ТЕОРІЯ ОПТИМАЛЬНИХ РІШЕНЬ

УДК 519.8

Э.И. НЕНАХОВ

ОБ ОДНОМ АЛГОРИТМЕ ОТЫСКАНИЯ РЕШЕНИЙ СИСТЕМЫ ЛИНЕЙНЫХ НЕРАВЕНСТВ

Введение. Для минимизации ограниченной снизу выпуклой функции в пространстве R^n разработан метод центрированных сечений [1], который основан на том, что используя информацию о локализации минимума в некотором выпуклом замкнутом многограннике, находить на каждой итерации алгоритма центр тяжести данного многогранника и вычислять субградиент функции в данной точке. Минимум функции будет находиться в одном из полупространств, определяемых опорной гиперплоскостью. Часть многогранника, лежащую в другом полупространстве, можно отсечь. С полученным новым многогранником поступаем аналогично.

Метод центрированных сечений практически непригоден, поскольку вычисление центра тяжести многомерного многогранника является неконструктивной процедурой. Весьма эффективной оказалась идея замены многогранника на эллипсоид [2]. В работе [3] была осуществлена замена многогранника симплексом и получен метод центров тяжести симплексов для решения экстремальной задачи. Для быстрой сходимости указанного метода необходимо простым способом вычислять последовательность симплексов, содержащих очередную неотсеченную область - «полусимплекс». Кроме того отношение объемов двух последовательных симплексов должно быть меньше единицы.

Известно, что центр тяжести позволяет осуществлять гарантированное уменьшение объема симплекса [4]. Однако, в качестве

Предлагается эффективный алгоритм для решения системы линейных неравенств. В основе алгоритма лежит процедура сечения симплекса плоскостью и погружения полученного "полусимплекса" в новый симплекс минимального объема. Представлены результаты численного эксперимента.

© Э.И. Ненахов, 2005

очередного приближения наряду с центром тяжести может быть выбран центр шара максимального радиуса, вписанного в симплекс. Рассмотрению способов эффективного управления уменьшением объемов симплексов и выбора некоторых характерных точек симплексов в качестве приближений решения системы линейных неравенств посвящена данная работа.

Рассмотрим систему линейных неравенств

$$(a_i, x) + \alpha_i \le 0, \quad i = 1, ..., m,$$
 (1)

определяющую многогранник Ω с непустой внутренностью. Требуется найти точку $\tilde{x} \in \Omega$. Предполагаем, что существует произвольный n –мерный симплекс S_{-1} , натянутый на вершины $x^0, x^1, ..., x^n$ и содержащий Ω .

Пусть \overline{x} — центр тяжести симплекса S_{-1} и задана некоторая плоскость $(a,x)+\alpha=0$, такая, что $(a,\overline{x})+\alpha>0$. Далее рассмотрим процедуру $V(\overline{x};a,\alpha)$, ставящую в соответствие симплексу S_{-1} симплекс S_1 минимального объема, содержащий "полусимплекс" $S_0=\left\{x\in S_{-1}:(a,x)+\alpha\leq 0\right.\right\}$.

Пусть $(b_j,x)+\beta_j=0$, j=0,1,...,n, нормальное уравнение плоскости, содержащей грань симплекса S_{-1} , противолежащую вершине x^j данного симплекса. Тогда S_0 можно представить так:

$$S_0 = \left\{ x : (b_j, x) + \beta_j \le 0, \quad j = 0, 1, ..., n, \quad (a, x) + \alpha \le 0 \right\}.$$

Погружение "полусимплекса" S_0 в симплекс осуществляется следующим образом. Вначале определяем все вершины исходного симплекса, удовлетворяющие отсекающему неравенству. Пусть для определенности $(a,x^j)+\alpha \leq 0$, j=0,1,...,k, и вершина x^0 наиболее удалена от отсекающей плоскости. Для $\theta \in [0,1]$ построим гиперплоскость

$$\theta[(a,x) + \alpha] + (1-\theta)[(a,x^0) + \alpha][(b_0,x) + \beta_0]/[(b_0,x^0) + \beta_0] = 0.$$

Вычисляем координаты точек пересечения $y^j(\theta)$, j=1,...,n, с этой гиперплоскостью ребер симплекса S_{-1} , исходящих из вершины x^0 , т.е. находим вершины симплекса, определяемого неравенствами $(b_j,x)+\beta_j \leq 0$, j=1,...,n, и неравенством

$$\theta[(a,x)+\alpha]+(1-\theta)[(a,x^0)+\alpha][(b_0,x)+\beta_0]\big/[(b_0,x^0)+\beta_0]\le 0\,,$$
 содержащего S_0 . Нетрудно проверить, что

$$y^{j}(\theta) = x^{0} + (x^{j} - x^{0})/(1 - \delta_{j}\theta), \quad \delta_{j} = [(a, x^{j}) + \alpha]/[(a, x^{0}) + \alpha], \quad j = 1,...,n.$$

Процедура $V(\bar{x}; a, \alpha)$, завершается вычислением на отрезке [0,1] минимума функции $\phi(\theta) = c \cdot \prod_{i=1}^n \frac{1}{1 - \delta_i \theta}, \ c > 0$.

