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In recent years, several magnetic Mott insulators with strong spin-orbit coupling were suggested to be proxi-
mate to the Kitaev quantum spin liquid, whose one of the most exciting features is the fractionalization of spin
excitations into itinerant Majorana fermions and static Z, fluxes. Unfortunately, the ground states of these sys-
tems cannot be easily captured by experiment, remaining featureless to conventional local probes. Here we pro-
pose to study the signatures of fractionalized excitations by exploiting their coupling to the lattice vibrations,
dubbed magnetoelastic coupling, which arises from the fact that the interaction between spins depends on the
relative distance between them. We argue that the magnetoelastic coupling can lead to the distinct modification
of the phonon dynamics, which can be observed by measuring renormalized phonon spectrum, the sound attenu-
ation and the phonon Hall viscosity. This makes the phonon dynamics a promising tool for the characterization
and identification of quantum spin liquid phases. In this work, we focus on the magnetoelastic effects in the
three-dimensional Kitaev model realized on the hyperhoneycomb lattice. The hyperhoneycomb Kitaev spin liquid is
particularly interesting since the strong Kitaev interaction was observed in the Kitaev magnet 3-Li,IrO;, for which

the spin-orbit entangled J,¢= 1/2 moments of iridium ions form precisely the hyperhoneycomb lattice™.

Keywords: phonon dynamics, magnetoelastic coupling, quantum spin liquid.

1. Introduction

Quantum spins in a solid can avoid a formation of long-
range magnetic order even at zero temperature and instead
can form a fluid type of the ground state. This state is
known as a quantum spin liquid (QSL) and has a remark-
able set of collective phenomena including topological
ground-state degeneracy, long-range entanglement, and frac-
tionalized excitations [1-7]. In recent years, much work
has been done to understand the nature of QSL, however,
even identifying realistic models which host this state is
not a trivial task. In parallel, a long experimental quest has
identified a number of two- and three-dimensional candi-
date materials belonging to the class of frustrated magnets,
which provide evidence for spin liquid physics to exist in
the real world [8—16].
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When searching for QSL physics in real materials, a
promising route is to look for signatures of spin fractionali-
zations in various types of dynamical probes, such as inelas-
tic neutron scattering, Raman scattering, resonant inelastic
x-ray scattering, ultrafast spectroscopy and terahertz non-
linear coherent spectroscopy, and thermodynamics [5-7, 15].
In addition, a lot of information can be obtained by study-
ing the phonon dynamics in the QSL candidate materials
[17-22], since the spin-lattice interaction is inevitable in
real materials and is often rather strong [23-26]. The charac-
teristic modifications of the phonon dynamics in QSL ma-
terials compared with their non-magnetic or magnetically
ordered analogs can be observed in the renormalization of
the spectrum of acoustic phonons [26], particular tempera-
ture dependence of the sound attenuation and the phonon
Hall viscosity [19-21], the Fano line shapes of the Raman
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active phonons caused by the overlapping of the optical
phonon modes with the continuum of the fractionalized
excitations [22, 27-31], thermal conductivity and thermal
Hall effect [24].

Particularly appealing is the possibility of using the pho-
non dynamics to probe spin fractionalization characteristic
to the Kitaev spin liquid [32]. The Kitaev model is the pro-
totypical example of a QSL model that possesses an exact
solution. Introduced and solved by Alexei Kitaev in his
seminal paper [32] on the honeycomb lattice, this model yet
can be generalized and defined for various tri-coordinated
three-dimensional (3D) lattices [33—40]. The Kitaev model
describes a quantum spin-1/2 magnet and has a form

S — _7X XX _ Ty vV _ gz -4
H J ZG, w=J Zcrcr, J Zcrcry,

(r,r'Yex (r,r'Yey (r,r'yez

ey
where J*?% are the coupling constants for the three types
of bonds x, y, and z. In particular, spins fractionalize into
two types of degrees of freedom in the Kitaev model: dis-
persing Majorana fermions (spinons) and gapped Z, flux-
es. In the unperturbed Kitaev model, the flux is conserved,
and the ground state can be viewed as a band insulator, or
metal, of Majorana fermions in the flux background which
minimizes the total energy. In the vicinity of the isotropic
point, J* ~ JY ~ J? the ground state of both two-dimen-
sional and three-dimensional Kitaev models has gapless
Majorana fermions, which exhibit a rich variety of nodal
structures, a systematic classification of which was done
by O’Brien, et al. [35]. They found out that while the gapless
QSLs in the hyperhoneycomb and the stripyhoneycomb are
characterized by nodal lines of Dirac cones, Majorana fer-
mion band structure on the hyperhexagon lattice has only
bulk Weyls nodes [35]. On contrary, Majorana fermions on
the hyperoctagon are characterized by a topological spinon
Fermi surface [34].

