

ПРО КОРЕЛЯЦІЮ МЕХАНІЧНИХ ВЛАСТИВОСТЕЙ АЛМАЗОПОДІБНИХ НАПІВПРОВІДНИКОВИХ СПОЛУК З ГРАТКОВОЮ ТЕПЛОПРОВІДНІСТЮ

Михальченко В.П. (Інститут термоелектрики, вул. Науки, 1, Чернівці, 58029, Україна)

Михальченко В.П.

• Здійснено аналіз і порівняння механічних (пружних) властивостей напівпровідникових сполук типу $A^n B^{8-n}$ (n = 1, 2, 3), що володіють різним ступенем іонності хімічному зв'язку f_M з їх гратковою теплопровідністю χ_p за T = 300 К. Показано, що з ростом f_M і ступеня пружної анізотропії $A = 2C_{44}/(C_{11} - C_{22})$ (C_{ij} – пружні постійні в позначеннях Фойгта), величини χ_p монотонно убувають від фосфідів до сульфідів і до галогенідів. Таким чином, вперше встановлено функціональну залежність $\chi_P(A)$. Запропонована оцінка технологічних параметрів, необхідних при конструюванні й виготовленні термоелектричних пристроїв.

Вступ

Назва цієї роботи може викликати певне здивування серед фахівців у галузі термоелектрики: чи є зміст аналізувати, порівнювати й обговорювати механічні властивості й теплопровідність χ твердих тіл, використовувану в розрахунках термоелектричної добротності $Z = \alpha^2 \sigma / \chi$ (α , σ – коефіцієнти Зеєбека й електропровідності)? Справді, розглядаючи ряди Зеєбека, Юсти й Мейсснера, легко побачити, що метали, які мають високі значення σ , χ і механічні властивості (пружні постійні C_{ijkl} , модулі Юнга, зсуву, стиску й ін.), характеризуються суттєво меншими значеннями Z порівняно з напівметалами й напівпровідниками (див., напр., [1]).

Однак у виборі конкретного термоелектричного матеріалу (для будь-якої області його застосування) питання про взаємо-однозначну відповідність механічних, теплових і термоелектричних властивостей має вирішуватися шляхом урахування всіх реальних факторів, що забезпечують як механічну стабільність, так і високі значення Z у широких інтервалах температур і тисків. Нижче буде викладено аналіз і процедура відповідних розрахунків стосовно бінарних напівпровідникових сполук типу $A^n B^{8-n}$ (n = 1, 2, 3). Вибір цих матеріалів обумовлений тим, що вони характеризуються різним ступенем іонності хімічного зв'язку f_{M} , що суттєво впливає як на рівноважні (механічні, термічні, калориметричні), так і нерівноважні (граткова теплопровідність, внутрішнє тертя, в'язкість) властивості й, особливо, на електрофізичні властивості. Як підкреслювалося в [2], механічні характеристики, такі як твердість, крихкість і пластичність, не менш важливі, ніж властиво термоелектричні властивості даного матеріалу, для забезпечення високої надійності відповідних виробів, приладів і пристроїв.

З ретроспективної точки зору слід звернути увагу на ті обставини, які відіграли важливу роль у розумінні й осмисленні наукових і прикладних аспектів термоелектричного приладобудування.

У міру розширення області досліджень фізичних властивостей від елементарних напівпровідників *Ge*, *Si*, *β*-*Sn* до їхніх бінарних аналогів – сполук $A^n B^{8-n}$ (n = 1, 2, 3) змінилася не тільки кристалічна структура (напр., зник центр інверсії), але й утворювався якісно новий тип

хімічного зв'язку – змішаний іонно-ковалентний – внаслідок взаємодій між двома сортами атомів, що перебувають у відповідних вузлах кристалічної гратки типу алмазу. Крім того, відмінність у їхній зонній структурі, тобто енергетичних спектрах $\varepsilon(\vec{p})$ (ε – енергія, \vec{p} – квазіімпульс) призвели до істотних змін електричних, магнітних, оптичних, термоелектричних і термомагнітних властивостей. Доречно підкреслити, що на відміну від електрофізичних механічні й теплові властивості згаданих сполук не зазнали кількісного аналізу належною мірою аж до теперішнього часу, і лише в недавній праці [3] кількісно оцінювався вплив ступеня іонності f_{M} сполук $A^{n}B^{8-n}$ (n = 1, 2, 3) на їхні пружні властивості. Таким чином, мета пропонованої праці зводиться до наступного:

І. Встановити кількісну кореляцію механічних властивостей сполук $A^n B^{8-n}$ (n = 1, 2, 3) з їх гратковою теплопровідністю χ_P .

