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A. POGORUI

THE DISTRIBUTION OF RANDOM EVOLUTION IN ERLANG
SEMI-MARKOV MEDIA

We study a one-dimensional random motion by using a general Erlang distribution
for the sojourn times of a switching process and obtain the solution of a four-order
hyperbolic PDE in the 2-Erlang case.

1. INTRODUCTION

In paper [1], we studied a one-dimensional random motion with the m-Erlang distrib-
ution between consequent epochs of velocity alternations. Let f(t,x) be the probability
density function (pdf) of a particle position at time ¢, provided that it exists. We obtained
the following higher order hyperbolic equations for f (¢, z):

0 (o) (he o) e

where v > 0 is the velocity of a particle, and A is the parameter of the m-Erlang distri-
bution. It is assumed that the particle started at = 0, and, hence, f(0,2) = §(z).

The pdf f(t,z) can be represented in the form f(¢,z) = f.(t,z) + fs(t,z), where
fe(t,x) is the absolute continuous part, and f,(¢,x) is the singular part w.r.t. Lebesgue
measure on the line.

Lemma 1.1. The singular part fs(t,x) of the pdf f(t,x) is of the following form:

m—1
(2) fo(t,z/v) = 6(t — x/v)e () /il

=0

Proof. Tt is evident that, for ¢t = x/v, the pdf f(¢, ) has the singularity given by Eq.

(2). Let us show that, for ¢t > |x/v|, the pdf f(¢, ) has no singularity w.r.t. Lebesgue
measure on R. By v, we denote the random event ”k velocity alternations occurred”.
For Ax = [z,x + A], A > 0, let us consider

Py (a(t) € Az) =Y P(a(t) € Az, ),
k>1
which is the probability of the event where at least one alternation occurred and z(t) €
Azx. Let us show that, for each t > 0, there exists a constant C; < oo such that
W Py, (z(t) € Ax)
z Ax
By 60k, k > 1, we denote the time between (k — 1)-th and k-th velocity alternations.

Recall that 0y, k > 1, are independent m-Erlang distributed random variables. It is easy
to verify that

< Cy.
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Py, (2(t) € Ax) = Zp(Z )00 + (- (t—ZQv)eAx29<t>

k>1 i=1
k
= ZP ((Z 1), — (—1)* ZGZ> veEAr — (—l)kvt,Z& < t>
k>1 i=1 i=1 i=1
2l+1
=y P (%(91 +03+ ...+ 0u41) € Ax —vt, Y 6; <t>
>0 i=1

21+2
—ZP< 20(02 + 04+ .. +92[+2)€A$+’0t,29i<t>

>0 i=1

x

l l
< SupZP (21129%—1 € Am,QUZGQi < Ut—x>

1>0 i=1 i=1
l !
+ sup Z P (—21} Z 0o; € Az, 20 Z O2;11 < vt + m) .
T >0 i=1 i=1

Since |z| < vt and, for every m > 1, the pdf p,,(x,\) of the m-Erlang distribution
with the parameter A satisfies p,,(x, \) < A, we have

D> P@u(01+ 05+ ...+ 0n-1) € Az, 20(02 + 04+ ... + 031) < vt — )
>1

AA
< — .. .
(3) <o ZP(92+94+ + 09 < t)
1>1
Since 60; is m-Erlang distributed, we have, for 2lm 4+ 1 > ¢,
2lm

At)l B (At)2lm+1€_)\t
P < |eM-— ( A< )
b2+ bt +0a<t)< (e ; i )e = Yml(2m + 1 — M)

Therefore, taking (3) into account, there exists a constant A; such that

l l
SupZP (21129%—1 € Ax,QUZGQi < vt — x> < A, A.

o> i=1 i=1

In the same way, we can show that there exists a constant B; such that

201
bupZP( 21}2921 € Az, 21}2292Z <vt+x> < B;A.

>1 =1 i=1
Putting C; = A; + By, we conclude the proof.

Corollary 1.1. The absolute continuous part f.(t,x) of the pdf f(t,z) satisfies Eq. (1)
Jort < [Z].
We now study the behavior of the continuous part f.(t,z) close to lines t = 2.

