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G. V. RIABOV

FINITE ABSOLUTE CONTINUITY ON AN ABSTRACT WIENER
SPACE

The finite absolute continuity of probability measures on an abstract Wiener space
(X, H, μ) with respect to a Gaussian measure μ is studied. The limit theorem for the
tails of such measures is proved.

1. Introduction

The main object of consideration in the present paper is the notion of finite absolute
continuity of probability measures on Banach spaces. We study the measures that are
finitely absolutely continuous with respect to Gaussian measures and the null sets of such
measures.

The notion of finite absolute continuity was introduced by A.A. Dorogovtsev in [1] as
a generalization of the absolute continuity in terms of moments of measures. Precisely,
given two probabilities μ and ν on a Banach space X, ν is called finitely absolutely
continuous with respect to μ if for each n ≥ 0, there exists Cn > 0 such that the
inequality ∣∣∣∣∫

X

Qdν

∣∣∣∣ ≤ Cn

(∫
X

Q2dμ

)1/2

holds for an arbitrary polynomial Q of a degree at most n.
In [1], it is shown that the finite absolute continuity of ν with respect to μ is a necessary

and sufficient condition for the existence of a certain expansion of ν with respect to μ. Let
Zn(μ) be the space of μ-orthogonal polynomials of a degree n. The sequence (An)n≥0,
An ∈ Zn(μ) is called an orthogonal polynomial expansion of ν with respect to μ if for an
arbitrary polynomial Q ∫

X

Qdν =
∞∑
n=0

∫
X

QAndμ.

Then the following statement holds.

Theorem. ([1, Th.2] ν is finitely absolutely continuous with respect to μ if and only if
there exists an orthogonal polynomial expansion of ν with respect to μ.

In the case where μ is a Gaussian measure, the orthogonal polynomial expansion is an
analog of the Itô–Wiener expansion for measures. In [2] in such Gaussian setting, a class
of measures is determined via positive generalized Wiener functions, and the problem
of characterizing null sets for such measures is solved with the help of capacities on an
abstract Wiener space.

In this article, we show that a class of measures which are finitely absolutely continuous
with respect to a Gaussian measure μ is, in general, wider than that defined by positive
generalized Wiener functions, and the finitely absolutely continuous measure can be
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concentrated on a slim set. We investigate relations between the Itô–Wiener expansion,
weak convergence, and null sets for such measures.

2. Definitions and examples

Let X be a real separable Frechet space, and let B(X) be its Borelian σ-field. By
Pn(X) we denote the totality of all polynomials on X of a degree of at most n, i.e.
Pn(X) is the set of all functions x → P (l1(x), . . . , lN(x)), l1, . . . , lN ∈ X∗, P : RN → R

is a polynomial of a degree of at most n. Denote P(X) = ∪∞
n=0Pn(X) the totality of all

polynomials on X.
Consider the probabilities μ and ν on (X,B(X)) which have all weak moments of an

arbitrary order:
∀ l ∈ X∗ ∀ p ≥ 1 l ∈ Lp(X,μ) ∩ Lp(X, ν).

Definition 1. [1] ν is called finitely absolutely continuous with respect to μ (this fact
is denoted by ν !0 μ), if
∀ n ≥ 0 ∃ Cn > 0 : ∀ Q ∈ Pn(X)∣∣∣∣∫

X

Qdν

∣∣∣∣ ≤ Cn

(∫
X

Q2dμ

)1/2

.

The notion of finite absolute continuity was investigated in [1, 3, 4]. In [3] the relations
between the finite absolute continuity and the equivalence of measures are shown, and
the criteria of finite absolute continuity for Gaussian measures are proved. For a certain
class of measures on the space of continuous functions, the finite absolute continuity with
respect to a Wiener measure is proved in [4].

From now on, we suppose that (X,H, μ) is an abstract Wiener space, i.e. μ is a
centered Gaussian measure on (X,B(X)), suppμ = X, and H is a Hilbert space which is
continuously imbedded in X and satisfies the property∫

X

exp{il(x)}μ(dx) = exp{−1
2
|Rμ(l)|2H}, l ∈ X∗.

