УДК 621.315.592

Гайдар Г.П.

Гайдар Г.П.¹, Баранський П.І.²

¹Інститут ядерних досліджень НАН України просп. Науки, 47, Київ, 03680, Україна; ²Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, просп. Науки, 45, Київ, 03028, Україна

Баранський П.І.

ПРО ДЕЯКІ ОСОБЛИВОСТІ АНІЗОТРОПІЇ ТЕРМОЕРС У НЕДЕФОРМОВАНИХ І ПРУЖНО ДЕФОРМОВАНИХ МОНОКРИСТАЛАХ *n-Si* TA *n-Ge*

У рамках теорії анізотропного розсіяння детально проаналізовано механізми виникнення анізотропії термоЕРС у багатодолинних недеформованих і направлено деформованих напівпровідниках (n -Si ma n -Ge) при наявності градієнта температури. Визначено тензор термоЕРС в умовах VT ≠ 0 на основі використання узагальненого закону Ома. Ключові слова: германій, кремній, теорія анізотропного розсіяння, анізотропія термоЕРС, тензор термоЕРС.

In the framework of anisotropic scattering theory the mechanisms of origination of thermopower anisotropy in multi-valley undeformed and directionally deformed semiconductors (n -Si and n-Ge) in the presence of temperature gradient were analyzed in detail. Based on the use of the generalized Ohm's law the thermopower tensor was defined under $\nabla T \neq 0$.

Keywords: germanium, silicon, anisotropic scattering theory, thermopower anisotropy, thermopower tensor.

Вступ

Електрофізичні властивості напівпровідників істотно залежать не тільки від анізотропії закону дисперсії і механізмів розсіювання носіїв струму на фононах і домішкових центрах, фононів на фононах і т. ін. (тобто, від анізотропії на мікрорівні), але й від наведеної (наприклад, за допомогою направленої пружної деформації) анізотропії всього кристалу [1-3]. Більш глибокому розумінню механізмів виникнення анізотропії термоЕРС, особливостей енергетичного спектру носіїв заряду сприяють дослідження термоелектричних властивостей одновісно пружно деформованих напівпровідників, які є важливими не тільки з точки зору фундаментальної, але також і прикладної науки [4]. Практичне значення таких досліджень пов'язане з можливістю створювати (чи підвищувати) за допомогою направленого деформування напівпровідників анізотропію термоЕРС, яка використовується в анізотропних термоелементах, вихрових і гальванотермомагнітних перетворювачах енергії [5]. Адже саме від ефективності термоелектричних перетворювачів енергії, які прийнято називати модулями, залежать, в першу чергу, можливості практичних застосувань термоелектрички [6].

Істотним недоліком термоелектрично-анізотропних матеріалів, які використовуються в проми-

словості, є їхня невелика термоелектрична добротність. Оскільки одним із методів збільшення останньої є підвищення анізотропії термоЕРС, то створення шляхом деформації великої анізотропії термоЕРС забезпечить можливість конструювання штучних високочутливих анізотропних приладів з більш високим коефіцієнтом корисної дії.

Метою нашої роботи було встановлення особливостей анізотропії термоЕРС у недеформованих і пружно деформованих монокристалах *n-Si* і *n-Ge*, а також визначення тензора термоЕРС за наявності градієнта температури.

Анізотропне розсіяння електронів у багатодолинних напівпровідниках Ge і Si n - типу

Відповідне уявлення про анізотропне розсіяння електронів у кристалі виникає при розвязанні кінетичного рівняння Больцмана-Лоренца для носіїв заряду в твердих тілах. Це рівняння для стаціонарних умов можна записати у вигляді [7]

$$\hat{D} n_{\vec{k}} + \sum_{\vec{k'}} W_{\vec{k} \, \vec{k'}} \left(n_{\vec{k'}} - n_{\vec{k}} \right) = 0 \,, \tag{1}$$

де $n_{\vec{k}}$ – рівноважна функція розподілу електронів; $\hat{D}n_{\vec{k}} = \frac{1}{kT} \frac{dn_{\vec{k}}^0}{dx_{\vec{k}}} (\upsilon_{\vec{k}}, \nabla \overline{\mu} + x_{\vec{k}} \nabla kT)$ – так званий польовий член; $\nabla \overline{\mu} = \nabla \mu - e_0 E = \nabla (\mu + e_0 \psi)$; ψ – потенціал електричного поля; e_0 – заряд електрона; $n_{\vec{k}}$ – не рівноважна добавка до функції розподілу; $W_{\vec{k}\vec{k}}$ – імовірність розсіяння електронів із стану з квазіімпульсом \vec{k} у стан з квазіімпульсом \vec{k}' .