II. Виходячи з п. I, запропонувати процедуру оцінок механічних властивостей термоелектричних матеріалів за їх термомеханічної обробки, необхідних як при конструюванні, так і при виготовленні високодобротних приладів, що мають належну механічну стабільність.

Фізична інтерпретація зв'язку між механічними (пружними) властивостями й гратковою теплопровідністю χ_P

В історично першій теорії теплопровідності діелектричних твердих тіл, запропонованій П. Дебаєм [4], отримано фундаментальне співвідношення:

$$\chi_p = \frac{1}{3} C_V \overline{\upsilon} \overline{l}, \qquad (1)$$

де C_V – теплоємність одиниці об'єму речовини, $\overline{\upsilon}$ – середня швидкість поширення звукових хвиль, \overline{l} – середня довжина їх вільного пробігу.

У дебаєвському наближенні кристалічна гратка розглядається як безперервне пружне середовище (т. зв. пружний континуум), у якому можуть поширюватися поздовжні й поперечні акустичні коливання з різними частотами ω , що залежать лінійно від хвильового вектора $\vec{q} = \frac{2\pi}{\lambda} \vec{n}_0$ (λ – довжина хвилі). Це означає, що дисперсія коливань $\omega(\vec{q})$ не враховується,

внаслідок чого групова й фазова швидкості пружних хвиль збігаються.

Проте атомна структура за П. Дебаєм враховується, уводячи обмежуючу (максимальну) частоту $\omega_{\text{max}} = \omega_D$ (т. зв. дебаєвська частота). Остання визначається з умови збереження числа ступенів волі 3N(N -число Авогадро) – умови нормування –

$$3N = A \int_{0}^{\omega_{D}} f_{D}(\omega) d\omega, \qquad (2)$$

де A – постійна, що фігурує у виразі дебаєвської функції спектрального розподілу частот $fd = A \cdot \omega^2$, тобто числа коливань, що потрапляють в інтервал частот $[\omega, \omega + d\omega]$ $(0 \le \omega \le \omega_{\text{max}} \equiv \omega_D)$. Таким чином, A визначається однозначно:

$$3N = A \int_{0}^{\omega_{D}} \omega^{2} d\omega = \frac{A\omega_{D}^{3}}{3},$$

$$A = \frac{9N}{\omega_{D}^{3}} \equiv \frac{9N}{\omega_{\max}^{3}}.$$
(3)

звідки

Звичайно максимальна частота $\omega_{max} \equiv \omega_D$ подається шляхом введення дебаєвської характеристичної температури θ_D , визначеної як

Про кореляцію механічних властивостей алмазоподібних напівпровідникових сполук з гратковою...

$$\theta_D = \frac{\hbar}{k} \omega_{\max} \equiv \frac{\hbar}{k} \omega_D, \qquad (4)$$

де *ћ* і *k* – постійні Планка й Больцмана.

З (4) випливає, що θ_D має розмірність температури (К), внаслідок чого її фізичний зміст стає досить прозорим: θ_D являє собою границю розділу між класичною областю температур $T > \theta_D$, у якій квантування коливань гратки несуттєве й квантовою областю температур $T < \theta_D$, де квантування коливань гратки є принциповим й істотним у розрахунках теплових рівноважних і нерівноважних властивостей твердих тіл – діелектриків, напівпровідників, напівметалів і металів^{*)}.

Повертаючись до рів. (1), можна побачити кореляцію між χ_P і пружними властивостями речовини. Справді, згідно із класичною теорією пружності, величини пружних модулів Юнга *E*, зсуву *G*, всебічного стиску *B* твердого тіла пропорційні квадрату швидкості поширення звукових хвиль різної поляризації (поздовжньої, поперечної, змішаної): $E \sim \rho v_{no30}^2$, $G \sim \rho v_{nonp}^2$ і т.д. Отже, чим вищі абсолютні значення *E*, *G*, *B* середовища, тим більші величини χ_P . Крім того, на основі співвідношення (1) можна пояснити навіть температурну залежність $\chi(T) \sim 1/T$ у класичній області $T > \theta_D$.

Подальший розвиток теорії теплопровідності П. Дебая пов'язаний з іменами відомих фізиків – Р. Пайерлсом, Г. Лейбфридом, Дж. Займаном і ін. [4].