Here, Rμ : X∗ → H, Rμ(l) =
∫
X l(x)xμ(dx) [5, § 3.2].

A large class of measures finitely absolutely continuous with respect to μ is given by
measures which correspond to positive generalized Wiener functions in the sense of [2].
Define the orthogonal complement of Pn−1(X) in Pn(X)L2(μ) as Zn(μ), Z0(μ) = R. Let
Jn : L2(μ) → Zn(μ) be the orthogonal projector. For any p > 1, r ∈ R, a Sobolev space
Drp is defined as the completion of P(X) under the norm

‖Q‖p,r = ‖
∞∑
n=0

(1 + n)r/2JnQ‖Lp(μ).

D∞ = ∩p>1
r>0

Drp, D−∞ = ∩q>1
r>0

D−r
q . D∞ is countably normed space and D−∞ is its con-

jugate one. In [2], it is proved that all positive elements of D−∞ are represented by
measures on (X,B(X)).

Theorem. [2, Th.4.1] For each positive Φ ∈ D−∞, there exists the unique finite measure
νΦ on (X,B(X)) which satisfies the following property:

for every cylindrical smooth function f of the form f(x) = g(l1(x), . . . , lN(x)), where
l1, . . . , lN ∈ X∗ and g ∈ C∞

b (RN ) ∫
X

fdνΦ = Φ(f).

Proposition 1. νΦ !0 μ.
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Proof. If Φ ∈ D−r
q , then∣∣∣∣∫

X

QdνΦ

∣∣∣∣ ≤ ‖Φ‖q,−r‖Q‖p,r = ‖Φ‖q,−r‖
∞∑
n=0

(1 + n)r/2JnQ‖Lp(μ)

for any Q ∈ P(X) [2, Th.6.1]. The finite absolute continuity follows from the equivalence
of all Lp(μ)-norms on Pn(X) [5, Corollary 5.6.5]. �

In general, νΦ ⊥ μ. Still, the notion of capacity introduced by P. Malliavin makes it
possible to characterize null sets for νΦ. For p > 1, r ≥ 0, and an open U ⊂ X, we define

Crp(U) = inf{‖f‖pp,r | f ∈ D
r
p, f ≥ 1IU}.

For arbitrary A ⊂ X, we define

Crp(A) = inf{Crp(U) |A ⊂ U, U is open}.

A set A ⊂ X is called slim, if Crp(A) = 0 for all p > 1, r ≥ 0.

Theorem ([2, Th.4.2]). For all Φ ∈ D
−r
q and A ∈ B(X), the following inequality holds:

νΦ(A) ≤ ‖Φ‖q,−r(Crp(A))1/p.

Furthermore, for every A ∈ B(X), Crp(A) > 0, there exists Φ ∈ Dq,−r such that νΦ(A) >
0.

As a corollary, a measure defined by a positive generalized Wiener function cannot
carry a mass on the slim set. In this sense, such a measure inherits certain properties
of the initial Gaussian measure on an abstract Wiener space. Consider such examples of
slim sets [6]:

1) If X is finite-dimensional, there exist p > 1, r > 0 such that Crp({x0}) > 0;
2) If X is infinite-dimensional, then every finite set is slim.
3) X = C0([0, 1]), μ is a Wiener measure. The following sets are slim:
3.1) {x is differentiable at some point t ∈ [0, 1]};
3.2)

{
lim
t→0

x(t)√
2t ln ln t−1 �= 1

}
;

3.3)
{
limδ→0 sup0<t2−t1<δ

|x(t2)−x(t1)|√
2t ln t−1 �= 1

}
.

In the following section, we will show that, in general, not all measures finitely ab-
solutely continuous with respect to μ are defined by positive generalized Wiener functions,
and the measure ν, ν !0 μ can be concentrated on a slim set.