У подальшому розглядатимемо виключно пружні розсіяння, за яких можна вважати, що квазіімпульси \vec{k} і \vec{k}' знаходяться на одній і тій же ізоенергетичній поверхні. У цьому випадку ймовірність розсіяння є функцією декількох величин:

$$W_{\vec{k}\vec{k}'} = W\left(\varepsilon; \vartheta, \phi, \vartheta', \phi'\right),\tag{2}$$

де \mathscr{G} , ϕ – сферичні кути, які характеризують напрямок квазіімпульсу до розсіяння; а \mathscr{G} , ϕ' – після розсіяння. При цьому є входить у (2) як параметр, оскільки енергія електрона при розсіянні не змінюється. Тому надалі в запис функції W величину ε вводити не будемо.

Припустимо спочатку, що імовірність розсіяння залежить тільки від кута розсіяння θ :

$$W_{\vec{k}\vec{k}'} = W(\cos\theta),\tag{3}$$

причому

$$\cos\theta = \cos\theta\cos\theta' + \sin\theta\sin\theta'\cos(\phi - \phi'). \tag{4}$$

Це означає, що ймовірність розсіяння не залежить від того, як орієнтований всередині кристалу кут, утворений імпульсами \vec{k} і $\vec{k'}$ (рис. 1). Саме таке розсіяння прийнято називати ізотропним. Слід відмітити, що інколи під ізотропним розсіянням розуміють випадок, коли $W_{\vec{k}\vec{k'}}$ взагалі не залежить від θ . Однак цей випадок в дійсності є лише окремим різновидом ізотропного розсіяння. Під анізотропним розсіянням необхідно розуміти випадок, коли $W_{\vec{k}\vec{k}}$ залежить від кутів \mathcal{G} , ϕ , \mathcal{G} , ϕ' будь-яким, відмінним від залежності (3), чином. У подальшому будемо також припускати, що ізоенергетична поверхня є квадратичною (сфера, еліпсоїд). Сюди ж відноситься і випадок кейнівської непараболічності. Тоді компоненти швидкості носія $\upsilon_x \sim \sin \theta \cos \phi$; $\upsilon_y \sim \sin \theta \sin \phi$; $\upsilon_z \sim \cos \theta$ лінійним чином залежать від сферичних гармонік першого порядку. Розв'язок кінетичного рівняння для ізотропного розсіяння має інший характер, ніж для випадку анізотропного розсіяння.

При ізотропному розсіянні $W(\cos\theta)$ можна розкласти в ряд по поліномах Лежандра:

$$W(\cos\theta) = \sum_{l} W_{l} P_{l}(\cos\theta).$$
⁽⁵⁾

А потім, користуючись відомою теоремою про складання шарових функцій

$$P_{l}(\cos\theta) = \sum_{m} Y_{lm}(\vartheta, \varphi) Y_{lm}^{*}(\vartheta', \phi'), \qquad (6)$$

вираз (5) можна подати у вигляді

$$W(\cos\theta) = \sum_{lm} W_l Y_{lm}(\vartheta, \phi) Y_{lm}^*(\vartheta', \phi').$$
⁽⁷⁾

Розв'язок кінетичного рівняння у цьому випадку необхідно шукати у вигляді ряду по сферичних гармоніках:

$$n'_{\vec{k}} = \sum_{lm} X_{lm}(\varepsilon) Y_{lm}(\theta, \phi), \qquad (8)$$

причому визначенню підлягатимуть функції $X_{lm}(\varepsilon)$. Можна переконатися, що підстановка виразу (8) у рівняння (1) призводить до співвідношення для X_{lm} у вигляді

$$L_{l}X_{lm}(\varepsilon) = D_{m}\,\delta_{l1},\tag{9}$$

де L_l певним чином обчислюється через коефіцієнти W_l . Звідси випливає, що всі $X_{1m}(\varepsilon)$, за винятком $X_{1m}(\varepsilon)$, дорівнюють нулю, і таким чином отримується відомий розв'язок кінетичного рівняння при ізотропному розсіянні.