The presence of exact solution makes the Kitaev spin
liquids especially appealing because it gives a genuine
opportunity for exploring QSL physics on a more quantita-
tive level, since the response functions can be analytically
computed for these special Hamiltonians [36-38, 40, 61-66].
These studies show that the nodal structures of the
Majorana fermions in 2D and 3D Kitaev spin liquids leave
unambiguous characteristic fingerprints in the dynamical
probes. This is highly significant, because it gives us an
opportunity to learn about generic behavior of other QSLs,
which are much more difficult to describe. Another im-
portant aspect is that there exist suitable material candi-
dates for realizing these Kitaev QSL phases [41, 42], such
as the honeycomb iridates Na,IrO; [43, 44] and a-Li,IrO;
[45], the honeycomb ruthenium chloride a-RuCl; [46, 47],
and the 3D harmonic-honeycomb iridates - and y-Li,IrO;
[48-51]. Although all these candidate materials actually
order at low temperature, the presence of a large Kitaev
term suggests that these ordered ground states are proximate

to spin liquid phases — a statement which is also supported
by recent experiments [16, 27, 52—60]. The comparison of
the experimental findings with the available theoretical
predictions allows us to understand how close are the candi-
date materials to their model counterparts.

In this paper, we focus on the study of the magnetoelastic
effects in the Kitaev model on the hyperhoneycomb lattice.
This is particularly important because of the existence of
the Kitaev candidate material B-Li,IrOs [48, 49], which is
realized on the hyperhoneycomb lattice. While we know
that other interactions are present in this compound in ad-
dition to the dominant Kitaev interaction, here we assume
that some good intuition can be observed by studying the
limiting case of the pure Kitaev model. The ground state of
the isotropic Kitaev spin liquid on the hyperhoneycomb
lattice corresponds to a fixed zero-flux configuration. This,
however, can only be checked numerically, since the hyper-
honeycomb lattice does not have any of the required mirror
planes to apply Lieb’s theorem [35, 67, 68]. Therefore, at
temperatures below the flux gap Ay, the low-energy mag-
netic excitations are solely dispersive Majorana fermions.

The main result presented in this paper is the derivation
of the coupling vertices for the low-energy Majorana fermi-
ons and acoustic phonons. In order to obtain the Majorana
fermion-phonon (MFPh) couplings, we performed a micro-
scopic analysis of the change of the spin exchange energy
due to the lattice distortion and obtain the explicit form of
the MFPh couplings by considering acoustic phonon modes
coupled to low-energy spin degrees of freedom expressed
in terms of the Majorana fermions. We also found that in the
low-energy limit, this coupling has essentially the same form
as the one obtained from the symmetry considerations.

The knowledge of the MFPh couplings allows us to
compute the phonon dynamics and, in particular, the exper-
imentally observable consequences of the spin-lattice cou-
pling such as phonon attenuation, phonon viscosity, phonon
conductivity, and phonon Hall effect [20, 21]. Specifically,
the sound attenuation may be measured by the ultrasound
experiment and the Hall viscosity could be inferred from
acoustic Faraday effect, thermal Hall effect and spectro-
scopy measurement.

The rest of the paper is organized as follows. In Sec. 2,
we review the essential details and symmetry of the three-
dimensional hyperhoneycomb lattice. In Sec. 3, we present
the derivation of the spin-phonon Hamiltonian. In Sec. 3.1,
we discuss the Kitaev model on the hyperhoneycomb lattice
and obtain its fermionic band structure. We show that the
fermions are gapless along the nodal line within the I'-X-Y
plane, for which we obtain an analytical equation. In 3.2,
we introduce the lattice Hamiltonian for the acoustic pho-
nons on the hyperhoneycomb lattice and obtain the acoustic
phonon spectrum. In Sec. 3.3, we present the explicit micro-
scopic derivation of the Majorana fermion-phonon coupling
vertices and show that there are four symmetry channels
which contribute into them. In Sec. 4, we present a short
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summary and discuss the possibility for the spin fractionali-
zation in the Kitaev hyperhoneycomb model to be seen in
the phonon dynamics.

