
max ~ ln

l lJV c
J L L
δ , where 

c is the magnon velocity, Jδ  is the variation of the ex-
change integral, L  is the characteristic range of the ex-
change constant, and 0l  is the magnetic length (the size of 
the vortex core). 

Fig. 7. Dependence of the vortex velocity on its distance from the 
center of the interface between media with different exchange 
interactions for 0 / 0.2l L =  (a) and 0 / 0.01l L =  (b). The area oc-
cupied by the interface between the media is highlighted in the 
figures. 



Magnetic vortices in media with spatially inhomogeneous exchange interaction 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 9 849 

Appendix 
It was shown in [8] that in the presence of a uniform 

helicoidal distribution of the azimuthal angle field ϕ = kr , 
where k  and r are two-dimensional vectors in the xy plane 
( , )x y , it follows from conservation of the total field mo-
mentum of the system that the vortex moves uniformly 
along the vector k  with a velocity 

  0
0

2
JM p

µ
=V k


,  (А1) 

where p is the polarization of the vortex. The given formula 
corresponds to the “frozen-in” vortex in the so-called “spin 
flow”. This phenomenon is completely analogous to the 
freezing-in of a hydrodynamic vortex into a fluid flow, 
since /= ∂ϕ ∂k r  and the azimuthal angle of magnetization 
plays the role of the velocity potential in hydrodynamics. 
Since formula (A1) includes the polarization of the vortex, 
it means that, its local characteristic associated with a z  
component that is nonzero at a distance from the center of 
the vortex of the order of the magnetic length, relation 
(A1) can be rewritten as 

 02
JMp

µ ∂ϕ
=

∂
V

r

.  (А2) 

Let us show that this relation is equivalent to the Thiele 
equation and follows from it. Consider an isolated vortex 
located at a point with coordinates ( , )X Y  in a field of gen-
eral form: 

 ( ) ( ) ( )0arctan ,Y yq x y
X x
−

ϕ = + φ = ϕ − + φ
−

R r r .  (А3) 

The energy of interaction of a vortex with an external 
field is 

 ( ) 0 02 2
int 0 0

0

1 .
r

E JM m dxdy
x x y y

>

∂ϕ ∂ϕ ∂φ ∂φ
= − + ∂ ∂ ∂ ∂ ∫   (А4) 

The change in energy due to the coordinate of the vor-
tex changes reeds 

( )int 02 2
0 0

0

1
r

E
JM m dxdy

X X x x
>

∂ ∂ϕ∂ ∂φ = − + ∂ ∂ ∂ ∂ ∫  

 ( ) 02 2
0 0

0

1
r

JM m dxdy
X y y

>

∂ϕ ∂ ∂φ
+ − ∂ ∂ ∂ ∫ .  (А5) 

Taking into account that in the first term / X∂ ∂ = 
/ x= −∂ ∂ , integrating the expression by parts with respect 

to the variable x  and using the relation 2 2/ x∂ φ ∂ =  
2 2/ y= −∂ φ ∂ , we transform the relation (A5) to the form 

( )
2

int 02 2
0 0 2

0

1
r

E
JM m dxdy

X x y>

∂ ∂ϕ ∂ φ = − − + ∂ ∂ ∂ ∫  

 ( ) 02 2
0 0

0

1
r

JM m dxdy
X y y

>

∂ϕ ∂ ∂φ
+ − ∂ ∂ ∂ ∫ .  (А6) 

After re-integrating by parts of the first term with respect 
to the variable y  and using the relation / /y Y∂ ∂ = −∂ ∂ , we 
transform the formula (A6) in this way: 

intE
X

∂
=

∂
 

( ) ( )0 02 2 2
0 0 0

0

1 1 ,
r

JM m m dxdy
y Y x X y

>

 ∂ϕ ∂ϕ ∂φ ∂ ∂ = − − − −   ∂ ∂ ∂ ∂ ∂    
∫  

  (А7) 
which is easy to convert to expression 

 
2 2

int 0 0 0 02
0

0r

E m m
JM dxdy

X y Y X X Y
>

 ∂ ∂ ∂ϕ ∂ ∂ϕ∂φ
= − − ∂ ∂ ∂ ∂ ∂ ∂ 

∫ .  

   (А8) 

Since 0 0 0( ) ( )m m m= − = ρR r , taking into account the 
form of the vortex solution (A3), expression (A8) is re-
duced to the form: 

 ( )2
0int 2

0
0r

dmE
JM q d d

X y d
>

ρ∂ ∂φ
= χ ρ

∂ ∂ ρ∫ .  (А9) 

Z component of the vortex solution is localized in the 
region of the vortex core, so the expression / y∂φ ∂  can be 
replaced by / Y∂φ ∂  and removed from the integral sign. In 
this case, we finally get 

 int 2
02

E
JM q

X Y
∂ ∂φ

= − π
∂ ∂

.  (А10) 

Using this relation, Thiele equation (10) is reduced to 
the equation 

 0 02J MdY p
dt Y

µ ∂φ
= −

∂

,  (А11) 

which coincides with (11) and is the generalization of rela-
tion (A1) to the case of an arbitrary external field distribution. 

The work was carried out within the framework of the 
scientific program 1.4.10.26/F-26-4. 
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Магнітні вихори в середовищах з просторово 
неоднорідною обмінною взаємодією 

A. S. Kovalev 

У межах класичних рівнянь динаміки намагніченості в 
наближенні колективних змінних розглянуто динаміку магніт-
них вихорів у двовимірних феромагнетиках з анізотропією 
типу «легка площина» і просторово неоднорідною обмінною 
взаємодією. У випадку прямої межі розподілу магнітних 
середовищ з різною, але дещо іншою обмінною взаємодією, 
отримано залежність швидкості магнітного вихору від його 
відстані до дефекту структури та розташування всередині 
цієї межі розподілу. 

Ключові слова: феромагніт типу легкої площини, неоднорідні 
магнітні середовища, магнітні дефекти, маг-
нітний вихор, рівняння Тіле та Соніна. 
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