Рис. 1. Кут, утворений квазіімпульсами \vec{k} і $\vec{k'}$.

У випадку ж анізотропного розсіяння розклад $W_{\vec{k}\vec{k}}$ по сферичних гармоніках має вигляд

$$W_{\vec{k}\vec{k}'} = \sum_{ll'mm'} W_{ll'}^{mm'} Y_{lm} \left(\mathcal{G}, \phi \right) Y_{l'm'}^* \left(\mathcal{G}', \phi' \right).$$
(10)

I, отже, фундаментальна відмінність анізотропного розсіяння від ізотропного полягає в тому, що у випадку анізотропного розсіяння коефіцієнти розкладу $W_{ll}^{mm'}$, по-перше, залежать

від *m* і, по-друге, є недіагональними як по *l*, так і по *m*. Це призводить до того, що при анізотропному розсіянні для невідомих функцій $X_{1m}(\varepsilon)$ отримуємо не автономне рівняння, а систему зв'язаних рівнянь

$$\sum_{l'm'} L_{ll'}^{mm'} X_{l'm'} \left(\varepsilon \right) = D_m \,\delta_{l1}. \tag{11}$$

I для обчислення кінетичних коефіцієнтів потрібно знати не всю функцію розподілу, що задається рядом (8), а лише так звану вкорочену функцію

$$\overline{n}_{\vec{k}} = \sum_{m} X_{1m}(\varepsilon) Y_{1m}(\vartheta, \phi), \qquad (12)$$

оскільки, у зв'язку з вище зазначеним, для носіїв заряду з квадратичною ізоенергетичною поверхнею швидкості носіїв заряду пропорційні сферичним гармонікам першого порядку.

У математичному плані побудова теорії анізотропного розсіяння зводиться саме до розробки методів визначення $X_{1m}(\varepsilon)$ з системи (11) [8, 9], а відмінність анізотропного розсіяння від ізотропного в змістовому сенсі зводиться до того, що у випадку анізотропного розсіяння релаксаційні властивості системи носіїв визначаються не одним коефіцієнтом L_1 , а

певними комбінаціями всієї сукупності коефіцієнтів розкладу $L_{ll'}^{mm'}$. Саме тому замість часу релаксації необхідно вводити тензор часу релаксації. При цьому, звичайно, змінюються температурні і концентраційні залежності кінетичних коефіцієнтів, їх залежності від напруженості магнітного поля та інших факторів зовнішнього впливу.

Анізотропія розсіяння може бути зумовлена в багатодолинних напівпровідниках різними причинами, а саме: анізотропією розсіюючого потенціалу (п'єзоелектричні напівпровідники, розсіяння на іонах в кристалах з анізотропією діелектричної сталої), анізотропією фононного спектра, анізотропією енергетичного спектра носіїв. В останньому випадку розсіяння носіїв заряду описується рядом параметрів, наприклад, не сталою деформаційного потенціалу (як у випадку ізотропного розсіяння), а тензором сталих деформаційного потенціалу, не значенням ефективної маси, а компонентами тензора ефективної маси і т. ін. Теорія анізотропного розсіяння дає можливість знаходити залежність експериментально вимірюваних величин від згаданих параметрів, чого не можна досягти за допомогою теорії ізотропного розсіяння.

Визначення тензора термоЕРС

Відкрите 1823 р. явище Зеєбека (або термоелектричний ефект) полягає у виникненні в провіднику за наявності перепаду температури електричного поля, яке в цьому випадку називається термоелектричним.