Використовуючи атомістичні моделі кристалічних граток, враховуючи різні типи взаємодій між атомами (молекулами), отримані залежності $\chi_P(T)$ у широких інтервалах температур $T \geq \theta_D$. Згадані залежності наведено у відомих монографіях [4, 6]. Найбільш прийнятним для прикладних розрахунків у кристалах кубічної сингонії, на думку [7], є співвідношення Лейбфрида-Шлемана в області $T > \theta_D$ –

$$\chi_P(T) = \frac{12}{5} \sqrt[3]{4} \left(\frac{k}{\hbar}\right)^3 M \delta \theta_D^3 / \gamma_\Gamma^2 T, \qquad (5)$$

де M – маса атома; δ^3 – об'єм, що припадає на один атом; γ_{Γ} – параметр Грюнайзена, що враховує зміни частот коливань гратки внаслідок об'ємного термічного розширення^{**)}

$$\gamma_{\Gamma} = \frac{-d\ln\theta_{D}}{d\ln V} > 0.$$
(6)

Суттєво підкреслити, що термодинамічний параметр γ_{Γ} може бути розрахований, коли використовувати дані, вимірювані експериментально:

$$\gamma_{\Gamma} = \frac{\beta}{\kappa} \frac{V}{C_{V}},\tag{7}$$

де β – коефіцієнт об'ємного розширення, к – об'ємний стиск, C_V – граткова теплоємність граматома речовини.^{***)} Для оцінок багатьох граткових властивостей кристалів приймають середнє значення $\langle \gamma_{\Gamma} \rangle \simeq 2$ (хоча для ковалентних кристалів $\gamma_{\Gamma} = (0.50 \div 0.75)$), а для квантових і кріокристалів $\gamma_{\Gamma} = 3$ [11]). Відповідно до виразу (5) зв'язок між $\chi_P(T)$ і пружними властивостями

^{*)} Про гносеологічні значущості θ_D (визначаємої різноманітними фізичними методами) як атрибута сучасної фізики твердого тіла, див., напр., недавню роботу [5]. ^{**)} У загальному випадку для кристалів будь-якої симетрії величини θ_D и γ_{Γ} утворюють симетричний

^{**)} У загальному випадку для кристалів будь-якої симетрії величини θ_D и γ_Γ утворюють симетричний тензор другого рангу, а саме: тензор дебаєвських частот [8] и тензор Грюнайзена [9].

^{***)} Величини γ_{Γ} можуть бути визначені також з даних температурного ослаблення інтенсивностей рентгенівських дифракцій, з даних залежностей стиску від тиску, ударних адіабат Гюгоніо, з даних поглиненої кристалом енергії потужного лазерного випромінювання в імпульсному режимі за постійного об'єму [10].

кристалів проявляється в тому, що θ_D можна розрахувати з експериментальних даних компонентів тензора пружних постійних C_{ijkl} (четвертого рангу), що фігурує в узагальненому законі Гука, який встановлює лінійну залежність між тензором напруг σ_{ii} і тензором деформацій ε_{kl} . Розрахована таким шляхом $\theta_D^{(np)}$ збігається з величиною $\theta_D^{(c)}$, визначеною з даних температурної залежності граткової теплоємності $C_{V}(T)$ у криогенній області температур порядку $\theta_D/100$, у якій виконується дійсний закон $C_V \sim T^3 \Pi$. Дебая.

Таким чином, з розглянутої вище фізичної аргументації зв'язку між механічними й тепловими властивостями неметалічних кристалів можна дійти однозначного висновку, а саме: чим вище абсолютне значення компонент тензора пружних постійних, тензора дебаєвських частот і чим менші абсолютні значення компонент тензора Грюнайзена^{*)}, тим вища теплопровідність даного кристала, незалежно від кристалічної сингонії.

Наприклад, алмаз, що володіє "рекордним" значенням $\theta_D \approx 2000$ К серед непровідних кристалів, характеризується найвищою величиною χ_P , яка в 2 ÷ 5 раза перевищує теплопровідність *Cu* і *Ag* – кращих провідників тепла.

Підкреслимо, що за фізичного обґрунтування кореляції між механічними властивостями й χ_P напівпровідникових сплавів типу Ge-Si, алмазоподібних сполук типу $A^n B^{8-n}$ (n = 1, 2, 3), інтерметалічних сполук (легованих і нелегованих), а також інших термоелектричних матеріалів, відомості про характер хімічного зв'язку, тобто розподіл електронної густини $\rho(x)$ у цих елементарних комірках, є необхідними й суттєвими.