Lemma 1.2. For m > 2, we have
_ mym—1_—\t
limP{0<t x(t)<5}:)\ tmle ’
€l0 3 2(m — 1)‘
lim P{t+z(t) <e}
e—0 £

=0.
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Proof. 1t is easy to verify that

€ K €
P{0<t—x(t)§5}:P{t—5§91<t}—|—/ P{ngt—u,eggi,ﬁledu}—i—o(s),
0

where 60;,i = 1,2,3 are independent m-Erlang distributed random variables with the
parameter \. Since fot P03 >t —u,0; < 5,01 € du) = o(g), we pass to the limit and
obtain
P{0<t—xl(t
iy PO <t-x(t) <e}

i : Ly ((’”Z (AZ};Y) e (mZ M))

)\mtmflefz\t
T 2m-1)
Similarly, P{t + z (t) <e} =P {6, >t — 5,60 < £} +o0(e), and it is easily seen that

lim P{t+ua(t) <e} _
clo £

0.

Remark 1.1. The case where m = 1 will be considered in what follows as an example.
Remark 1.2. We will seek solutions of Eq. (1) among functions whose continuous part
fe(t,x) satisfies the conditions

P{0<t—ux(t)<e} P{t+z(t) <e}

4)  limfe(t,z) =1 ,lim f. (t,2) L
(4) ggrtlf(fﬂ) im Illrgltf(fﬂ) lim

€|0 IS 3
By applying the transformation f (t,x) = e*g (¢, ) and changing the variable y = z, we
reduce Eq. (1) to
0? ?2\"
5 ) g (ty) = N"Mg.(ty) =0
) (5~ 5) 960 = ¥"acan

4l

with the singular part g, (¢,y) = (ZZEI o‘t)i) o(t—y).
In the sequel, we assume, without loss of generality, that A = 1. By introducing the
function f (¢,y, z) = e*g.(t,y), we reduce Eq. (5) to the equation

82 82 m a2m
6 — = f(t ———f(t =0.
©) (55— 3) Tt09) = gt (02
We will seek solutions of this equation by using the theory of differentiable functions on
commutative algebras [2].

2. MAIN RESULTS

Let Ay be a 2m-dimensional commutative algebra over R. We assume that the set e,

€1, ..., €am—1 18 a basis of Ag with the Cayley table:
eiej = ei@j,
where i ® j =i+ j (mod 2m).
The algebra Ag has a matrix representation
e — P, = Plk7

where Py = [pyj] s Piir1 = 1 for 0 <4 < 2m — 1, pamo = 1, and py; = 0 for the rest
of i, j.

We put

2mx2

T(l)zel, l=0,1,...,2m—1,
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T{ =¢isins, [ =0,1,...,2m—1,
Té =eycoss, 1=0,1,...,2m—1,
The = ejcosks, Th ., =ejisin(k+1)s, 1=0,1,...,2m — 1,
k=0,1,2,....
It is easily seen that 79,79, = 1 (Tg(nik) + Tg(n+k)) , n>k,
TéZHTéiH = % (Téine?;lf) - Téﬁfé) ; n=k,

We now introduce the algebra

400 2m—1
_ Lo 1 !
A= Z Z (a5kTop + A2pi1Tog11)

k=0 1=0

1
l lo 1Pl 1Pl
Ton41Tok = 3 (TQ(n_k)+1 + T2(n+k)+1) , n>k.
aé € R} ,

+o00 2m—1 112 1 2
where >~ 70> <a2k| + |aby | ) < +o00.
It is easy to verify that A is commutative.
We consider the subspace B = {ao7{ + a173 + a27 | a; € R} of the algebra A.

Let us introduce the function f : B — A (f(t,y,2) = f(e1 (tcoss + yisins ) + z)) as

follows:
400 2m—1

f(t,y,z) = Z Z (va (£ Y, 2) Tog, + Vo (89, 2) Topr)-
k=0 1=0
The function f is called B/A differentiable at xo € B if there exists f (x) € A such
that, for any h € B,
/ f h)-f
£ (x0) h=lim (0 +¢h) - f (xo)
e— 3

In [2], it was proved that if f is B/A differentiable, then

0 0
(7) af = €e1Cos S &f
and

0 .0
(8) 8_yf = eyisins &f.