2. Brief review of the hyperhoneycomb structure

We start by reviewing essential details of the three-
dimensional hyperhoneycomb lattice, which we sketch in
Fig. 1. The hyperhoneycomb lattice is a face-centered or-
thorhombic lattice with four sites per primitive face-
centered orthorhombic unit cell defined by the lattice vec-

tors a, =(0,/2,3), a, =(1,0,3), and a, = (1,4/2,0). The
conventional orthorhombic unit cell is set by the crystallo-
graphic axes {a,b,¢}, which are related to the Cartesian
axes {X,¥,z} appearing in the spin Hamiltonian Eq. (1) by
X=(A+¢)/v2, y=(€-4)/+2, and Z=-b. Different
bond types x, y, and z are marked by red, green, and blue,

Fig. 1. (Color online) The sketch of the hyperhoneycomb lattice.
The three lattice vectors of the primitive face-centered

orthorhombic lattice are given by a, :(0,\/5,3), a, =(1,0,3),
a; = (l,x/E,O). The four sublattices A, B, C, and D are shown,

and we set r, =(0,0,0). The nearest neighbor vectors are

My =22 D, My = 21,21, M, =2 L2,

M, = %(—1,«/5,—1), and M; = (0,0,1). Different bond types x, y,
and z are marked by red, green, and blue, respectively. The
conventional orthorhombic unit cell is set by the crystallographic
axes a, b, and ¢, which are related to the Cartesian axes {X,y,Z}
appearing in the spin Hamiltonian Eq. (1) by X=(a+¢)/ V2,
§=(&—4)/~/2, and z = —b. The shaded region denotes a loop on

the hyperhoneycomb lattice containing 10 sites. The plaquette
operator on such a loop is a conserved operator W,, since

W, H,1=0.

respectively. Note, however, that there are two non-equiva-
lent types of x and y bonds, and the hyperhoneycomb
structure can be viewed as a stacking of two types of zigzag
chains formed by x and y, and x’ and )’ bonds run along
two distinct directions (90° rotated with respect to each
other): xy-chains run along a+b direction and x'y’-chains
run along a—b direction. The two types of chains are in-
terconnected with vertical z-bonds. Thus, in total, there are
five types of nearest neighbor bonds: x, y, x', y', and z.
Apart from translations, the crystal structure is invariant
under the D,, point group symmetry, which consists of (i).

Inversion i through the center of every x- or y- or x'- or
y'-type of bonds. (ii) Three n-rotations, C,,, C,;, and C,,,
around the axes a, b, and ¢, respectively, passing through
the middle of the z bonds. In particular, C,, maps x-bonds
to y'-bonds and y-bonds to x'-bonds. Similarly, C,, maps
x-bonds to x'-bonds and y-bonds to y'-bonds. Finally, C,,
maps x-bonds to y-bonds and x'-bonds to y'-bonds. (iii)

Three glide planes which arise by reflections across the ab-,
bc- and ac-planes passing through an inversion center,

followed by non-primitive translations by (110), (Oll)
44 44
and (%0%), in orthorhombic units, respectively.

3. The spin-phonon model

We focus our discussion on the spin-phonon Hamiltonian
on the hyperhoneycomb lattice:

H=H+H" +HC. ®)

The first term in Eq. (2) is the spin Hamiltonian given
by Eq. (1). The second term is the bare Hamiltonian for the
acoustic phonons. The third term is the magnetoelastic
coupling.

3.1. The Kitaev model on the hyperhoneycomb lattice

The spin Hamiltonian is given by Eq. (1). For simplicity,
we consider the isotropic Kitaev model on the hyper-
honeycomb lattice. Because only one component of the spin
interacts along each bond, there is one conserved quantity
for every plaquette, which on the hyperhoneycomb lattice
consists of ten sites (see shaded region in Fig. 1). The
plaquette operator is given by

w,=]]ou". A3)

reP

which is the product of spin operators around a plaquette
P, whose spin component o(r) is given by the label of the
outgoing bond direction. Since all plaquette operators Vf/p
commute with the Hamiltonian and take eigenvalues of 1,
the Hilbert space of the spin Hamiltonian H can be divided
into eigenspaces of Vf/p. The ground state of the Kitaev
model on the hyperhoneycomb lattice is the zero-flux state
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with all Wp =1 [33, 35]. This, however, can not be shown
exactly based on the Lieb’s theorem [67] but only based on
the numerical calculations [35, 40]. Thus, strictly speaking,
the Kitaev model on hyperhoneycomb lattice is not exactly
solvable.

Using the Kitaev fermionization o =ib‘c, with
K =X, ¥,z [32], the spin Hamiltonian Eq. (1) can be rewrit-
ten as

HS = Z Z i ufpc, ¢y :%Z’Hﬂ,crcr,, @)
r,r'

K (r)y

where uy . =ibby =*1, H. . =iJ ug, if r and r' are
neighboring sites connected by a k bond and H, . =0
otherwise. In the ground-state flux sector, we choose the
gauge sector with all ul'f,f =1, which corresponds to all
W, =1. The quadratic fermionic Hamiltonian in Eq. (4)
can be diagonalized via a standard procedure [32]. Since
the hyperhoneycomb lattice has four sites per unit cell, the
resulting band structure has four fermion bands. The diago-
nal form of the Hamiltonian [38]