Узагальнений закон Ома, що пов'язує між собою вектори густини струму \vec{j} і напруженості електричного поля $\vec{\varepsilon}$ за наявності градієнта температури grad $T \equiv \nabla T$, для анізотропних середовищ можна записати у вигляді [9]

$$\vec{j} = \hat{\sigma}\vec{\varepsilon} - \hat{\sigma}\hat{\alpha}\nabla T, \qquad (13)$$

де $\hat{\sigma}$ і $\hat{\alpha}$ – тензори другого рангу електропровідності і термоЕРС відповідно. Якщо ввести позначення

$$\hat{b} = \hat{\sigma}\hat{\alpha}, \tag{14}$$

то вираз (13) можна записати таким чином:

$$\vec{j} = \hat{\sigma}\vec{\varepsilon} - \hat{b}\nabla T , \qquad (15)$$

або в компонентах

$$j_i = \sigma_{ik} \,\varepsilon_k - b_{il} \,\nabla_l \,T \,, \tag{16}$$

де

$$b_{il} = \sigma_{im} \,\alpha_{ml} \,. \tag{17}$$

Напруженість термоелектричного поля знаходять з умови відсутності електричного струму. Якщо в (13) покласти $\vec{j} = 0$, то отримаємо наступний вираз для напруженості термоелектричного поля

$$\vec{\varepsilon} = \hat{\alpha} \,\,\nabla T \tag{18}$$

або в компонентах

$$\varepsilon_i = \alpha_{ik} \, \nabla_k \, T \,. \tag{19}$$

Формула (18), яка дає лінійну залежність напруженості термоелектричного поля від градієнта температури, являє собою перший член розкладу $\vec{\varepsilon}$ по ∇T і визначає термоелектричний ефект у рамках лінійної по ∇T теорії, правомірної при незначних градієнтах температури, коли можна знехтувати членами розкладу з вищими ступенями.

На основі (14) тензор коефіцієнтів термоЕРС визначається таким чином:

$$\hat{\alpha} = \hat{\sigma}^{-1} \hat{b} , \qquad (20)$$

З іншого боку, на основі кінетичної теорії густину струму можна подати як

$$\vec{j} = e \int_{0}^{\infty} \Psi_{1}(E) \vec{\upsilon} g(E_{k}) dE_{k}, \qquad (21)$$

де e – заряд електрона, $\vec{\upsilon}$ – групова швидкість носіїв, $g(E_k)$ – густина станів, E – повна енергія носіїв, E_k – кінетична енергія носіїв, ψ_1 – добавка до рівноважної функції розподілу за наявності збурюючих полів, тобто:

$$\Psi = \Psi_0 + \Psi_1. \tag{22}$$

3 кінетичного рівняння Больцмана

$$\frac{\partial \Psi}{\partial t} = \left(\frac{\partial \Psi}{\partial t}\right)_{noxis} + \left(\frac{\partial \Psi}{\partial t}\right)_{simkH}$$
(23)

для стаціонарних умов і в наближенні часу релаксації для ψ_1 (у відповідності з [10]) отримаємо

$$\psi_1 = -\tau \frac{\partial \psi_0}{\partial E} \left[\frac{\mu - E}{T} \nabla T - \nabla \left(\mu + eV \right) \vec{\upsilon} \right], \tag{24}$$

де τ – час релаксації, μ – хімічний потенціал, T – абсолютна температура, V – електричний потенціал. У формулі (23) $\left(\frac{\partial \Psi}{\partial t}\right)_{nonie}$ – польовий член, що визначає швидкість зміни функції розподілу Ψ у результаті неперервного руху електронів у звичайному (геометричному) просторі та в просторі швидкостей, $\left(\frac{\partial \Psi}{\partial t}\right)_{simkh}$ – член зіткнень, що визначає швидкість зміни Ψ у результаті зіткнення (розсіяння) електронів.