Теоретичні розрахунки $\rho(x)$ (зонної структури) досить докладно викладено в науковій літературі (див., напр., [12]). Експериментальне визначення $\rho(x)$ звичайно здійснюється з даних аналізу інтенсивностей рентгенівських дифракцій і визначення Фур'є-компонентів структурного фактора (т. наз. F² тіла [13]).

Проте ступінь іонності змішаного іонно-ковалентного зв'язку алмазоподібних напівпровідникових сполук $A^n B^{8-n}$ (n = 1, 2, 3) з достатнім ступенем точності може бути визначена за відхиленням від співвідношення М. Борна для пружних постійних С_{іі} цих сполук, як показано в [14, 15],

$$f_{M} = 1 - \Lambda, \tag{8}$$

де

$$J_{\mathcal{M}} = 1 - \Lambda, \tag{8}$$

$$\Lambda = \frac{4C_{11}(C_{11} - C_{12})}{\left(C_{11} + C_{12}\right)^2} \tag{9}$$

 $(C_{ij} - у позначеннях В. Фойгта).$

Відзначимо, що із С_{іі} можуть бути розраховані досить важливі в прикладному змісті пружні характеристики, такі як модуль Юнга E, модуль кручення G (залежні від напрямку в кристалі). Крім того, не менш важливі у фізичному змісті пружні параметри (не залежні від напрямку в кристалі), обумовлені даними *С*_{*ij*}, а саме:

модуль всебічного стиску

$$B = \frac{\left(C_{11} + 2C_{12}\right)}{3} \tag{10}$$

і фактор пружної анізотропії

$$A = \frac{2C_{44}}{C_{11}} - C_{12} \tag{11}$$

^{*)} У деяких кристалах з різним характером хімічного зв'язку, т. зв. модальні компоненти тензора Грюнайзена уі можуть бути від'ємними. Остання обставина, однак, не впливає на знак др, як це видно із рів. (5).

(т. зв. *А*-фактор), фізичний зміст яких досить прозорий. Величина *В* певною мірою відбиває енергію міжатомного (міжмолекулярного, міжіонного) відштовхування й *А*-фактор є мірою відносного опору кристалічної гратки двом типам деформації зсуву: C_{44} характеризує опір зсуву по площині (010) у напрямку [001], а $(C_{11} - C_{12})/2$ – опір зсуву по площині (110) у напрямку [$\overline{1}$ 10]. Саме з цієї ж причини для інтерпретації твердості хімічних зв'язків і міжатомних взаємодій використовується *А*-фактор. Зокрема, для бінарних алмазоподібних сполук типу $A^n B^{8-n}$ (n = 1, 2, 3) було встановлено чітку кількісну кореляцію між *А*-фактором і ступенем іонності зв'язку f_M у недавній роботі [3], а саме: *А*-фактор є монотонно-зростаючою функцією f_M , а в граничному випадку чисто ковалентного зв'язку (алмаз, $f_M = 0$) показана принципова неможливість реалізації сполук $A^n B^{8-n}$ (n = 1, 2, 3), що володіють $A \le 0.12$.

Вплив ступеня іонності хімічного зв'язку *f*_м і *A*-фактора на граткову теплопровідність χ_P

З погляду сучасної фізики твердого тіла, теплопровідність χ_P обумовлена ангармонічністю теплових коливань гратки. Найбільш загальний прояв ангармонічності полягає в порушенні динамічної залежності коливальних мод, тобто (мовою квантової механіки) фонон-фононною взаємодією (т. наз. *N*- і *U*-процеси [4]). Саме завдяки *U*-процесам (процесам перекидання від німецького "Umklapp") граткова теплопровідність є кінцевою (а не нескінченною, як в "гармонійному" кристалі) величиною. Відзначимо попутно, що "гармонійний" кристал принципово не може бути термоелектриком (*Z* = 0!). Оскільки теплопровідність будь-якого кристалічного твердого тіла залежить як від типу (характеру) хімічного зв'язку (зонної структури), так і від температури, то для аналізу залежностей $\chi_P(T)$ розглядаються три характерні області температур:

а) область високих температур $T > \theta_D$, у якій $\chi_P(T) \sim 1/T_0$;

б) область низьких температур $T < \theta_D$, у якій $\chi_P(T) \sim \exp(\theta_D / \xi T)$, де $1.5 \le \xi \le 2$ залежно від типу хімічного зв'язку;

в) область криогенних температур $T \ll \theta_D$, $\chi_P(T) \sim C_V(T)$, а довжина вільного пробігу фононів $l_{\phi} \simeq L$, де L – макроскопічний розмір зразка (т. зв. ефект Казиміра [4]).