3. Finite absolute continuity on the space of sequences

Consider the space X = R∞ with a metric of coordinate-wise convergence and a
measure μ = γ⊗∞

1 , γ1 is the standard Gaussian measure on R. We need a criterion for
the product-measure on X to be finitely absolutely continuous with respect to μ.

Theorem 1. Let ν be a product-measure on X that has all weak moments of an arbitrary
order. Then ν !0 μ if and only if, for any integer d ≥ 0,

∞∑
n=1

(∫
X

xdnν(dx) −
∫
X

xdnμ(dx)
)2

<∞.

Proof. Necessity. By Hn, we denote the n-th normed Hermite polynomial [5, § 1.3], i.e.,

Hn(x) =
(−1)n√
n!

e
x2
2
dn

dxn
e−

x2
2 .
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For fixed N ≥ 1, a1, . . . , aN ∈ R, consider Q(x) =
∑N

n=1 anHd(xn). Then Q ∈ Pd(X)
and ν !0 μ yield∣∣∣∣∣

N∑
n=1

an

∫
X

Hd(xn)ν(dx)

∣∣∣∣∣ ≤ Cd

(∫
X

(
N∑
n=1

anHd(xn))2μ(dx)

)1/2

= Cd

(
N∑
n=1

a2
n

)1/2

.

Hence,
∞∑
n=1

(∫
X

Hd(xn)ν(dx)
)2

≤ C2
d <∞.

Choose b0, . . . , bd ∈ R such that xd =
∑d
k=0 bkHk(x), x ∈ R.

Note that b0 =
∫

R
xdγ1(dx).

∞∑
n=1

(∫
X

xdnν(dx) −
∫
X

xdnμ(dx)
)2

=
∞∑
n=1

(
d∑
k=1

bk

∫
X

Hk(xn)ν(dx)

)2

<∞.

Sufficiency. Choose b0, . . . , bd ∈ R such that Hd(x) =
∑d
k=0 bkx

k, x ∈ R. Note that
b0 = −

∑d
k=1 bk

∫
R
xkγ1(dx).

∞∑
n=1

(∫
X

Hd(xn)ν(dx)
)2

=
∞∑
n=1

(
d∑
k=1

bk

(∫
X

xknν(dx) −
∫
X

xknμ(dx)
))2

<∞. (1)

For each d ≥ 0, we define

Ad(x) =
∑

�∞
n=1 in=d

(∫
X

∞∏
n=1

Hin(yn)ν(dy)

) ∞∏
n=1

Hin(xn).

Ad is well-defined as an element of Zd(μ) because of the structure of ν and (1). If∑∞
n=1 in = d, then∫

X

∞∏
n=1

Hin(xn)ν(dx) =
∫
X

∞∏
n=1

Hin(xn)Ad(x)μ(dx).

Hence, for every Q ∈ Pd(X),∫
X

Q(x)ν(dx) =
d∑
k=0

∫
X

JkQ(x)ν(dx) =

=
d∑
k=0

∫
X

JkQ(x)Ak(x)μ(dx) =
∞∑
k=0

∫
X

Q(x)Ak(x)μ(dx).

(Ad)∞d=0 is an orthogonal polynomial expansion of ν with respect to μ. Consequently,
ν !0 μ. �

Corollary. Consider the product-measure ν =
∞
⊗
n=1

(qnδcn +(1−qn)γ1). If, for any integer

d ≥ 0,
∞∑
n=1

q2nc
2d
n <∞,

then ν !0 μ.

In the Corollary, we put qn = 1
n , cn = lnn. Then the measure ν =

∞
⊗
n=1

( 1
nδlnn + (1 −

1
n )γ1) is finitely absolutely continuous with respect to μ and is such that

lim
n→∞

xn√
2 lnn

= ∞ ν − a.e.
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Proposition 2 shows that ν is concentrated on a slim set of (R∞, μ). It can be easily
proved in the manner of [6, Th.A(ii)], [7, Th.5].

