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COPOLYMERS AND INTERPENETRATING POLYMER
NETWORKS OF THERMOREACTIVE NITROGEN-CONTAINING

RESINS. MINI REVIEW

In a short review the effective methods of optimization of structure and properties of high-performance polymers obtained
from thermoreactive nitrogen-containing resins such as benzoxazines, bismaleimides, cyanate esters have been analysed.
High crosslinked density copolymer thermosets are synthesized through chemical interactions between reactive functional
groups, which belong to the monomers/oligomers used. The different possible processes such as copolymerization or formation
of interpenetrating polymer networks are discussed. The high-performance polymers and composites from thermoreactive
nitrogen-containing resins are effectively used in aerospace industry and microelectronics as materials possessing high
thermal and thermooxidative stability, radiation and chemical resistance, low water absorption, low dielectric loss, high
dimension stability and high adhesion to different substrate. The performance characteristics of this kind of materials can be

controlled by changing their composition, temperature-time curing schedule, using catalytic systems.

Keywords: copolymers, IPNs, thermoreactive resins, benzoxazine, bismaleimide, cyanate ester resins.

Modern high-tech industries, such as aerospace
and microelectronics, place high demands on the
polymer materials and composites to be used.
Such materials must withstand high loads at ele-
vated temperatures, high humidity, and radiation.
Just a few high-performance nitrogen-containing
resins of the materials on the market, meet high
requirements. Bismaleimides, benzoxazines, cy-
anate ester resins and bisphthalonitriles exhibit
high thermal and thermooxidative stability, mois-
ture, radiation and chemical resistance. While car-
bon and glass fiber reinforced composites, adhe-
sives, coatings and casting compounds based on
traditional epoxy resins provide high mechanical
characteristics usually at temperatures up to 150
°C, the above-mentioned nitrogen-containing
thermosetting polymers are operable at 250 °C,

and some of them at 300 °C and higher. Each of
these polymers has its own advantages and disad-
vantages, and scientists and engineers working in
this field try to find ways to optimize the synthesis
methods, structure and properties of these materi-
als. One of the directions is to obtain copolymers
of these polymers. Due to the high chemical activ-
ity, the functional groups of such monomers/oli-
gomers easily enter into chemical interaction with
the formation of densely cross-linked copolymers
that contain mixed nitrogen-containing heterocy-
cles in their structure, providing an optimal com-
bination of the necessary characteristics for the
efficient operation of these materials.
Thermostable polymer matrices are widely
used in aerospace industry and microelectron-
ics. Among them, thermosetting Benzoxazines
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Scheme 1. Polymerization of benzoxazines
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Scheme 2. Copolymerization of benzoxazines with
bismaleimides

(BOAs), Bismaleimides (BMIs), Cyanate Ester
Resins (CERs) and Bisphthalonitriles (BPhNs) ex-
pand the high-temperature operation regime, thus
constituting the most promising materials.

It is well known that the benzoxazine ring is sta-
ble at low temperature, but a ring opening reaction
occurs at high temperature, and novolac type oli-
gomers having both phenolic hydroxyl group and
tertiary amine group are produced (Scheme 1) [1,
2].

Using this benzoxazine compound as a phe-
nolic resin, it is expected to develop a new type
of phenolic resin that releases no volatiles during
curing reaction and needs no catalysts. Benzox-
azine monomers exhibit many other attractive
properties, such as low melt viscosity. In addition,
the polymer is characterized by low volumetric
shrinkage upon polymerization, low moisture
absorption, excellent chemical resistance, flame
retardancy, electrical properties, thermal stability
and mechanical properties; and very rich molec-
ular design flexibility [2]. For high temperature
operations, BOAs have to be cured. Recently, ma-
leimide-modified (Scheme 2) and furan-modi-
fied benzoxazines have been synthesized, and the
properties of the cured resins have been investigat-
ed [2-7]. Nanocomposites using benzoxazines also
have been reported [8-12].
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BMI- and CER-based crosslinked polymers
possess high glass transition temperature and high
thermal stability. The chemistry of BMI and CER
curing reactions are given in Scheme 3 and 4, cor-
respondingly.