В області температур (б) і (в) істотний вплив на χ_P , крім ступеня іонності й ангармонічності, виявляють дефекти реальної кристалічної будови твердого тіла – точкові, лінійні й площинні [16].

У цій праці ми обмежимося аналізом χ_P залежно від f_M і A-фактора області (а), у якій вплив дефектів на χ_P не є домінуючим. Крім того, область (а) $T > \theta_D$, як правило, відповідає температурам, які є робочими для більшості термоелектричних виробів і пристроїв [1]. Для виявлення очікуваної кореляції між f_M , A-фактором і гратковою теплопровідністю χ_P , використано експериментальні дані C_{ij} і A-фактори, наведені в табл. 1 недавньої праці автора [3], а значення χ_P за $T \ge \theta_D$ запозичені з довідників [17, 18].

Сполуки $A^n B^{8-n}$ вибиралися попарно з мінімальною різницею за ступенем іонності f_{M} , для того, щоб доглянути "роздільну здатність" в оцінках χ_P .

У таблиці 1, крім згаданих, показано й наведено також середні значення маси $\langle m \rangle = (m_1 + m_2)/2$, питомі об'єми V і густини р, які будуть потрібні для подальшого обговорення результатів.

Аналізуючи дані таблиці 1 за зростаючим ступенем іонності f_{M} (зверху вниз), можна переконатися в тому, що має місце чітка кореляція не тільки між f_{M} і A-фактором, але й між f_{M} і

 χ_P : в міру убування жорсткості зв'язку (тобто, збільшення ступеня іонності f_M і A-фактора) спостерігається систематичне зменшення граткової теплопровідності χ_p від фосфідів (мінімальні значення χ_P і A), сульфідів (проміжні значення χ_P і A) і до галогенідів, що володіють найбільшим ступенем іонності f_M і A-фактором. Однак для *CuI* експериментальна величина χ_p нам невідома й із цієї причини її оцінка проведена шляхом інтерполяції на шкалі χ_P (позначена зірочкою). Можна вважати, що за такої інтерполяції ми не надто помиляємося, оскільки встановлена закономірність $f_M(\chi_P)$ цілком достовірна, що незалежно підтверджується зменшенням χ_P з ростом питомого об'єму V (тобто, зменшення жорсткості зв'язку).

<u>Таблиця 1</u>

Тип	<т>, г	ρ, г/см ³	<i>V</i> ,	$f_{\scriptscriptstyle M}$	Α	χ _Р ,	Примітки
сполуки			см ³ /г·ат			Вт/см•К	
$A^{3}B^{5}$ AlP	46.4	2.85	10.2	0.033	1.78	0.900	h
GaP	80.8	4.40	11.5	0.046	1.81	0.770	
A^2B^6 ZnS	77.9	4.10	12.0	0.171	2.34	0.026	T = 300 K
CdS	115.2	4.82	14.0	0.181	2.70	0.020	Į
$A^{1}B^{7}$ CuI	152.0	5.63	16.9	0.207	3.16	0.0161*	Інтерполяції
CuBr	115.6	4.72	15.2	0.440	6.00	0.013	T = 300 K

Відзначимо, що для більшості напівпровідникових кристалів внесок у загальну теплопровідність носіїв (електронів або дірок), як правило, незначний [4], хоча для деяких сполук з високою термоелектричною добротністю (напр., *Bi*₂*Te*₃) згаданий внесок істотний.

Із загальнофізичної точки зору встановлена закономірність $f_{M}(\chi_{P})$ цілком природня: зі співвідношення (1) випливає, що чим вище обумовлена жорсткістю зв'язку швидкість поширення звукових хвиль у даному кристалі, тем вища його граткова теплопровідність (що було добре відомо й раніше). Новизною пропонованої праці є висновок: граткова теплопровідність напівпровідникових сполук типу $A^{n}B^{8-n}$ (n=1, 2, 3) – монотонно-спадаюча функція фактора пружної анізотропії (A-фактора) кристалічних твердих тіл.