Підставивши (24) в (21) і порівнявши одержаний вираз з формулою (15), записаною для ізотропного випадку, коли b і σ – скалярні величини, знайдемо їх (b та σ) і на основі (20) в ізотропному випадку для коефіцієнта термоЕРС отримаємо співвідношення:

$$\alpha = \frac{k_0}{e} \left[\frac{\int_{0}^{\infty} \tau(E_k) \frac{\partial \Psi_0}{\partial E} E \vec{v}^2 g(E_k) dE_k}{k_0 T \int_{0}^{\infty} \tau(E_k) \frac{\partial \Psi_0}{\partial E} \vec{v}^2 g(E_k) dE_k} - \mu^* \right]$$
(25)

або

$$\alpha = \frac{k_0}{e} \left[\frac{\iint\limits_{-\infty}^{\infty} \tau \frac{\partial \Psi_0}{\partial E} E \vec{\upsilon}^2 d^3 \vec{k}}{k_0 T \iint\limits_{-\infty}^{\infty} \tau \frac{\partial \Psi_0}{\partial E} \vec{\upsilon}^2 d^3 \vec{k}} - \mu^* \right],$$
(26)

де k_0 – стала Больцмана, $\mu^* = \frac{\mu}{k_0 T}$ – наведений хімічний потенціал. У (26) інтеграли беруться за простором квазіімпульсів.

У загальному випадку несферичних поверхонь сталої енергії носіїв заряду час релаксації – тензор другого рангу. Записавши (15) і (21) в головних осях тензора оберненої ефективної маси, для компонент тензора термоЕРС електронів, що належать одному мінімуму, одержимо наступний вираз:

$$\alpha_{ii} = \frac{k_0}{e} \left[\frac{\iint\limits_{-\infty}^{\infty} \tau_{ii} \frac{\partial \Psi_0}{\partial E} E \nu_i^2 d^3 \vec{k}}{k_0 T \iint\limits_{-\infty}^{\infty} \tau_{ii} \frac{\partial \Psi_0}{\partial E} \nu_i^2 d^3 \vec{k}} - \mu^* \right].$$
(27)

Механізми виникнення анізотропії термоЕРС

Анізотропія електропровідності, теплопровідності і низки інших фізичних властивостей є характерною (тією чи іншою мірою) для всіх некубічних кристалів. Однак анізотропія термоЕРС – явище досить рідкісне, оскільки для її прояву має виконуватися низка специфічних умов. Для анізотропії електропровідності, наприклад, досить мати або анізотропний спектр енергії, або анізотропний закон розсіяння, або те й інше разом. Інакше складається ситуація з анізотропією термоЕРС. Згідно з теорією анізотропного розсіяння, розвинутою на основі методу розв'язку кінетичного рівняння [8], вплив анізотропії розсіяння на кінетичні коефіцієнти для таких найбільш поширених механізмів розсіяння, як розсіяння на акустичних і оптичних фононах, на іонізованих і нейтральних домішках (диполях), враховується тензором часу релаксації, що має такий вигляд:

$$\tau_{ii} = \lambda_{ii} E_k^r \,. \tag{28}$$

При цьому тензорний характер часу релаксації описується коефіцієнтами λ_{ii} , які не залежать від енергії, але є функціями анізотропії ефективної маси. Показник степені *r* залежить від типу розсіяння носіїв заряду в кристалі. При розсіянні на акустичних коливаннях гратки і на оптичних за температур, вищих від температури Дебая (θ) $r = -\frac{1}{2}$, при розсіянні на оптичних коливаннях за $T < \theta$ r = 0, при розсіянні на іонізованих домішках $r = \frac{3}{2}$.

Якщо підставити (28) в (27), то коефіцієнт λ_{ii} скоротиться і для α_{ii} отримаємо скалярний вираз. Таким чином, якщо є один тип носіїв заряду і один механізм розсіяння, то термоЕРС буде ізотропною, якою б не була сильною анізотропія ефективної маси носіїв заряду. Цей результат було використано авторами [11] при розгляді багатодолинної моделі. Він є прийнятним як для ізотропного закону дисперсії $E(\vec{k})$, так і для анізотропного параболічного і непараболічного еліпсоїдального (Кейнівська модель). Імовірно, саме з цим пов'язана та обставина, що анізотропія термоЕРС трапляється значно рідше, ніж анізотропія електропровідності.