2 1
HS = ZZ Sk,p |:W]T(,p\'lk,p _E:| (5)

k p=1

is then obtained by the unitary transformation 7-(k =

=W & -V\{j of the Hermitian matrix 7, with elements

v 1 ik-(r'-r _
(Fb )y = Nzrevzr@ﬁ”,e k(0 where g, = (&),

are the fermion energies. The fermionic eigenmodes are
given by

1 S —ik-r
Y~ o), Ze e ©

rev

Note that only the fermions v, with energies &, , >0 are
physical due to the particle-hole redundancy H_, =-H,,
which implies y_, , = \Vl,u and ey ,, = —¢ . Thus, only
two branches will have positive spectrum. The lowest
branch shown in Fig. 2 for the (k,,k;) plane exhibits the
nodal line, which is protected by time-reversal symmetry
[35]. We can also see that similarly to the spectrum of the
Kitaev model on the honeycomb lattice, in this case, the
dispersion is linear about the zero-energy modes, i.e., each
point of the nodal line represents a Dirac cone. By solving
the equation g, ; =0, we obtained the functional form for

the nodal line, which reads

ky, =Larg(1—2005ka ii\/l+4coska —2co0s2k, ) (7

NG

In Fig. 3 we plot the density of states (DOS) for the
hyperhoneycomb Kitaev model (shown by the black line).
The DOS is defined as

DOS(E)= > J.BZS(E—ek,“)d3k, (8)

u=1,2

(2)

4.0
3.5
3.0
2.5

2.0

1.0

0.5

Fig. 2. (Color online) Panel (a) shows the dispersion of the lowest
branch of the fermionic excitations in the hyperhoneycomb
Kitaev model through the plane of the nodal line, whose position
in the Brillouin zone is explicitly shown in panel (b).

where the contributions from both branches of excitations
are summed up. The low-energy density of states is linear in
energy, which follows directly from the linear low-energy
dispersion and the dimension of the Fermi surface, df, or in
other words, the dimension of the set of points on which
the energy is zero — for a nodal line d , =1 and for a Di-
rac point d , =0 [36]. For comparison, in Fig. 3 we also
plot the DOS for the 2D honeycomb model (shown by the
red line). The differences between the densities of states
for these two lattices can be understood in terms of the

0.5
0.4 1

L 0.3}

A 2
0.2}

0.1r

Fig. 3. (Color online) One-fermion densities of states of isotropic
Kitaev models on the honeycomb (red line, /) and hyper-
honeycomb (black line, 2) lattices. In each case, the density of
states is normalized such that its integral is unity.
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number of fermionic bands, one for the honeycomb lattice
and two for the hyperhoneycomb lattices, and their nodal
structure — two Dirac points for the honeycomb lattice and
the closed line of Dirac points for the hyperhoneycomb
lattice. The former leads to the absence of the Van Hove
singularities and overall more flatten DOS for the
hyperhoneycomb lattice. The latter is responsible for a
faster growth of the hyperhoneycomb DOS at low ener-
gies, which is consistent with higher dimensionality of the
nodal line and enlarged number of low-energy states.

3.2. Acoustic phonons on the hyperhoneycomb lattice

The bare Hamiltonian for the acoustic phonons on the
hyperhoneycomb lattice is given by

7_‘ph — 7_(}1,<]j‘netic + eliastic (9)

kinetic

P_ . -P
Here, H """ = Z —4E SR where Pq w is the mo-
q.p ’

2pd,
mentum of the phonon with polarization p, §,, is the area
enclosed in one unit cell and p is the mass density of the
lattice ions.

Caaaaqg + Cacacqcz' + Cababqlg
954, (Caabb + Cabab)
9.4 (Caacc + Cacac )

F==

where ¢, =¢gsinBcos¢, g, = ¢sinbsin¢g and g, = gcosO
are the components of the acoustic vector q in the ortho-
rhombic reference frame. By diagonalizing the matrix (11),
we compute eigenmodes, one longitudinal and two trans-
verse acoustic modes, and the corresponding eigenenergies.
The longitudinal and transverse acoustic phonons are then
given by

Uga | (Ry(0.0) R(0.0) Ri5(0.0)) g
uq,b = R21 (ea ¢) R22 (9, d)) R23 (93 ¢) a(l]’L ’ (12)
u Ry1(6,0) Ry (6,0) Ry3(0,9) )| a2t

q.¢ q

<

where R is the transformation matrix. The energies of the
longitudinal and transverse acoustic phonons are

20k (D) e

19.9k

(a) e

19.8k

19.7k
qa qv Ga

19.6k

119.5k

19.4k

9p494 (Caabb + Cabab)
Caparda *+ Coeredl + Coppds
94, (Cbbcc + Cbcbc)

In order to describe the dynamics of the low-energy
acoustic phonons, it is convenient to move away from the
Hamiltonian formulation and employ instead the long-
wavelength effective action S approach in terms of the
fields u = {u,,u,,u,}, which describe the displacement of an
atom from its original location. To lowest order, it reads [69]

1
8§ = [a*xdx pe.uy +F ], F= Gy (10)

where F' is the elastic free energy, €; = %(Q.u ;+0;u;) are

the components of the strain tensor and Cy; represent the

elements of the elastic modulus tensor. From symmetry
considerations, for a lattice with D,, point group sym-
metry, there are nine independent non-zero elastic modulus
tensor coefficients: C,.... Cipp> Ceccer Cacacr Cababs

Caabb ’ C

aacc?’