In this case, all v}, (¢,y,2) are solutions of Eq. (6). Indeed,
32 32 m an m
(@ — a—y2> f— azsz = B%m (COS2S — (isins )2) —1=0.
In the sequel, we denote the element e; by e.
We will seek a solution of Eq. (5) in the form

tcos s +yisins )

ge (e (tcos s + yisins )) = e
. Since f (e(tcoss + yisins ) + z) = g.(e (tcoss + yisins ))e?, we have

ok (ty,2) =l (t,y)e*,1=0,1,...,2m -1, k=0,1,2,...,

+ 2m—1
where ge (t,y) = 3320 2ty (uby (6,y) Tog + by (6,Y) Togyn)-

Therefore, we obtain the functions u} (t,y) for t > |y| from the equation

1 geltcoss +yisins ) g — g (ei 2 _tz) — I (em)

2 J_,
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where Iy, (resp. Ji) is the modified Bessel (resp. Bessel) function of the first kind and
k-th order [4].
Equations (7) and (8) yield the following Cauchy—Riemann-type conditions:

81@1 1,

&’LLO = §U2,
0 151 1
a“ﬂa = 5%,
0 1
a“lz@l = ug + 5”2»
0 11 1
a“zgl =3 (“l2k73 + “l2k+1) )
oul®? 1
9) g—]; =3 (Ulz(k_n + Ul2(k+1)) ;
k=23,...;
and

D1
Ougpsy

1 l l
dy ::i'(“2k"“2ﬁﬁﬂ>)’
aulaal

k
(10) % =3 (Ul2k71 - Ul2k+3) )

—_

k=1,2,....

By using Egs. (9) and (10) and the functions ), (,y), we can obtain recurrently the
function u!, (t,y) for any k > 1, which will be used to solve Eq. (1).

In the sequel, unless otherwise specified, the case where m = 2 is studied. In this case,
fs (t,y) is of the form f, (t,x) = et (1 +1¢)§ (¢t — z), and, hence,

gs (ty) = (1 +8)0(t—y).
The algebra Ay is as follows:
Ay ={a+eb+esc+esd| a,be,deR}.

Here, the basis ¢; = e/, [ = 0,1,2,3, and e has the matrix representation

0 1 0 0
0 0 1 0
e P=1 00 01
1 0 0 0
Therefore, we have 70 = 1, 79, = cosks , 75, = elcosks, 75, = elisin(k+1)s,

1=0,1,2,3, k=0,1,2,... -
Taking into account that g. (e (tcoss + yisins )) = e®(tcoss +yisins ) e have

1 4 .
ug (t,y) +eug (t,y) +*uf (t,y) + e’ug (t,y) = —/ gelicoss Fumine ) gy

2 J_,
= IO (e\/ t2 — y2) .
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It is easily seen that

Iy (GM)
_ Io (\/W) zfo (ZM) L (Io (\/W) —210 (ZM)
Io (M)ZJO(M)+e2IO (\/tQ——y2);Jo(\/—2)
Therefore, for t > |y|, we have uj (¢,y) = u3 (t,y) = 0 and
W) (/)
2
Io( t2—y2) —JO( t2—y2)

ug (t,y) =

It follows from the first two equations of (10) that

ul _ga%ug __ofp (\/tz——zﬁ)a; 5 (VE=P)]
:\/tzy_—y2 (n (vVE=92) + 1 (VE=27)),
b = _ga%ug 0 K (\/tz——zﬁ)a: 5 (VE=P)]
:\/tzy_—y2 (n(vVE=v?) -1 (V=)
uf = Q%ué =0
uf = Q%ug =0
Then the Cauchy-Riemann-type conditions (9) yield
ud (t,y) = 2% _o;
a2 () ()
o ot o
- = = (1 (VA=) 0 (V7))
ul (t,y) = Qauga(jay) —0;
& (4 y) o 0un (ty) _ 9 [Io (m) +Jo (m)}
’ ot o
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Similarly, for u}, we have

=2y =25 | et (5 (V) 0 (V)|

N
2 (1 () 0 ()
t2_y2

% 0 (V) 1 (V) 5 0 (V) (V)

g =25 | s (1 (V) - (V)
- (0 () ()
2 — y2

22 (10 (VE=) + 1 (V) — o (VE) 4 (VE)).