Якщо $E(k_i)$ характеризується різною залежністю вздовж різних напрямків (непараболічний і нееліпсоїдальний закон дисперсії), то в цьому випадку (навіть за одного типу носіїв і одного механізму розсіяння) може бути наявною анізотропія термоЕРС, що було відмічено ще в роботі [12].

Слід зазначити, що при розсіянні на іонах домішок час релаксації у вигляді (28) є деяким наближенням. Згідно з [8], коефіцієнти λ_{ii}^{u} залежать від енергії, причому ця залежність різна для різних напрямків у кристалі. З підстановкою (28) в (27) $\lambda_{ii}^{u}(E)$ в цьому випадку не скоротяться, і внаслідок того, що вони різні для різних напрямків, α_{ii} для різних *i* будуть відрізнятися між собою. Тобто, в цьому випадку буде спостерігатися анізотропія термоЕРС. Цей механізм виникнення анізотропії термоЕРС характерний для сильно легованих напівпровідників.

У випадку одного типу носіїв і двох механізмів розсіяння, що описуються часами релаксації $\tau_{u}^{(1)} = \lambda_{u}^{(1)} E^{r_1}$ і $\tau_{u}^{(2)} = \lambda_{u}^{(2)} E^{r_2}$, то, оскільки складаються обернені часи релаксації, в результаті будемо мати

$$\tau_{ii} = \frac{\lambda_{ii}^{(1)} \lambda_{ii}^{(2)} E^{r_1 + r_2}}{\lambda_{ii}^{(1)} E^{r_1} + \lambda_{ii}^{(2)} E^{r_2}}.$$
(29)

Підстановка (29) в (27) призводить до виразу

$$\alpha_{ii} = \frac{\int \frac{E^{r_1 + r_2}}{\lambda_{ii}^{(1)} E^{r_1} + \lambda_{ii}^{(2)} E^{r_2}} \frac{\partial \psi_0}{\partial E} \upsilon_i^2 (E - \mu) d^3 \vec{k}}{eT \int \frac{E^{r_1 + r_2}}{\lambda_{ii}^{(1)} E^{r_1} + \lambda_{ii}^{(2)} E^{r_2}} \frac{\partial \psi_0}{\partial E} \upsilon_i^2 d^3 \vec{k}}.$$
(30)

У цьому випадку тензор термоЕРС не зводиться до скаляра і термоЕРС буде анізотропною. Отже, однією з причин виникнення анізотропії термоЕРС може бути наявність двох (або декількох) механізмів анізотропного розсіяння. Однак анізотропія термоЕРС, зумовлена сукупною дією кількох механізмів розсіяння, невелика і при розсіянні на фононах і іонах, іонах і диполях, фононах, іонах і диполях становить 0.1 ÷ 25.0 мкВ/град.

Другою причиною анізотропії термоЕРС може бут наявність двох (чи більшого числа) типів носіїв заряду при одному механізмі розсіяння, якщо хоча б одна група носіїв характеризується анізотропною електропровідністю і коефіцієнти парціальних термоЕРС їх різні. Це зумовлено тим, що термоЕРС, на відміну від електропровідності, не є величиною адитивною. Справді, позначимо через $j_i^{(1)}$ і $j_i^{(2)}$ густини струму носіїв типу "1" і "2" і запишемо для них узагальнений закон Ома (16):

$$j_{i}^{(1)} = \sigma_{ii}^{(1)} \varepsilon_{i} - b_{ii}^{(1)} \frac{\partial T}{\partial x_{i}},$$

$$j_{i}^{(2)} = \sigma_{ii}^{(2)} \varepsilon_{i} - b_{ii}^{2} \frac{\partial T}{\partial x_{i}}.$$
(31)

Сумарна густина струму дорівнює:

$$j_{i} = j_{i}^{(1)} + j_{i}^{(2)} = \left(\sigma_{ii}^{(1)} + \sigma_{ii}^{(2)}\right)\varepsilon_{i} - \left(b_{ii}^{(1)} + b_{ii}^{(2)}\right)\frac{\partial T}{\partial x_{i}} = \sigma_{ii} \varepsilon_{i} - b_{ii}\frac{\partial T}{\partial x_{i}}.$$
(32)