At the same time, these polymers are very brit-
tle, and their processing as such to fabricate articles
is strongly complicated by high curing temper-
atures and limited durability. To overcome these
problems, it is of common practice to use reactive
diluents (reactive co-monomers) to improve resin
processability. Consequently, the ideal co-mon-
omer would function both as a reactive diluent,
i.e. liquid at room temperature, and as toughening
agent. The key issue to use a co-monomer is that
the co-monomer undergoes a linear chain exten-
sion reaction with the BMI to reduce the crosslink-
ing density in the fully cured resin. For example,
2,2’-diallylbisphenol-A (DABPA) is used as a
co-monomer capable of reacting via the Michael
reaction with BMI. The technological properties
of the system based on 4,4’-(N,N’-bismaleimide)
diphenylmethane (BMDPM) and DABPA turned
to be excellent, but the different reactions involved
are quite complex, i.e. -ene and -diene addition
reaction, Michael reaction, Diels-Alder reaction,
homopolymerization, copolymerization, reverse
Diels-Alder reaction, etc. [13]. The brittleness was
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Scheme 3. Polymerization of bismaleimides

Scheme 4. Polycyclotrimerization of dicyanates into
cyanate ester resins
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also substantially reduced, with retaining the high
heat resistance. Recent works on BMDPM/DAB-
PA have shown that it was possible to crosslink the
system by electron-beam (EB) or by UV at room
temperature [14].

CERs differ from others by a very regular
structure of the polymer networks, namely poly-
cyanurates (PCNs), obtained by their polycyclo-
trimerization [15-19]. They have received much
attention because of their unique combination of
physical properties, including high thermal stabil-
ity (> 400 °C), high glass transition temperature
(> 270 °C), high fire-, radiation and chemical re-
sistance, low water absorption and low outgassing,
high adhesion to different substrates and excellent
dielectric properties (¢ = 2.64-3.11) [16-18]. As
a result, CERs are currently used as structural or
functional materials in aeronautics, space (com-
posite strakes, fins, nose radomes, heat shields),
printed circuit boards, adhesives etc. [20].

The following companies manufacture CER
for these applications: Cytec Aerospace Materi-
als, Hexcel, Huntsman Advanced Materials, JFC
Technologies, Lonza, Henkel, TenCate Advanced
Composites. By the way, some of these compa-
nies also produce BOAs (Huntsman, Henkel) and
BMIs (Cytec, Hexcel, TenCate). However, like for
most thermosets their main drawback is brittle-
ness. To overcome this limitation modification
of CERs has been developed over the past decade
and is still of great interest. CERs are modified
by many different additives, such as engineering
thermoplastics, elastomers, reactive oligomers
[16-19, 21-27] with formation of semi-IPNs, IPNs
and hybrid networks. As thermoplastics with high
glass transition temperature, polysulphones, pol-
yethersulphones, polyimides, polyetherimides,
polyarylates, and polycarbonates can be used [28-
42]. 5-fold increases in GIC fracture toughness,
2-fold increases in tensile strength, and 5-fold in-
creases in tensile elongation-at-break, 2.5-fold in
unnotched Izod impact strength are characteristic
of these thermoplastic-modified CER networks
(semi-IPNs) [28]. These effects are reached due to
the microphase-separated morphology generation
(co-continuous phases of the components). The
peak of these publications falls on the late 90s and
early 2000s.

Unfortunately, the improvement of mechanical
properties is generally reached at the expense of
thermal stability. This deficiency is remedied by
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Scheme 5. Copolymerization of bismaleimides with
Ccyanate monomers
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Scheme 6. Copolymerization of benzoxazines with cyanate
ester resins according to Ref. 66-68

synthesis of nanocomposites of PCNs with mont-
morillonite, carbon nanotubes, nanostructured
aluminium borate, ZnO, ZrW,O,, nanosilica, and
polyhedral oligomeric silsesquioxanes (POSS)
[43-61]. The most pronounced effect on mechan-
ical and thermal properties of PCNs is achieved
when nanoparticles with organically modified sur-
face are used.

Over the last decades, several papers were pub-
lished on polymer networks (or IPNs) synthesized
from blends of BMI/CER and BOA/CER [62-68].
For the moment, there is no univocal understand-
ing of the chemical structure of these materials.
Fan et al. [62], for example, consider that in BMI/
CER each monomer forms an own polymer net-
work, which interpenetrate to each other (IPNs),
and there is no co-reaction between BMI and
CER. Alternatively, Wu et al. [63] suppose a co-re-
action between cyanate groups of CER and double
bonds of maleimide cycle of BMI with formation
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Scheme 7. Copolymerization of benzoxazines with cyanate
ester resins according to Ref. 69

of pyrimidine-containing fragments as copolymer
network junctions (Scheme 5).

Kimura et al. [66, 67] and Kumar et al. [68] con-
firmed the formation of co-networks in the BOA/
CER blends (Scheme 6).