Chrees Chepe- Performing the Fourier trans-
1 ; .
= z qr
form, u(r) N g the elastic free energy can be

explicitly written as

9.9 (Caacc + Cacac )
9p9. (Cbbcc + Cbcbc) ’ (1 1)
Cacacqg + Cccc*cqcz + Cbcbcql%

Q) =41(6,4)g.
Qyt =vyh(6,0)q, (13)
Q- =v2"1(6,9)g,

where the sound velocities for the longitudinal acoustic
mode, vﬂ (0,0), and two transverse modes, vi’L(B,d)) and
v21(0,¢) are anisotropic in space. In Fig. 4, we plot the
angular dependences of these velocities computed for the
elastic modulus tensor coefficients close to those in B-Lilr,O4
(inkbar): C,,., = Crppp = Covee = 2800, C,,.. = Cpp.. =1300,
Coavp = Cabab = Cacac = Chrepe =900 [70], such that the
maximum velocity is set to 2:10* m/s, which is close to vﬂ

in 0-RuCl; estimated from the Debye temperature [20].

(c) 9e

T

11. 35k

11.30k

11.25k

11.15k

11.10k

11.05k

Fig. 4. Angular dependence of the sound velocities for (a) longitudinal mode and (b), and (c) two transverse modes.
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Knowing the acoustic phonon dispersion relations, we
can now determine the free phonon propagator in terms of
lattice displacement field #, is given by

DY), (1) = ~i(Ti* (i (0N,

vv,q

(14)

where T is time ordering operator, the superscript (0) de-
notes the bare propagator, v =||,(1,1),(2, 1) labels the polar-
ization, and 7, are phonon eigenmodes in the corresponding
polarizations. We follow the convention in Ashcroft and
Mermin [71], and write the second quantized form of z, as

iy (0 = =) g &),
q

5V (15)

w' =i i 1 SV - v SV
I (@,Q) = 2 faie™ 5 (Tw e ORavi W e O v ) = Te [ 13,00 )2, Gk~ q,0+ Q)|

k.k'

where v,v'=[|,(1,1),(2,1) and G(k,®) denotes the Majorana
fermions Green’s function for the lowest branch, i.e., given
by yy =y ;, which is given by

Gk,m)= —iT dt <T\yk (Owh (0)> olot

—00

(18)

and ?:Z,k are the Majorana fermion-phonon (MFPh) cou-
pling vertices. The renormalized phonon propagator is then
given by the equation

-1

@)= {(D@e) M@ . (19

Thus, in order to study the phonon dynamics in the
Kitaev spin liquid, it remains to compute the MFPh coupling
vertices A4\, which we will do in the next section.

3.3. Microscopic derivation of the effective low-energy
coupling Hamiltonian

The third term in Eq. (2) denotes the magneto-elastic
coupling that arises from the change in the Kitaev coupling
due to the lattice vibrations. In this section, we express the
spin-lattice coupling in terms of the MFPh coupling and
derive the explicit expressions for the MFPh coupling ver-
tices. This is the main result of this work.

In the long wavelength limit for the acoustic phonons,
the coupling Hamiltonian on the bond can be written in a
differential form:

where 8, is the area enclosed in one unit cell and p is the
mass density of the lattice ions. The time-ordered phonon
propagator in the momentum and frequency space is then
given by

; h 1

DYV (q,Q) = |dtD? (t)e™ = - .

0 (a,92) = [diDQ), () 5 PR
(16)
The dynamics of phonons will be thus described by the
decay and scattering of these eigenmodes on low-energy
fractionalized excitations of the Kitaev model, which can
be accounted for by the phonon self-energy. At the lowest
order, the phonon self-energy is given by the polarization

bubble that can be expressed as [20]:

amn

,HrC,HMa = _y\'MO.