Proposition 2. Let (X,H, μ) be an abstract Wiener space, and let (ln)∞n=1 be an ortho-
normal sequence in L2(μ) consisting of elements of X∗. Then the set

A =
{

lim
n→∞

ln(x)√
2 lnn

�= 1
}

is a slim set in (X,H, μ).

The described construction can be translated to the space of continuous functions with
the Wiener measure μ. To formulate the respective result, introduce another notations.

As (X,μ), we take the space C0([0, 1]) of continuous functions vanishing at zero with
the Wiener measure. Denote Ω = R∞, μ0 = γ⊗∞

1 . Choose a sequence (ln)n≥1 in X∗ such
that {Rμ(ln)}n≥1 forms an orthonormal basis (ONB) in L2([0, 1]). Define

SN : Ω → X, SN (ω) =
N∑
n=1

ωnRμ(ln).

Proposition 3. Suppose that the measure ν0 on Ω is finitely absolutely continuous with
respect to μ0. Then the series

∑∞
n=1 ωnRμ(ln) converges in X in the measure ν0.

Further, if we denote the law of
∑∞

n=1 ωnRμ(ln) in X as ν, then
1) ν has all weak moments of an arbitrary order;
2) ν !0 μ.

Proof. 1) Fix l ∈ X∗, ε > 0.

ν0(|l ◦ SN+p − l ◦ SN | ≥ ε) =

= ν0

(∣∣∣∣ N+p∑
n=N+1

ωn(l, ln)L2(μ)

∣∣∣∣ ≥ ε

)
≤ ε−2

∫
Ω

( N+p∑
n=N+1

ωn(l, ln)L2(μ)

)2

ν0(dω) ≤

≤ ε−2 const
(∫

Ω

( N+p∑
n=N+1

ωn(l, ln)L2(μ)

)4

μ0(dω)
)1/2

≤

≤ ε−2 const
∫

Ω

( N+p∑
n=N+1

ωn(l, ln)L2(μ)

)2

μ0(dω) =

= ε−2 const
N+p∑

n=N+1

(l, ln)2L2(μ) → 0, N → ∞.

The second and third inequalities are implied by ν0 !0 μ0 and the equivalence of
Lp(μ0)-norms on Pd(Ω).

Hence, for any l ∈ X∗, (l ◦ SN)N≥1 converges in the measure ν0.
Now we state the relative compactness of the distributions of SN in X

Eν0(SN (t) − SN (r))4 =
∫

Ω

( N∑
n=1

ωn(ln, δt − δr)L2(μ)

)4

ν0(dω) ≤

≤ const
(∫

Ω

( N∑
n=1

ωn(ln, δt − δr)L2(μ)

)8

μ0(dω)
)1/2

≤

≤ const
(∫

Ω

( N∑
n=1

ωn(ln, δt − δr)L2(μ)

)2

μ0(dω)
)2

=
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= const
( N∑
n=1

(ln, δt − δr)2L2(μ)

)2

≤

≤ const
( ∞∑
n=1

(ln, δt − δr)2L2(μ)

)2

=

= const ‖δt − δr‖4
L2(μ) = const(t− r)2.

Next, we prove the convergence of (SN )N≥1 in ν0. Fix ε > 0. Choose a compactK ⊂ X
such that

inf
N≥1

ν0(S−1
N (K)) ≥ 1 − ε

3
.

There exists δ > 0 such that |t − s| ≤ δ implies |h(t) − h(s)| ≤ ε
3 for all h ∈ K. Choose

an integer L > 1
δ , and put tl = l

L , 0 ≤ l ≤ L. There exists an integer N0 such that, for
all N > N0 and all p ≥ 1,

ν0(|SN+p(tl) − SN(tl)| >
ε

3
) ≤ ε

3L
.

ν0(‖SN+p − SN‖ > ε) ≤ 2ε
3

+ ν0(‖SN+p − SN‖ > ε;SN , SN+p ∈ K) ≤

≤ 2ε
3

+
L∑
l=1

ν(|SN+p(tl) − SN (tl)| >
ε

3
) ≤ ε.