Про вплив температури Дебая на граткову теплопровідність в області високих температур

Фізична інтерпретація залежностей типу $\theta_D(\chi_P)$ має виходити з того, що температура Дебая θ_D , крім її загальнофізичної значимості, може розглядатися як міра жорсткості зв'язку в коливній кристалічній гратці. Це питання широко дискутувалося свого часу на Всесоюзних нарадах із застосування дифракції рентгенівських променів і в періодичних фізичних виданнях (див., напр., бібліографію в [19]). Автором пропонованої праці свого часу було показано, що θ_D , обумовлена рентгенографічними даними, може розглядатися як міра жорсткості зв'язку $f \sim m \cdot \theta_D^2$ коливної гратки за центральних і нецентральних взаємодій найближчих і других по близькості сусідів [20].

Таким чином, концепція "жорсткість зв'язку – граткова теплопровідність" може бути проаналізована для сполук $A^n B^{8-n}$ (n = 1, 2, 3), величини θ_D яких відомі, або можуть бути обчислені за експериментальними даними компонент тензора пружних постійних C_{ijkl} .

Виходячи з міркувань, викладених у попередніх параграфах пропонованої праці, можна очікувати, що закономірності, встановлені для сполук $A^n B^{\delta-n}$, а саме $f_M(\chi_P)$ і $A(\chi_P)$, будуть адекватно відображені й у залежностях $\theta_D(\chi_P)$ згаданих сполук. Разом з тим слід зазначити, що раніше було

добре відомо, що в області високих температур $\chi_P \sim \theta_D^3 / T$ (див. ф-лу 5). Однак у жодній з публікацій, що стосуються до оцінок χ_P , величина θ_D не інтерпретувалася як міра жорсткості хімічного зв'язку. Тому встановлення закономірностей $\theta_D(\chi_P)$ на основі експериментальних даних може служити в якості незалежної додаткової аргументації того, що характеристична температура Дебая θ_D дійсно є мірою жорсткості хімічного зв'язку у твердих тілах.

Нагадаємо, що при розрахунках θ_D по пружним постійним C_{ij} , необхідно обчислити середню швидкість звуку, яка залежить як від типу кристалографічної сингонії, так і від ступеня пружної анізотропії. Як показано автором в [5] для кристалів кубічної симетрії при $A \leq 2.36$, величини θ_D розраховуються за порівняно простою формулою:

$$\theta_D^{-3} = \frac{k_B m}{18\pi^2 h^3} \rho^{3/2} \left[\left(\frac{1}{C_{11}} \right)^{3/2} + \left(\frac{2}{C_{11} - C_{12}} \right)^{3/2} + \left(\frac{1}{C_{44}} \right)^{3/2} \right], \tag{12}$$

де C_{ij} – у позначеннях В. Фойгта, інші позначення загальноприйняті. Проте, для кристалів, що володіють $A \ge 2.36$, більш точними є формули Беттса й ін. [21], де враховуються шість напрямків усереднення швидкостей звуку:

$$\theta_D = \frac{h}{k_B} \left(\frac{9N}{4\pi V}\right)^{\frac{1}{3}} \rho^{-\frac{1}{2}} J_i^{-\frac{1}{3}}, \qquad (13)$$

де N – число Авогадро, а величини J_i являють собою комбінації C_{ij} , які не приводяться тут внаслідок їхньої громіздкості^{*)}.

У таблиці 2 наведено значення θ_D , розраховані за T = 300 К по (12) з даних C_{ij} , табл. 1 роботи [3], що й відповідають χ_P , твердості зв'язку $\langle m \rangle \theta_D^2$ і середнього значення маси $\langle m \rangle$. Величини θ_D виявилися практично співпадаючими з такими, визначеними з даних теплоємності, згідно з довідником [18].

1	аблиця	2
_		_

Сполука, тип		<т>, г	θ_D (К) < <i>m</i> > $\theta_D^2 \times 10$ дин/см		χ _Р , Вт/см∙К	Примітки
$A^3 R^5$	AlP	46.4	588	2.71	0.90	Лидроіу
AD	GaP	80.8	446	1.62	0.77	для всіх
$\Lambda^2 R^6$	ZnS	77.9	310	0.76	0.026	прийнято
AD	CdS	115.2	260	0.73	0.020	$\langle v_n \rangle = 1.29$
$\Lambda^1 R^7$	CuI	152.0	178	0.49	0.016	T = 300 K
лД	CuBr	115.6	154	0.28	0.013	1 500 K

З таблиці випливає, що для всіх типів сполук $A^n B^{\delta-n}$ (n = 1, 2, 3) зі зменшенням жорсткості зв'язку $f \sim m \cdot \theta_D^2$ закономірно зменшується граткова теплопровідність, і відповідно до формули (5) зберігається закономірність збільшення χ_P з ростом θ_D . Деякий вплив на залежність $\chi_P(\theta_D)$ може виявити невелику відмінність у параметрах Грюнайзена γ_{Γ} , які для чисто-ковалентних кристалів становлять величину $\gamma_{\Gamma} = 0.75$ [11].