Оценка сверху для минимума $\varphi(\theta)$ зависит от величины $\Delta = \sum_{i=1}^k \delta_i$. Ска-

занное следует понимать так: если имеется несколько плоскостей, отделяющих центр тяжести \bar{x} , то для сечения симплекса следует выбрать ту, которой соответствует меньшая величина Δ . Процедуру построения гиперплоскости $(a,x)+\alpha=0$ в соответствии с описанным правилом обозначим $H1(\bar{x})$.

Для описания следующей процедуры $H2(\overline{x})$ построения отсекающей гиперплоскости предположим, что $(a_i,\overline{x})+\alpha_i>0$, $i=1,...,m_0$. На первом шаге вначале полагаем $c_1=a_1$, $\gamma_1=\alpha_1$, $c_2=a_2$, $\gamma_2=\alpha_2$ и рассматриваем отсекающее неравенство как выпуклую комбинацию первых двух нарушенных неравенств $\theta[(c_1,x)+\gamma_1]+(1-\theta)[(c_2,x)+\gamma_2]\leq 0,\; \theta\in[0,1]$.

Далее строим функцию

$$\Delta(\theta) = \left\{ \begin{array}{l} \sum_{j=0}^{n} \left| \; \theta[(c_1, x^j) + \gamma_1] + (1 - \theta)[(c_2, x^j) + \gamma_2] \; \left| -g \; \right| \right\} \right/ \\ \\ \left/ \max_{0 \leq j \leq n} - \left(\theta[(c_1, x^j) + \gamma_1] + (1 - \theta)[(c_2, x^j) + \gamma_2] \right) \; , \\ \\ \text{где} \; g = \sum_{j=0}^{n} \left(\theta[(c_1, x^j) + \gamma_1] + (1 - \theta)[(c_2, x^j) + \gamma_2] \right) \; . \end{array}$$

Определяем параметр $\theta^* = \arg\min \left\{ \Delta(\theta) \mid \theta \in [0,1] \right\}$ и полагаем направляющий вектор $a^* = \theta^* c_1 + (1-\theta^*) c_2$ и свободный член уравнения отсекающей гиперплоскости $\alpha^* = \theta^* \gamma_1 + (1-\theta^*) \gamma_2$.

Несмотря на сложный вид функции $\Delta(\theta)$, значение параметра θ^* легко вычисляется. Оно совпадает или с одним из концов указанного отрезка, или с корнем одного из слагаемых, стоящих под знаком модуля в числителе этого выражения.

На втором шаге полагаем $c_1 = a^*$, $\gamma_1 = \alpha^*$, $c_2 = a_3$, $\gamma_2 = \alpha_3$ и повторяем все описанные действия. Процедура $H2(\overline{x})$ продолжается до тех пор, пока не будут перебраны все m_0 нарушенные неравенства. Последняя выпуклая комбинация даст искомую отсекающую гиперплоскость.

Для описания процедуры $H3(\overline{x})$ также будем предполагать, что в точке \overline{x} нарушены первые m_0 неравенств. Полагаем

$$\lambda_i = [(a_i, \bar{x}) + \alpha_i] / \sum_{k=1}^{m_0} [(a_k, \bar{x}) + \alpha_k], \quad i = 1, ..., m_0.$$

Тогда для нормали a и свободного члена α отсекающей гиперплоскости получаем следующие выражения: $a=\sum_{i=1}^{m_0}\lambda_ia_i$, $\alpha_i=\sum_{i=1}^{m_0}\lambda_i\alpha_i$.