(u(m)—u(r+M,))oyoy,y, =

=AM, [(Ma .V)u(r)] Oy oYM, - (20)

where kw(d—J] [, is the strength of the spin-phonon
" Jeq

is the lattice constant. On the
hyperhoneycomb lattice, there are five inequivalent nearest
neighbor x, y, z, x'y" bonds, defined, respectively, by

M, =M,, M,, M;, M,, M) (see Fig. 1) given by

interaction and /,

M, =%(1,\5,—1), M, =%(1,—\/§,—1),

=%(—1,\5,-1), M, =%(—1,\/§,—1),

M; =(0,0,1), 1)

where all the components of these vectors are given in the
orthorhombic coordinates and are shown in Fig. 1. Note
also that we choose the directions of M; vectors such that
the zero-flux ground state sector corresponds to u; =1 in
all nearest neighbor bonds when i€ 4 and i€ B Using
these vectors, we can write the spin-phonon coupling Ham-
iltonian as

H——?»Z[4cs csrA+M5 €0+

YV &Y
+0—rAGrA+M2

(eaa + 26, +€, — Zﬁeab —2€,. + 2\/§€bc)+ oy GrA+M4 ( o T 26 T €, —Zﬁeab +2¢,, —2\/56176 )] +

+Z|:cy ol o, (€ (Cua + 265 + e + 220 =264 = 28264 )+ 05, 0%, vty (€aa + 2600 + e + 23264 + 26, + 2426, )J (22)
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In the following, we follow the symmetry arguments to
write down the spin-phonon Hamiltonian, which will have

four independent symmetry channels under D,,, i.e., Ag,
B4, By,, and Bs,, which are the inversion-symmetric ir-

reducible representations (IRRs) of this group. The linear
combinations of the strain tensors that transform as the

D, are €,,, €, and €., in the 4, channel, and €, €.

cco
and €, in By,, B,,, and By, respectively. Then we identi-

fy the linear combinations of the Kitaev interactions that
transform according to these IRRs. To do this, we need to
remember that the symmetry of the Kitaev model (1) in-
volves combined lattice and spin transformations. In par-
ticular, the three m-rotations around the crystallographic
axes a, b, and ¢ must be combined with the rotations in the

spin space: C,, rotation should be combined with

[0,,0,,0.]>[-0,,-0,,—0_] transformation in spin

space; similarly, Cy, with [6,,06,.6.]—>[-0,,-0,,0_]

y?

HA

(o
TA-'B

o _ z z y
=y > {4€CCGFAGfA+M5 +(€aq 284 +scc)(cs

B

and C,, with [0,,6,,6.]—>[0,,0,,—0_] rotations in spin
space. Taking this into account, we find

sp z __z
Ag ~ (GrAGrAJrMS >

Gl OY o, T 0L O o, + O Oenty 5L O, )
Big ~ G}VBGfB+M1 - :AGfA+M2 + 07, Oy +M; ~Or, Or, 1M, »
BSZ ~ _G:B cTl)‘)B+M1 _Ga G:AJrMZ +G:BG:B+M3 +G;CA G:A+M4:
B3SZ ~ _Gf‘}B GfBJer +Gf‘}A Gf'}A+M2 +GfB G:B+M3 _G:A c’1)~(A+M4-

The spin-phonon coupling Hamiltonian H, can be writ-
ten as a sum of four independent contributions, one from

Agh ® AP and three from BI"; ®B,?, ng ® By and

h s _ g4 By B B3 .
Bg’g ®B3g. Thus, H. =H, & +H,'¢ +H, ¢ +H, 8, where:

)

y

x
cSrB +M; +

+0t o
rA+M4

y y X X
GrA cSrA+M2 + GrB cyrB+M3 rA

B
lg — YV &Y _ <V &Y X o ox X X
He 7LBlg z Cab (GrB Org+M; ~ Ory Ory+m, T Org Orgamy ™ Ory Ory iy )’
TA-'B
HB2g =) z e -7 &7 s’ &’ +6% oF U (23)
¢ BZg ac rg ~rg+M; ry TrpA+M, rg “rg+M; ra Orpa+My |>
TA-'B
HB3g =) Z e -7 o7 +6? o7 +6% oF i
c B3g be rg ~rg+M; ry rpA+M, rg “rg+Mj ry Ora+My J>

TA-'B

where we absorbed numerical prefactors into the defini-
tions of the coupling constants A , ,A B ,Ag. and Ag
Next,we express the spin-lattite coupling in term¢ of
the MFPh coupling. To this end, we again express the spin
operators in terms of the Majorana fermions using

oy =ib;c,. Performing the Fourier transformation of the

. . . [2 Kr
Majorana fermions given by ¢, , = ﬁZkaaae o,

where o= A4,B,C,D, we rewrite the product of the spin

variables in terms of the Majorana fermions on all
inequivalent bonds as

0 —ie™™ 0 0 00 0 0
Y T ot | e 0 00 vy T qf 00 0 0
OrGrim, — AZq-kSk 0 0 0o SkAks  OrOpy, > A Sk 0 0 0 ika, [SkAk
0 0 00 00 —ie™™ 0
0 =i 0 0 00 0 0
T t|! 00 T f 0 0 0
OrOrim, = AqkSk 0 0 SkAk,  OrOrim, = A xSk 0 0 0 PRI SkAk;
00 00 00 —ie™2 0
0 0 = 0
+/0 0 0 i
SHCHEVE _)ATq—kSlL 0 0 SkAk (24)
0 -i 0 0
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where a; are the primitive unit