2) Let ν be the distribution of the sum in the measure ν0 of the series
∑∞

n=1 ωnRμ(ln).
Choose l ∈ X∗, k ≥ 1.

Eν0(l ◦ SN )2k ≤ const(Eμ0 (l ◦ SN )4k)1/2 ≤ const(Eμ0 (l ◦ SN )2)k ≤ const ‖l‖2k
L2(μ).

Hence, ν has all weak moments of an arbitrary order. The same arguments of uniform
integrability imply that, for any polynomial Q,∣∣∣∣ ∫

X

Qdν

∣∣∣∣ = lim
N→∞

∣∣∣∣ ∫
Ω

Q(SN (ω))ν0(dω)
∣∣∣∣ ≤

≤ const lim
N→∞

(∫
Ω

Q2(SN (ω))μ0(dω)
)1/2

= const
(∫

X

Q2dμ

)1/2

.

As for the last equality, see [5, Th.3.4.4]. �

Corollary. On the space X = C0([0, 1]), there exists the probability ν that is finitely
absolutely continuous in the Wiener measure μ and is concentrated on a slim set of
(X,H, μ).

Proof. Consider the probability ν0 on Ω that is finitely absolutely continuous in μ0 and
is concentrated on the set

A =
{

lim
n→∞

ωn√
2 lnn

�= 1
}
.

Let ν be the distribution of the sum in the measure ν0 of the series
∑∞

n=1 ωnRμ(ln).
Then ν !0 μ. It is easy to see that the image of the measure ν under the mapping
F : X → Ω, F (x) = (ln(x))∞n=1 coincides with ν0. Proposition 2 implies that the measure
ν is concentrated on a slim set F−1(A) in (X,μ). �
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4. Shifts of finitely absolutely continuous measures

In the previous section, we saw that the moment condition of finite absolute continuity
allows measures to have “heavy tails”. It is natural to investigate the behavior of the
tails of finitely absolutely continuous measures. Return to the case X = R∞, μ = γ⊗∞

1 .
By πk denote the shift of the space X :

πk : X → X, (πkx)n = xn+k.

The following theorem clarifies the behavior of shifts of a finitely absolutely continuous
measure.

Theorem 2. Suppose that ν is a probability on X that has all weak moments of an
arbitrary order, and ν !0 μ. Then, for all A,B ∈ B(X), μ(∂B) = 0 :,

lim
k→∞

ν(A ∩ π−1
k (B)) = ν(A)μ(B).

Proof. 1) Consider the polynomials

Q(x) =
N∏
n=1

Hin(xn), i1 + . . .+ iN ≥ 1; R(x) =
N∏
n=1

Hjn(xn).

Fix r ∈ {0, . . . , N − 1}, a1, . . . , aL ∈ R and define Sr(x) =
∑L
l=1 alR(x)Q(πlN+rx). As

above, we get ∣∣∣∣ ∫
X

Srdν

∣∣∣∣ ≤ Ci1+...+iN +j1+...+jN

( L∑
l=1

a2
l

)1/2

.

Hence,
∞∑
l=1

(∫
X

R(x)Q(πlN+rx)ν(dx)
)2

<∞.

This yields
∞∑
k=1

(∫
X

R(x)Q(πkx)ν(dx)
)2

<∞. (2)

Evidently, relation (2) can be proved for any polynomial R.
2) Consider arbitrary polynomials R and Q on X. Q has the form

Q(x) =
∑

i1+...+iN≤d
bi1...iN

N∏
n=1

Hin(xn)

for some N ≥ 1, bi1...iN ∈ R.
Note that b0...0 =

∫
X Qdμ. Using (2), we get

∞∑
k=1

(∫
X

R(x)Q(πkx)ν(dx) −
∫
X

Rdν

∫
X

Qdμ

)2

<∞. (3)

3) Consider Q ∈ P(X), f ∈ L2(X, ν). We write f = f1 + f2, where f1 ∈ P(X)L2(ν)

and f2 ⊥ P(X). Choose

P ∈ P(X) : ‖f1 − P‖L2(ν) < ε.