Рассмотрим три процедуры отыскания очередного приближения. Процедура P1(S) ставит в соответствие симплексу S его центр тяжести \bar{x} . Процедура P2(S) ставит в соответствие симплексу S его чебышевский центр

$$\mathcal{E} = \arg\min \left\{ \max_{z \in S} ||x - z|| | x \in R^n \right\} .$$

Для отыскания чебышевского центра \pounds исходного симплекса S_{-1} достаточно решить соответствующую систему уравнений. На всех последующих шагах расчеты значительно проще. Действительно, центр шара, вписанного в S_1 , следует искать на луче $x^0 + (\pounds - x^0) \tau$, $\tau \ge 0$. Поэтому достаточно найти решение τ_0 уравнения

$$(b_1, x^0 + (\pounds - x^0)) + \beta_1 = (b_0, x^0 + (\pounds - x^0)) + \beta_0$$

где $(b_0, x) + \beta_0 = 0$ — нормальное уравнение плоскости, содержащей грань симплекса S_1 , противолежащей вершине x^0 , а затем положить $\pounds := x^0 + (\pounds - x^0) \tau_0$.

Процедура P3(S) состоит из n шагов. На первом шаге полагаем $\mathfrak{E}:=\overline{x}$, $z:=x^1$ и находим

$$\theta^* = \arg \min \left\{ \max_{i} \left([a_i, \theta \xi + (1 - \theta)z] + \alpha_i \right) \mid \theta \in [0, 1] \right\}.$$
 (2)

Далее полагаем $\mathfrak{E} := \theta^* \mathfrak{E} + (1 - \theta^*) z$, $z := x^2$ и решаем вновь задачу (2). Завершается процедура P3(S) построением некоторой точки \mathfrak{E} на n -й итерации.

Перейдем теперь к непосредственной формулировке алгоритма для решения системы (1). Пусть точки $\bar{x}=P1(S_{-1})$, $\pounds=P2(S_{-1})$ и $\pounds=P3(S_{-1})$ не принадлежат Ω (иначе, система (1) решена). Применяя процедуру $H1(\bar{x})$, либо $H2(\bar{x})$, либо $H3(\bar{x})$ находим отсекающую гиперплоскость $(a,x)+\alpha=0$. Осуществляем процедуру $V(\bar{x};a,\alpha)$, т.е. находим новый симплекс $S_1 \supset \Omega$, объем которого меньше объема исходного симплекса S_{-1} . Описанные шаги повторяются. Поскольку int $\Omega \neq \emptyset$, то за конечное число итераций модифицированный метод решит систему (1).

Если $\inf \Omega = \emptyset$, то на некоторой итерации может быть получен симплекс нулевого объема, но не получено решение задачи, т. е. вычислительный процесс завершается безрезультатно. Требуется найти некоторую точку в многограннике

$$\mathbf{\Omega} = \left\{ x : -\xi_1 - 2\xi_2 - 1 \le 0; \ \xi_1 + 1 \le 0; \ -\xi_1 + \xi_2 - 1 \le 0 \right\} \in \mathbb{R}^2.$$

В качестве исходного берем симплекс S_0 с вершинами (0;10), (-10;-20), (10;-20). Тогда $S_0 \supset \mathbf{\Omega}$, int $\mathbf{\Omega} = \mathbf{\emptyset}$.

На первой итерации центр симплекса S_0 не удовлетворяет неравенствам с номерами $i_1=1$, $i_2=2$ и $\lambda^*=0,1552$. Выпуклая комбинация первых двух плоскостей, определяющих Ω , с использованием найденного значения λ^* дает отсекающую плоскость $\xi_1-0,45005\xi_2+1=0$. Таким образом будет построен симплекс S_1 с вершинами (0;10), (-10;-20), (1,4894;5,5319), причем $vol(S_1)/vol(S_0)=0,1489$. На второй итерации $i_1=3$, $i_2=1$, $\lambda^*=0,8166$. Выпуклая комбинация с данным λ^* третьей и первой плоскости, определяющих Ω , дает отсекающую плоскость $-\xi_1+0,45005\xi_2-1=0$. В качестве симплекса S_2 получаем отрезок с концами (-10;-20), (1,4894;5,5319), то есть $vol(S_2)=0$. Алгоритм закончил работу, однако, единственная точка $(-1;0) \in \Omega$ не найдена.

Заметим, что в качестве исходного симплекса S_{-1} можно брать симплекс, удовлетворяющий более слабому требованию $S_{-1} \cap \Omega \neq \emptyset$.

Пример. Требуется найти решение системы неравенств (1) с числовыми данными, представленными в таблице. Здесь $x \in \mathbb{R}^{15}$, число неравенств m = 14.