The authors assume that isomerization of cya-
nurate cycles into isocyanurate cycles occurred. The
authors noted that a single T, value of the blends
between those of the component polymers implied
a near homogeneous matrix [68]. The thermal sta-
bility of the blends was improved compared to po-
lybenzoxazine matrix. By co-curing cyanate ester
with polybenzoxazine, the cure reactions were facil-
itated and a homogeneous and high modulus poly-
mer matrix was formed. The cured BMI/CER IPN
resin systems showed [62] excellent thermal stabili-
ty, which could be demonstrated by 5% weight loss
temperature (T, ) ranging between 409 and 423 °C,
maximum decomposition rate temperature (T, )
ranging between 423 and 451 °C, and the char resi-
due at 800 °C ranging from 37 to 41 % in nitrogen.
The cured thermosetting resin from benzoxazine
and cyanate ester resin had superior heat resistance,
electrical resistance and water resistance to those
from benzoxazine and epoxy resin [66].

Table 1. Basic properties of high-performance thermosets

Scheme 8. Alternative route for copolymerization of
benzoxazines with cyanate ester resins

However, Wang et al. [69] consider that benzox-
azine just catalyzes polycyclotrimerization of CER
monomers and the catalytic effect results from
the benzoxazine itself, not from the ring-opened
structure of benzoxazine (Scheme 7).

In Scheme 8, a possible structure of the co-net-
works formed at a joint curing of CER/BOA blends
is presented. We suppose that indeed the co-net-
work of CER and BOA formed at thermal cur-
ing of their blends, but not IPNs because cyanate
groups of CER are very reactive towards phenolic
groups formed at ring-opening polymerization of
benzoxazine. It was confirmed in the recent paper

Property | Epoxy | BMIs CERs | BOAs
Density (g/cm’) 1,20-1,25 1,2-1,3 1,15-1,35 1,12-1,19
Curing temperature (°C) RT-180 220-300 180-280 160-220
Curing shrinkage (%) >3 0,007 ~3 ~0
if;’g:;::;‘f(?gluous'use 80-200 230-320 150-250 130-250
TGA onset temperature (°C) 260-340 360-400 400-420 340-370
Elongation (%) 3,0-4,3 3 2-4 2,3-2,9
Glass transition temperature 150-220 230-380 250-270 160-240
Dielectric constant (1 MHz) 3,8-4,5 3,4-3,7 2,7-3,2 3,0-3,6
Tensile modulus (GPa) 3,1-3,8 3,4-4,1 3,1-34 3,8-4,5
act‘)g?(cligijféthermal expansion 45-65 30-50 54-71 58-69
Water uptake (%) 4-5 <2,5 0,7-2,5 <2
248 ISSN 1818-1724. Polymer journal. 2020. 42, Ne 4
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published by C Karikal Chozhan et al. [70]. Po-
lybenzoxazine and cyanate ester hybrid polymer
matrices were developed via solvent method. The
thermal and morphological properties of benzox-
azine-cyanate ester-modified hybrid systems were
studied and compared with those of neat martices.
DSC results revealed that the hybrid matrices exhib-
ited higher T's and curing behavior than that of neat
hybrid matrices. The hybrid matrices yielded higher
char yield than those of neat hybrid matrices.

The increase in the values of LOI indicates that
the hybrid matrices exhibited better flame resist-
ance than that of neat hybrid matrices [70]. Data
resulted from thermal studies infer that these hy-

Table 2. Criteria for selection of polymer thermosets

brid matrices can be utilized in the form of ther-
mally stable encapsulation, adhesive, sealants, and
matrices for different engineering applications.
The combination of Scheme 5 and 8 gives im-
agination on possible structure of CER/BOA/BMI
terpolymer obtained via thermal co-curing [71].
The basic performance characteristics of
high-performance polymer matrices including
CER-, BMI-, and BOA-based crosslinked polymers
are listed in Table 1. The advantages and disadvan-
tages of these thermosets are presented in Table 2
Analyzing these tables and the data from dif-
ferent publications, we can assume that BOA
components will bring to the complex systems

Matrix type | Advantages | Disadvantages
. e Jow cost e Jow thermal stability
Epoxy resins . .
e commercially available e unacceptably poor hot/wet performance
BMIs o high modulus
. . e poor processability; poor solubility in ordinary sol-
o enables affordable, lightweight poorp v P el naty
. . Lo vents
tooling with excellent machinability . .
1 e narrow processing window
and durability ) 1 .
e relatively high dielectric constant
° can be processed at the same
e low strength
cost .
. . e very low elongation at break
as high-temperature epoxy resins
CERs e dimensional stability
at molten temperatures
o excellent adhesion to conductor
metals at T ~ 250 °C
e high fracture toughness e very high post-curing temperature
with a service temperature (T=250-300 °C) is usually required
between epoxy resins and BMIs
e unusually low capacitance
properties
e low dissipation factor
o low dielectric constant
BOAs e Jow cost raw materials e very harmful initial raw materials (phenols, alde-
o low melt viscosity hydes, amines)
e no release of volatiles during o less cross-linked than other thermosets
polymerization
e 1o feed for harsh catalyst or any added
initiator
e near-zero volumetric shrinkage
upon polymerization
e Jow tan delta
e varying crosslink degree
e good sound and noise absorbance