It is easily seen that ul = uj = 0.

Next, it follows from (9) that

g =22t o =28 L (1 (VA=) 4 (V) - g
= (1 (V) (V)
2 — y2

it (0 (VA=) 1 (V=) 00 (V) (V7))
—IO(M)_JO(\/W);

=2 (G- u3) - ﬁ (6 (VE=F) - 1 (VE= )

s (0 (V) 1 (VA=) 00 (VA7) 0 (V7))
—I (\/W) + Jo (M) :

It is also easy to verify that u} = u3 = 0.
By using the well-known integrals for Bessel functions [3-5], we have

t t t t
/ ugdy = sinht + sint ,/ uddy = sinht —sint , / uidy = / uddy = 0,
—t —t —t —t

/t uzdy =2 " u 2d (g /t uddy — ud (t,t) — ud(t, —t))
—t ; Ot ot J_,

—2cosht — 2cost

t t
/ u3dy 2/ agod =2 (66 / uddy — uf (t,t) — ul (t, —t))
—t t —t

=2cosht + 2cost — 4.
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As an example, we obtain the pdf in the case where m = 1. In this case, e; = 1, and,
hence, we can consider the functions Z?:o ub (t,y), k=0,1,2,... as solutions of Eq. (5)
for m = 1.

For ¢ < |y|, consider the function g (¢,vy) = g. (¢,y) + gs (t,y) of the form

0e (1) =5 (1 (L) + 1 (1)) + 7 (6 (69) + 0 (6,9) + b (6,0) + 3 ()

2
IO(Vt2_y2) t+y
- + I1< t2—y2)
2 2\/12 — 2

and g, (t,y) =0 (t —y).
Tt is easily seen that the function g. (¢,y) is a solution of the equation for ¢ < y:

2 2
(11) (%—%)g(t,y)—g(t,y):&

In addition, we have limyy; gc (t,y) = 1 (1+1t) and limy| 4 g (t,y) = 3.
To avoid cumbersome calculations, we put v = 1.
Therefore, f (t,x) = e~tg(t,x) is a solution of the equation

o 0 o 0
(12) (5-2+1) (g+ g 1) et~ fetta) =0,
fs(t,x) =08t —mz)e .
In addition, f. (t, ) satisfies the conditions
. I —t . -
I;?tlfc(tvl') _2(6 +te )7 zhlrfltfc(t’x) _26 :

For all £ > 0, we have fft f(t,x)dz = 1.

For a small ¢ > 0, consider the probability P{0 <t —z () < e}.
P{o<t—z(t)<e}
€

Let us verify that limgq fe (¢, 2) = lim.jo , L.e.,
P t—x(t 1
lim {0< v(t) < e} :—(e*t—i—te*t).
el0 3 2

Indeed, it is easily seen that

t
P{O<t—x(t)§6}:P{t—%§91<t}+/ P{ngt—u,92§%,91edu}
0

+o(e),
where 6;, i = 1,2, 3 are independent exponentially distributed random variables.
The random variable 6, is the time of the first velocity alternation, 5 is the time interval
between the first and second velocity alternations, and 3 is the time interval between
the second and third velocity alternations.
We have P {t — £ < 6; <t} =e 't2 — e~*. Moreover, it is easy to calculate

t t
/ P{93 >t—u, 03 < %,91 € du} = (1 — e_%)/ e ttueTtdy,
0 0
) te™t.
Whence, it is easy to verify that lim, o - % (e7t +te ).
Similarly, P{t + z (t) < e} = P{#; >t — 5,61 < 5} + o (). This implies that

. P{t+ax(t)<e} 1 _,
W e Tt TaARken

NG

:(l—e*

P{o<t—=z(t)<e} _
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Therefore, f. (t,z) is a solution of the Goursat problem for the linear second-order hy-
perbolic equation that ensures the uniqueness of the solution of Eq. (12) with conditions
(4). This means that f (¢,x) is the pdf of the particle’s position for m = 1.