В качестве исходного симплекса берем
$$S_{-1} = \left\{ x: x \ge 0, \sum_{q=1}^{15} \xi_q \le 3 \right\}$$
. На оче-

редной итерации построение отсекающей гиперплоскости производилось с помощью процедур $H1(\overline{x})$ или $H2(\overline{x})$. В первом случае решение получено при k=86 , $vol(S_{86})/vol(S_{85})=0.99774$, $\widetilde{x}=\overline{x}=(-0.76881; 0.29741; 0.85762; 0.09701; 0.04513; 0.05111; 0.10333; 0.15089; 0.13279; 0.34197; 0.02528; 0.71540; 0.06160; 0.54511; 0.25700), во втором — при <math>k=34$, $vol(S_{34})/vol(S_{33})=0.99579$, $\widetilde{x}=\overline{x}=(0.79970; 0.15279; 0.61331; -0.06312; 0.21261; 0.06889; 0.05470; 0.09169; 0.01581; 0.43580; 0.03071; 0.02301; 0.04400; 0.15569; 0.25390).$

Замечание. Если на каждом шаге итерационного процесса с использованием процедуры P1(S) отсекаются все вершины, кроме одной, то объем симплексов, в которых локализована точка \tilde{x} , уменьшается в два раза, т.е. осуществляется процесс дихотомии.

ТАБЛИЦА

	ξ_1	ξ_2	ξ_3	ξ_4	ξ_5	ξ_6	ξ_7	ξ_8	ξ_9	ξ_{10}	ξ ₁₁	ξ ₁₂	ξ ₁₃	ξ_{14}	ξ ₁₅	α_i
a_i																
1	1	-1	2	-3	0	2	-1	3	-1	-2	-5	1	1	2	-3	1
2	-1	-2	3	-5	2	-1	2	-4	6	-7	0	-5	4	3	2	-0,7
3	0	3	-1	2	-3	0	5	-5	6	8	1	0	-1	-2	4	3,3
4	2	1	-3	4	0	0	-2	0	0	2	-3	2	0	5	8	3,2
5	1	2	3	-1	-3	-5	6	0	0	0	0	0	0	0	1	2,8
6	0	0	-1	-2	-3	3	2	1	0	0	-1	1	2	-2	1	-0,5
7	-1	-1	-2	-3	2	3	0	0	0	-1	2	-4	5	6	-4	-1,5
8	-1	1	-2	3	0	-2	1	-3	1	2	5	-1	-1	-2	3	-0,8
9	1	2	-3	5	-2	1	-2	4	-6	7	0	5	-4	-3	-2	0,9
10	0	-3	1	-2	3	0	-5	5	-6	-8	-1	0	1	2	-4	-3,1
11	-2	-1	3	-4	0	0	2	0	0	-2	3	-2	0	-5	-8	-3,0
12	-1	-2	-3	1	3	5	-6	0	0	0	0	0	0	0	-1	-2,6
13	0	0	1	2	3	-3	-2	-1	0	0	1	-1	-2	2	-1	0,7
14	1	1	2	3	-2	-3	0	0	0	1	-2	4	-5	-6	4	1,9

Заключение. Исследуемый алгоритм, вообще говоря, не улучшает теоретическую оценку скорости сходимости метода центров тяжести симплексов. Однако при решении конкретных задач предложенные варианты алгоритма существенно уменьшают число итераций.

Е.І. Ненахов

ПРО ОДИН АЛГОРИТМ ПОШУКУ РІШЕНЬ СИСТЕМИ ЛІНІЙНИХ НЕРІВНОСТЕЙ

Пропонується ефективний алгоритм для розв'язування системи лінійних нерівностей. У основі алгоритму лежить процедура відтинання симплексу площиною та занурення отриманого "напівсимплексу" в новий симплекс мінімалного об'єму. Наведені результати обчислювального експерименту.

E.I. Nenakhov

AN ONE ALGORITHM FOR FINDING SOLUTION TO A LINEAR INEQUALITY SYSTEM

An efficient algorithm for finding a solution to system of linear inequalities is proposed. It is based on the procedure of cutting a simplex by a plane and of embedding an obtained "semisimplex" into a new simplex of minimal volume. The computational experiment results are provided.

- 1. Левин А.Ю. Об одном алгоритме минимизации выпуклых функций // Докл. АН СССР. 1965. **160**, № 6. С. 1244 –1247.
- 2. *Шор Н.*3. Методы минимизации недифференцируемых функций и их применение. Киев: Наук. думка, 1979. 200 с.
- 3. *Александров И.А.*, *Анциферов Е.Г.*, *Булатов В.П.* Методы центрированных сечений в выпуклом программировании. Иркутск, 1983. 33 с. (Препр. / АН СССР, Сиб. отд. ние. Сиб. энергетический ин–т; № 5).
- 4. *Митягин Б.С.* Два неравенства для объемов выпуклых тел // Математические заметки. -1969. -5, вып. 1. C. 99 106.

Получено 25.02.2005