=diag{expik- r; }j:c,b,d,tl and

vectors, Sy =

T
-q-k Cx
T _| "9k | b
A_q_k , Ay s
-q-k dk
a_qx ax

where in order to have simpler notations we denoted
Cxa4 =0k Cxp=by, o c=cy, ¢ p=dy. We used this
particular order in forming the vector of the Majorana
fermions, because we would like to use the auxiliary Pauli
matrices for the spin products entering in Eq. (24). Next
we perform the Fourier transformation of the strain tensor

. 1
into the momentum space: €qp(r) = T X
N
i .
qu E(qoc”qﬂﬁ +qpttg g ) . We can now rewrite the

Majorana-phonon coupling Hamiltonian as a sum of the
contributions from different symmetry channels:

2 A B B B
H, = WZ(H,(,!; +Hk}qg +ij§ +kalg ) (25)
k.q

with
A, 0 -ié
Hq,i = l7\‘A (4qcuq,cATq—kS£ T~ A ’ SkAk +
£ i6; O

+ (qcuq’c, + thuq’b +q,Uqq )qu_kSl:QAk,lSkAk ),
By i}LBlg T ofA
Hq,k = T(qauq,b + qbuq,a )A—q—kSka,ZSkAk P (26)
Byg ik32g T ofA
Hq,k = 2 (qauq,c +qcuq,a )qukaka,SSkAkﬁ

i
Byg _ TBig T A
'Hq’kg - (qbuq,c +qcuq,b)A7q7kSka’4SkAk.

A

0
Here we denote 0:(0 Oj, G, are the auxiliary Pauli

matrices and O, -matrices are defined as

. [1+cos(k -a3)]6, +sin(k-a5)6, 0]

ol 10) —[cos(k-a,)+cos(k-a,)]6, —[sin(k-a,)+sin(k-a,)]5, ’
o [1+cos(k -a3)]6, +sin(k -a3)5, o @7
2 0] [cos(k-a,)+cos(k-a,)]6, +[sin(k-a,)+sin(k-a,)]|5, ’

S

. ([1—cos(k -a3)]6, —sin(k -a;)6,
k3

. [[l—cos(k-ag.)]é2 —sin(k -a5)6,
k.4

(@}

Note also that since we are using the long wavelength limit
for the phonons, we only kept the leading in ¢ terms in all
the expressions.

To obtain the expressions for the MFPh coupling verti-
ces, we express the phonon modes in terms of the trans-
verse/longitudinal eigenmodes (12) and get

}A\’lf‘lk:l?"A 4q Ry X _i?3
' o iy O

ihg ihg
2

+

o
[cos(k-a,) - cos(k -a,)]6, +[sin(k -a,) —sin(k~az)]61}

9,
[cos(k-a,)—cos(k-a,)]6, +[sin(k -a,)—sin(k-a,)]| 5, J

My =al A SLAL S A,
LA SIAGRSKAL (28)

2,1 _ =1, T42,0
Hyx =tg~ A_q i Sk gk Sk Ak,

where the MFPh vertices are given by

J‘*‘(%Rn +2q,Ry +‘1aR11)Qk,1 +

ik

¢ (qaRZI +qull)Qk,2 +%(%R31 +chll)Qk,3 + ;g (%R31 +q.Ry, )Qk,4’
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g g
+—
2
fo 1l
>\‘q,k _leg 4ch33{.
iG
i\ i\
1 A p)
+ 2 - (%R23 + 9,5 )Qk,Z + £

4. Summary

In this work, we perform the first step in the study of
the phonon dynamics in the Kitaev model on the hyper-
honeycomb and derive the Majorana fermion-phonon cou-
pling vertices using the symmetry considerations. We will
use these vertices to compute phonon attenuation, phonon
conductivity, phonon viscosity, and phonon Hall effect,
which indirectly will allow us to study the fractionalized
excitations in the Kitaev spin liquid. The latter two observa-
bles are non-zero only in the presence of time-reversal
symmetry breaking due to applying a magnetic field.