З умови $j_i = 0$ для термоелектричного поля отримаємо вираз

$$\varepsilon_{i} = \frac{b_{ii}}{\sigma_{ii}} \frac{\partial T}{\partial x_{i}} = \frac{b_{ii}^{(1)} + b_{ii}^{(2)}}{\sigma_{ii}^{(1)} + \sigma_{ii}^{(2)}} \frac{\partial T}{\partial x_{i}}.$$
(33)

Для тензора термоЕРС матимемо співвідношення:

$$\alpha_{ii} = \frac{b_{ii}^{(1)} + b_{ii}^{(2)}}{\sigma_{ii}^{(1)} + \sigma_{ii}^{(2)}}.$$
(34)

Підставивши b_{ii} на основі (17) і врахувавши, що термоЕРС однієї групи носіїв заряду при одному механізмі розсіяння ізотропна, отримаємо остаточно

$$\alpha_{ii} = \frac{\alpha^{(1)}\sigma_{ii}^{(1)} + \alpha^{(2)}\sigma_{ii}^{(2)}}{\sigma_{ii}^{(1)} + \sigma_{ii}^{(2)}},$$
(35)

а різниця двох компонент тензора термоЕРС $\hat{\alpha}$ при цьому виражається формулою

$$\Delta \alpha = \alpha_{11} - \alpha_{22} = \frac{\left(\sigma_{11}^{(1)} \sigma_{22}^{(1)} - \sigma_{11}^{(2)} \sigma_{22}^{(2)}\right) \left(\alpha^{(1)} - \alpha^{(2)}\right)}{\left(\sigma_{11}^{(1)} + \sigma_{11}^{(2)}\right) \left(\sigma_{22}^{(1)} + \sigma_{22}^{(2)}\right)}.$$
(36)

Вираз (36) наводить на думку, що навіть за ізотропних парціальних коефіцієнтів термоЕРС всього напівпровідника може бути анізотропною, якщо електропровідність кожного виду носіїв, або хоча б одного з них, носить анізотропний характер. При цьому, звичайно, парціальні термоЕРС мають бути різними. Імовірно, цей механізм анізотропії термоЕРС реалізується в напівпровідниках орторомбічної сингонії *CdSb* і *ZnSb* і в чистому *Bi* в області змішаної провідності. Величина $\Delta \alpha$ в цьому випадку може досягати ~ 300 мкВ/град.

Анізотропія термоЕРС, зумовлена наявністю декількох груп носіїв заряду з різними термоелектричними властивостями і анізотропними електропровідностями, може штучно створюватися шляхом направленого деформування багатодолинних напівпровідників типу n-Ge i n-Si. Адже справді, направлене пружне деформування таких кристалів (за винятком напрямків $\vec{X} // \vec{J} // [100]$ у випадку n-Ge i $\vec{X} // \vec{J} // [111] – в <math>n$ -Si) призводитиме до зняття еквівалентності мінімумів енергії [13] і міжмінімумного перерозподілу електронів. Оскільки кінетичні властивості електронів, що належать різним долинам (мінімумам енергії), тепер різні внаслідок різної їх заселеності, а електропровідність кожної з цих груп сильно анізотропна, то відповідно до (35), термоЕРС усього кристала стане анізотропною. Появу особливо великої анізотропії можна очікувати в області змішаної провідності, оскільки одновісне деформування Ge i Si призводить до зняття виродження зон легких і важких дірок в точці $\vec{k} = 0$ простору квазіімпульсів і до появи значної анізотропії електропровідності дірок. Таким чином, одновісна пружна деформація може зумовлювати появу анізотропії термоЕРС навіть у матеріалах, які в недеформованому стані в термоелектричному відношенні є повністю ізотропними.