It is worth to remark that the function f (¢,x) coincides with the result obtained in [5].

We now turn to the case m = 2 and continue to calculate the integrals of u!.

1
943 _ 92ud that

It follows from ug = 25

t 8 t
/ uldy =2 (a / usdy — ugy (t,t) — ud (t, —t)) — 2sinht — 2sint

—t —t
=4 (sinht +sint —t) — 2sinht — 2sint = 2sinht + 2sint — 4¢.
. 2 ou 2
Next, it follows from uj = 272 — 2ug that
t a t
/ uidy =2 (a / uddy — s (t,t) — ul (¢, —t)) — 2sinht + 2sint
—t —t
=4sinht —4sint — 2sinh¢ + 2sint = 2sinht¢ — 2sint .

For t < |y|, we introduce the function g (t,y) = g. (t,y) + gs (t,y) , where

1 1
ge (t:y) = 5ui (ty) + 7 (w1 (Ly) +ui (by) +uz (By) +u3 (6y) +ud (ty))

(13) gs (ty) =6 —y) +t5(t —y).
By construction, the function g. (¢,y) is a solution of the equation
2 92\’
14 — — = t —g(t =0.

(14) (at2 ay2> g(ty)—g(ty)

Therefore, the function f. (t,z) = e tg.(t,x) is a solution of Eq. (1) for m = 2
A=wv=1).

We put f (t,7) = f.(t,z)+e g, (t,z) . Taking into account the values of the integrals
of functions, which are involved in the expression for g. (¢,y), we have fi f(tr)de =1
forallt > 0.

Let us prove that limgy fe (t,2) = lim.o
P{t+a(t)<e}
et

w and limg) ¢ fe (t,2) =

limglo
It follows from Lemma 2 that, for m = 2,

P - 1
o {0<t—z(t) <e} _

i §t€_t

€l0 e

and
lim Pltta(t) <e}
£]0 5

0.

It is easy to verify that lim,; u§ (¢,y) = 0, limyy; u? (t,y) = 0, and, consequently,

t t
ligtl ge (t,y) = lim %h (x/t2 - yz) =5
Yy

YTt 24/12 —y

. . t+y
15 lim g. (¢, :hmil( 2 — 2):0.
(15) Jim ge (,y) T Vi —y
Thus,

. 1o, P{t—ax(t)<e}

e

P

(16) lim f.(t2) = 0= lim LU+ T0 <€}

|t 10 €
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Let us show that conditions (15) with the condition fitg(t,y)e_tdx = 1 insure the
uniqueness of the solution g. (¢,y) for Eq. (14) and consequently, the uniqueness of the
solution f. (¢,z) of Eq. (12).
Tt is easily seen that each solution of Eq. (11) is a solution of Eq. (14). By changing the
variables s =t +y, p =t — y, we reduce Eq. (14) to
84
0s20p?
Passing to the Fourier transform G (s,a) = fooo G (s,p) ePdp in Eq. (17), we get the
ordinary differential equation of order 4. Taking into account that lim,|_¢ g. (t,y) = 0,
we have

(18) G(0,0) =0.

Hence, at most four independent solutions of the ordinary differential equation satisfy
the initial condition (18) for each «. Passing to the inverse Fourier transform, we have
four independent solutions of Eq. (14) under the condition limg|_; g (¢t,2) = 0, and just
two of them satisfy Eq. (14) but not Eq. (11). By construction, one of these solutions,
ge (t,y), is given by Eq. (13). As another solution, we can take

Tt is easy to verify that no linear combination ¢(¢,y) of the functions g. (¢,y) and g2(t, x)
satisfies conditions (16) and fft (c(t,z) + gs (t,y)) e tdz = 1 for all t > 0, but solution

9c (t,y) -
Therefore, the function f (¢,x) is the pdf of the particle position at time ¢ for m = 2,
v = A =1, and has the form

=TT e ()

e (0 (V) e (V)
2 — p2
g (0 (VA=) 1 (V=) o (V) (V7))

+o(t—x)e P +to(t—x)e "

In the same way as the pdf f (¢, z) of the particle position for m = 2 was obtained, we
can also get solutions of Eq. (1) with conditions (2) and (4) for each m > 2.
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