All these observables can be obtained from the phonon
self-energy (17), this diagrammatic computation procedure
was formulated by some of us in Refs. 20, 21. In particular,
the sound attenuation is determined by the decay of a pho-
non into a pair of Majorana fermions and can be calculated
from the imaginary part of the phonon self-energy as

1
o (@)~ —Elm[nph (@9)],, > 6O

N

where v, is the sound velocity, which in our case depends
on the direction of q. We expect that the attenuation rate
due to this process will be linear in temperature due to the
vanishing density of states at the vicinity of the nodal line
and, thus, will be the dominant one compared with the
sound attenuation due to phonon-phonon interactions that
in the three-dimensional system scales as oc T4, Our pre-
liminary results, which will be published elsewhere, indi-
cate that due to the presence of the nodal line in the low-
energy Majorana fermion spectrum, the scattering of the
acoustic phonons on the Majorana fermions is stronger for
the hyperhoneycomb lattice than for the honeycomb lattice.
The sound attenuation also shows a strong angular depen-
dence at the leading order in phonon momentum ¢ since
both the sound velocity on the hyperhoneycomb lattice and
the Fermi velocity of the low-energy Majorana fermions
strongly depends on the spatial direction. We also anticipate
that the Z, fluxes will play an important role in the phonon
dynamics at temperatures above the flux gap. Finally, the
same Majorana fermion-phonon interaction also gives rise

(%Rn +q.R3 )Qk,B +

—iG, A
o + (ch32 +2q,Ry +q,Ry, )Qk,l +

i\

(%Rzz +q, Ry, )Qk,2 +%(qaR32 +q.Rp )Qk,3 +%(‘1sz2 +q.Rp )Qk,4n

0 _163 A
. P +(qcR33 + 25 R+, Ri3) Oy |+
3

i\
3 ~
5 £ (qu33 +q.Rys )Qk,4'

(29)

to the finite lifetime of the Majorana fermions. This effect,
however, is quite weak, and the lifetime scales as t© o T2,
which is much smaller than the typical fermion energy ~ 7.
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MarniTonpyxHi epekt y rinepcoToBiin CriHOBIN
KMTAEBCHKIN pPignHi

Aysel Shiralieva, Artem Prokoshin, Natalia B. Perkins

B ocraHHi pOKM NpPHITyCKajoCs, LIO AEKIIbKa MOTTOBCHKHX
130JITOPIB 3 BEIMKOIO CHIH-OpOITAIFHOIO B3a€EMOJIEI0 MOXYTh
OyTH ONM3BKUMU [0 KBAaHTOBOT CIiHOBOT pinuHu KuTaesa, 1ikaBoio
OCOOJIMBICTIO KO € PO3MOAIN CHIHOBHX 30y/DKEHb Ha PyXoMi
¢depmionn Maitopanu Ta craTu4Hi Z, MOTOKH. Ha ykaitb, OCHOBHUIA
CTaH IIMX CHCTEM BAXKO 3a(iKCyBaTH EKCIEPUMEHTAILHO, 00 BiH
HE BHSBIISIE 0COOIMBOCTEH Ha BiZIMiHY Bill 3BUYAHHOTO JIOKAJIBHOTO
30HIyBaHHs. 3alpONOHOBAHO ISl 3HAXO/PKCHHS HPOSIBIB PO3.Ii-
JeHHs 30y/KeHb BUKOPUCTOBYBATH iXHiil 3B’430K i3 KOJIMBaHHAMU
IpaTKy, TOOTO MarHITONPYKHUMI 3B’S30K, SIKUil BAHUKAE BHACIIIOK
3aJIEKHOCTI B3a€MOJIT MK CIiHaMH BiJ IXHBOT BiJHOCHOT BiZiCTaHi.
IToka3aHo, 110 MarHiTONMpPYXHHil 3B’SI30K MOXE HPHBOIUTU JIO
cyTTeBUX Moaubikauiii GOHOHHOI AWHAMIKH, sIKA MOXE CIIOCTe-
piratucs y BUIIISI HEpEeHOPMYBAHHSI BUMIPIOBAaHOTO (JOHOHHOTO
CIIEKTpa, 3aracaHHs 3ByKY Ta XOJUIIBCHKOI ()OHOHHOI B’SI3KOCTI.
Ile pobuth (HOHOHHY AMHAMIKY NEPCIEKTHBHHM IHCTPYMEHTOM
JUIsL XapaKTepu3yBaHHs Ta igeHTudikauii ¢pa3 KBaHTOBOI CiHOBOT
pinuau. OCHOBHY yBary NMpHALIEHO MAarHITONPYKHUM edeKTaM y
TpuBHMIpHIii Moneni KutaeBa, sika peanizyeTbest y TilepCcoTOBiit
rparni. ['inepcoToBa KUTa€eBCHKa CIIIHOBA piiMHA AyXe IiikaBa, 60
CHJIbHY KHTA€BCBbKY B3a€MOZII0 OYJIO CIIOCTEPEKEHO y KUTAEBCh-
KoMy MarHeTuky [B-LipIrO;, B sskoMy criH-0pOiTaJbHO HOB’s3aHi
Joig= 1/2 MomeHTH ipHAif0 GOPMYIOTH TOUHY TilEPCOTOBY TPATKY.
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