Таким чином, з даних таблиць 1 і 2 можна прийти до однозначного твердження, що характеристична температура Дебая θ_D дійсно є мірою жорсткості хімічного зв'язку незалежно від кристалографічної сингонії й типу граток Браве.

^{*)} Відмінність у величинах θ_D , розрахованих по (12) і (13), становить ~ 10% при $A \ge 2.36$ [5].

Деякі практичні рекомендації

Аналіз пружних властивостей сполук $A^n B^{8-n}$ (n = 1, 2, 3) і їх кореляції з теплопровідністю дозволяє рекомендувати й деякі технологічні параметри цих матеріалів, такі, як твердість, крихкість, пластичність. Дійсно, вибираючи матеріал з мінімальними значеннями χ_P для забезпечення високих значень термоелектричної добротності $Z \sim 1 / \chi_P$, при конструюванні й виготовленні приладів або пристроїв потрібно також мінімальна твердість, мінімальна крихкість і максимальна пластичність обраних матеріалів. З даних таблиць 1 і 2 випливає, що мінімальні значення χ_P відносяться до сполук $A^1 B^7$. Що стосується їх міцнісних властивостей, то необхідно взяти до уваги співвідношення недавньої роботи [3], що зв'язує пружні й пластичні властивості:

1) опір пластичної деформації τ_{II} пропорційно модулю зрушення G і вектору Бюргерса \vec{b} , $\tau_{II} = G \cdot \vec{b}$;

2) міцність на розрив τ_P пропорційна модулю стиску *B* і періоду гратки (питомому об'єму *V*): $\tau_D = B \cdot V$;

3) відношення B/G – як індикатор пластичності й крихкості: високі значення B/G характеризують пластичність матеріалу, а низькі – його крихкість, а саме: якщо B/G < 1.75, то матеріал явно крихкий.

З даних таблиць 1 і 2 випливає, що максимальне значення $\tau_{II} \sim G \cdot \vec{b}$ відповідає сполуці *AlP* і мінімальне τ_{II} – відповідає *CuBr*. Для цих же сполук спостерігаються й екстремальні значення міцності на розрив τ_P – max (*B*·*V*) для *InP* і min (*B*·*V*) для *CuBr*. Що стосується відношення *B/G*, то згідно табл. 1 і 2, max (*B/G*) = 5.32 для *CuBr* і min (*B/G*) = 1.57 для *AlP*, тобто, найбільш крихкі сполуки з малим ступенем іонності зв'язку f_M і найбільш пластичні – з високим значенням f_M , що цілком природно.

Процедура точної оцінки твердості H сполук $A^n B^{8-n}$ обговорена в недавній роботі [3]. У нульовому наближенні допускається оцінка H відносно (алмаза $f_M = 0$) по відношенню модулів всебічного стиску $B_{aum}/B_{3'col}$. Використовуючи експериментальні дані $B_{anm} = 630$ ГПа [22] і відповідних сполук табл. 1 і 2, отримано $H_{GaP} = 19.6$ ГПа й $H_{Cul} = 7.4$ ГПа, тобто, закономірність $H(f_M)$ цілком природня: величина твердості завжди вище в кристалах із жорсткими зв'язками (див. також $f = \langle m \rangle \cdot \theta_D^2$ для GaP і CuI). Стосовно технологічних процесів гарячого пресування й екструзії поряд з малими значеннями χ_P потрібні також висока пластичність і низькі значення крихкості й твердості.

Висновки

- При аналізі зв'язку механічних властивостей напівпровідникових сполук типу AⁿB⁸⁻ⁿ (n = 1, 2, 3) з їх теплопровідністю χ_P, показано вперше, що величина χ_P залежить однозначно від ступеня пружної анізотропії (A-фактора).
- 2. Встановлено, що з ростом *A*-фактора залежність $\chi_P(A)$ є монотонно-спадаючою функцією за T = 300 К.
- 3. Показано, що з ростом θ_D залежність $\chi_P(\theta_D)$ є монотонно-зростаючою функцією θ_D , тим самим підтверджуючи, що $f = \langle m \rangle \theta_D^2$ є мірою жорсткості хімічного зв'язку в коливній гратці кристалічних твердих тіл, незалежно від типу кристалографічної сингонії.