[Data from: Thermosets: Structure, Properties, and Applications ed. by Qipeng Guo, Elsevier,2012; Handbook of Thermoset
Plastics ed.by H.Dodiuk, S.H.Goodman, William Andrew, 2013; Reactive Polymers Fundamentals and Applications: A
Concise Guide to Industrial Polymers Johannes Karl Fink, William Andrew, 2013]
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higher toughness (namely storage modulus, flex-
ural strength and flexural modulus, and lower
curing temperature), BMIs will improve high tem-
perature performance, and CERs will contribute
to higher glass transition temperature, higher ad-
hesion to different substrates, lower dielectric loss,
and lower water uptake.

Finally, we have to note that in order to design

material, which meet the requirements of a specif-
ic field of application one can select some of high
performance polymers described above or com-
bine them through copolymerization process or
creating interpenetrating polymer networks. The
resulting structure and properties of the end prod-
uct can be controlled by changing components ra-
tio, curing schedule, using specific catalysts, fillers.
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KOITOJIIMEPU TA B3AEMOITPOHVIKHI ITOJIMEPHI CITKM TEPMOPEAKTMBHMX A3OTOBMICHUMX
CMOJI. MIHI OI'/IA],

Y KOpOTKOMY OIVLAii IpOaHaTi30BaHi epeKTMBHI MeTOM OITUMI3allii CTPYKTYPH Ta BIACTUBOCTEl BUCOKOC(PEKTUBHIX
HO/MiMepiB, OTPUMMAHUX 3 TePMOPEAKTMBHUX a30TOBMICHNUX CMOJ, TakuMx sK OeH30KcasuHu, Gicmaneimimm, Ii-
aHoBl ecTepu OicdenoniB. Komomimepy TepMOpeakTMBHMX a30TOBMICHMX CMOJ BMCOKOI IMiMBbHOCTI SIIMBAHHSA
CMHTe3yIOTb 3aB[AKM XiMiuHi/l B3aeMOAil MDK peakuiiiHO3ZAaTHMMM (YHKIIOHAJIBHMMU TpyIaMM, sAKi HaaeXaTb
IO MOHOMepiB/o/liroMepiB, 1[0 BUKOPUCTOBYIOTbCA. OOroBopeHi pisHi MOXUIMBI IIpoljecy, IO MaoTb Micle
IpY BUCOKOTEMIIEPATYPHOMY KOMOIHYBaHHI TaKMX peaKTOIUIACTiB, Taki AK KomomiMepusanif ab6o ¢opMyBaHHA
B3a€MOIIPOHUKHIIX ITOTIMEPHNX CiTOK. BucokoedekTyBHI momiMepy Ta KOMIIO3UTH 3 TGPMOPEaKTVBHIX a30TOBMICHIX
CMOJI yCIIIITHO BUKOPUCTOBYIOTHCSA B A€POKOCMIUHII IPOMUCIOBOCTI Ta MiKpO€/IEKTPOHIL[i sK MaTepia/iu, 110 BOIOAIIOTh
BJCOKOIO TEPMO- 1 TEpPMOOKMCHIOBAJIPHOIO CTa0iNbHICTIO, pajjialiiiHO0 i XiMiYHOO CTINKICTIO, HU3BKUM BOJIO/BOIOTO
HOIIHAHHSM, HUSBKVIMU [ie/IeKTPUIHIMI BTPaTaMu, BCOKOIO CTabi/IbHICTIO pO3MipiB 1 BUCOKOIO a/ire3i€ro 0 PisHMX
cybcrpatiB. ExcruryaTariiiHi XapakTepiCTUKH 1[bOTO BUAY MaTepia/liB MOKHA KOHTPOJIIOBATH, 3MIHIOIOYN iX CKIIaf,
PEXUM TeMIIepaTypHO-4aCOBOIO OTBEPAHEHHs, BUKOPUCTOBYIOUN CIeldiuHi KaTamiTUIHI CUCTeMY Ta HATOBHIOBAYI.

Kntouoei cnosa: xononimepn, BIIC, TepmMopeakTuBHi cMony, 6eH30Kcas3nH, bicManeiMif, 1iaHoBi ectepu 6icdeHomiB.

ISSN 1818-1724. Honimepruti xcypran. 2020. 42, Ne 4 253