Є ще один механізм виникнення анізотропії термоЕРС, пов'язаний з проявом ефекту захоплення електронів фононами. При анізотропному характері енергетичного спектру носіїв заряду фононна термоЕРС є анізотропною. При цьому анізотропія термоЕРС може мати місце навіть при одному типі (різновиді) носіїв і одному механізмі розсіяння, на відміну від дифузійної термоЕРС, що була проаналізована вище.

Висновки

- 1. Розглянуто шляхи використання теорії анізотропного розсіяння для аналізу кінетичних явищ за наявності та за відсутності градієнта температури на досліджуваних кристалах *n*-*Ge* і *n*-*Si*.
- 2. На основі використання узагальненого закону Ома обґрунтовано визначення тензора термоЕРС при знаходженні кристала в умовах $\nabla T \neq 0$.
- 3. Детально проаналізовано найбільш важливі механізми виникнення анізотропії термоЕРС і звернуто увагу на особливості цієї анізотропії в багатодолинних напівпровідниках (*n* -*Ge* i *n* -*Si*) при їх направленому (одновісному) пружному деформуванні.

Література

- Гайдар Г.П. Механізми формування анізотропії термоелектричних і термомагнітних явищ у багатодолинних напівпровідниках / Г.П. Гайдар / Г.П. Гайдар // Фізика і хімія твердого тіла. – 2013. – Т. 14, № 1. – С. 7 – 20.
- 2. Гайдар Г.П. Кинетика электронных процессов в Si и Ge в полях внешних воздействий /

Г.П. Гайдар. – Монография. – Saarbrücken, Deutschland: LAP LAMBERT Academic Publishing, 2015. – 268 с.

- 3. Баранский П.И. Термоэлектрические и термомагнитные явления в многодолинных полупроводниках / П.И. Баранский, И.С. Буда, В.В. Савяк. К.: Наук. думка, 1992. 269 с.
- 4. Gaidar G. Optimization of the thermoelectric figure of merit in the transmutation-doped and ordinary *n*-Si crystals / G. Gaidar, P. Baranskii // Phys. Status Solidi A. 2015. Vol. 212, No. 10. P. 2146–2153.
- 5. Анатычук Л.И. Термоэлементы и термоэлектрические устройства. Справочник / Л.И. Анатычук. К.: Наук. думка, 1979. 767 с.
- 6.Анатычук Л.И. Термоэлектричество. Т. IV. Функционально-градиентные термоэлектрические материалы / Л.И. Анатычук, Л.Н. Вихор. – Киев-Черновцы: Институт термоэлектричества. – 2012. – 180 с.
- 7. Электрические и гальваномагнитные явления в анизотропных полупроводниках / П.И. Баранский, И.С. Буда, И.В. Даховский [и. др] К.: Наук. думка, 1977. 270 с.
- 8.Самойлович А.Г. Теория анизотропного рассеяния / А.Г. Самойлович, И.С. Буда, И.В. Даховский // ФТП. 1973. Т. 7, № 4. С. 859. ДЭ 750 от 2 декабря 1972.
- 9.Баранский П.И. Теория термоэлектрических и термомагнитных явлений в анизотропных полупроводниках / П.И. Баранский, И.С. Буда, И.В. Даховский. // – К.: Наук. думка, 1987. – 272 с.
- 10. Ансельм А.И. Введение в теорию полупроводников / А.И. Ансельм. М.: Наука, 1978. 616 с.
- Samoilovich A.G. On the Theory of Anisotropic Thermoelectric power in Semiconductors / A.G. Samoilovich, M.V. Nitsovich, V.M. Nitsovich // Phys. Status Solidi B. – 1966. – Vol. 16, № 2. – P. 459 – 465.
- Анизотропия кинетических коэффициентов в дисилициде хрома / В.И. Кайданов,
 В.А. Целищев, А.П. Усов [и др.]. // ФТП. 1970. Т. 4, № 7. С. 1338 1345.
- 13. Проблеми діагностики реальних напівпровідникових кристалів / П.І. Баранський, О.Є. Бєляєв, Г.П. Гайдар, [і т.д.]. // К.: Наук. думка, 2014. 462 с.

Надійшла до редакції 10.01.2016.