Автор вдячний акад. НАН України Л.І. Анатичуку за запропоновану тему й корисні обговорення.

Література

- 1. Анатычук Л.И. Термоэлементы и термоэлектрические устройства / Л.И. Анатычкук. К.: Наукова думка, 1976. 765 с.
- 2. Материалы, используемые в полупроводниковых приборах / [ред. К. Хогарт]. М.: Мир., 1968, 407 с.
- Михальченко В.П. Механические свойства термоэлектрических материалов на основе бинарных полупроводниковых соединений / В.П. Михальченко, М.В. Рынжук // Термоэлектричество. – 2011. – №2. – С. 17 – 26.
- Могилевский Б.М. Теплопроводность полупроводников / Б.М. Могилевский, А.Ф. Чудновский. – М.: Наука, 1972, – 516 с.
- 5. Михальченко В.П. Об эффективных температурах Дебая фуллерита C₆₀ / В.П. Михальченко // Физика твердого тела. 2010. Т. 52, Вып. 7. С. 1444 1452.
- 6. P.G. Klemens, Solid State Phys. (F. Seitz, D. Turnball ed.) V.7, p. 1-98, Akad. Press. Publ. N.-Y. (1958)
- Миснар А. Теплопроводность твердых тел, жидкостей, газов и их композиций / А. Миснар. – М.: Мир, 1968.
- 8. Ya.A. Josilevski, Phys. stat. sol. (b), v. 53, p. 405, (1972), On Debye frequency tensors.
- Михальченко В.П. Энциклопедический словарь "Физика твердого тела" / В.П. Михальченко. – К.: Наукова думка – 1996. – 204 с.
- Михальченко В.П. О величинах параметра Грюнайзена фуллерита C₆₀ в широких интервалах температур и давлений / В.П. Михальченко, В.В. Моцкин // Актуальные проблемы ФТТ, Минск: изд. центр БГУ. – 2005. – Т. 2. – С. 281 – 283.
- 11. M. Sangaja, Ind. J. Pare and Appl. Phys., v.8, p. 232 (1970), On Grüneisen gamma of solids.
- 12. Цидильковский И.М. Зонная структура полупроводников / И.М. Цидильковский. М. Наука, 1978. 377 с.
- 13. Жданов Г.С. Физика твердого тела / Г.С. Жданов. М.: изд. МГУ, 1961. 478 с.
- Михальченко В.П. Об отклонение для соотношения Борна для кристаллов со структурой алмаза и сфалерита / В.П. Михальченко // Физика твердого тела – 2003. – Т. 45, Вып. 3. – С. 429 – 433.
- 15. Михальченко В.П. Новая шкала ионности для полупроводниковых соединений *А*^{III}*B*^V, *А*^{II}*B*^{VI}, *А*^{II}*B*^{VII} / В.П. Михальченко // Термоэлектричество. 2004. №2. С. 51 59.
- Оскотский В.С. Дефекты в кристаллах и теплопроводность / В.С. Оскотский, И.А. Смирнов. – Л.: изд. Наука, 1972. – 160 с.
- 17. Баранский П.И. Полупроводниковая электроника [Справочник]/ П.И. Баранский, В.П. Клочков, И.В. Потыкевич. К.: Наук. думка, 1975. 703 с.
- 18. Таблицы физических величин. Справочник [под ред. К.К. Кикоина]. М.: Атомиздат, 1976. 1006 с.
- 19. F.R. Herbstein, Methods of measuring Debye temperatures and comparison of results for some cubic crystals. Advances in Physics, v. 10, p. 313-355 (1961)
- Михальченко В.Б. О рентгеновской характеристики температуре ванадия / В.Б. Михальченко, В.Б. Лотоцкий // Физика металлов и металловедение. – 1971. Том. 32, С. 1300 – 1304.
- 21. Дж. Алерс, в кн. Динамика решетки (физическая акустика) под. ред. У. Мезона, М.: Мир, 1968, С. 13 14.
- 22. Физические свойства алмаза, под. ред. Н.В. Новикова. К.: Наук. Думка 1987. 275 с.

Надійшла до редакції 11.10.2012.