Then ∣∣∣∣ ∫
X

f(x)Q(πkx)ν(dx) −
∫
X

fdν

∫
X

Qdμ

∣∣∣∣ =

=
∣∣∣∣ ∫

X

f1(x)Q(πkx)ν(dx) −
∫
X

f1dν

∫
X

Qdμ

∣∣∣∣ ≤
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≤ ε‖Q ◦ πkx‖L2(ν) + ε‖Q‖L1(μ) +
∣∣∣∣ ∫

X

P (x)Q(πkx)ν(dx) −
∫
X

Pdν

∫
X

Qdμ

∣∣∣∣.
Using the inequality

‖Q ◦ πkx‖2
L2(ν)

≤ C(degQ)2‖Q‖2
L2(μ),

we obtain
lim
k→∞

∫
X

f(x)Q(πkx)ν(dx) =
∫
X

fdν

∫
X

Qdμ.

4) Choose A ∈ B(X), ν(A) > 0. Define νA(·) = ν(A)−1ν(· ∩ A). We now prove that
(νA ◦ π−1

k )k≥1 converges weakly to μ. It is enough to prove the weak convergence of the
finite-dimensional distributions (νA ◦π−1

k )N of (νA ◦π−1
k ) for all N ≥ 1 [8, Example 2.6].

We have ∫
RN

N∑
n=1

u2
n(νA ◦ π−1

k )N (du) =
∫
X

N∑
n=1

x2
n(νA ◦ π−1

k )(dx) =

=
∫
X

k+N∑
n=k+1

x2
nνA(dx) = ν(A)−1

∫
A

k+N∑
n=k+1

x2
nν(dx) →

k→∞

∫
X

N∑
n=1

x2
nμ(dx).

Particularly,

sup
k≥1

∫
RN

N∑
n=1

u2
n(νA ◦ π−1

k )N (du) <∞,

and the family {(νA ◦ π−1
k )N}k≥1 is relatively compact. Repeating the uniform integra-

bility arguments from Proposition 3, we obtain that each limit point of the sequence
{(νA ◦ π−1

k )N} has all moments, and they coincide with moments of γ⊗N1 . Hence,

(νA ◦ π−1
k )N ⇒ γ⊗N1 = μN

and
νA ◦ π−1

k ⇒ μ.

�
Corollary 1. Let (X,H, μ) be an abstract Wiener space, and let dimX = ∞, ν be a
probability on X, ν !0 μ. Then ν(H) = 0.

Proof. Choose ln ∈ X∗, n ≥ 1, such that {Rμ(ln)}∞n=1 forms an ONB in H. We introduce
the mapping ϕ : X → R∞ ϕ(x) = (ln(x))∞n=1. Denote ν0 := ν◦ϕ−1, μ0 := μ◦ϕ−1 = γ⊗∞

1 .
Then ν0 !0 μ0. Consider the function f(ω) = exp{−

∑∞
n=1 ω

2
n}, ω ∈ R

∞ which is
continuous in μ0 a.e. Hence,∫

Ω

f(πkω)ν0(dω) →
k→∞

∫
Ω

f(ω)μ0(dω) = 0.

On the other hand, f(πkω) →
k→∞

1Il2(ω), ω ∈ R∞. Hence, ν0(l2) = ν(H) = 0. �

Remark. S.Fang in [9] proved that H is a slim set if dimX = ∞.

Corollary 2. [10, Th.2.2] In the setting (X,μ) = (R∞, γ⊗∞
1 ), if ν !0 μ, then (πkx)k≥1 =

X ν−a.s.

Proposition 4. Suppose that ν satisfies the condition of Theorem 2. By (Ad)∞d=0, we
denote the orthogonal polynomial expansion of ν with respect to μ. Let {en}∞n=1 be the
standard basis in l2. Then, for any k ≥ 1, ν ◦ π−1

k !0 μ with constants independent of k,
and the orthogonal polynomial expansion of ν ◦ π−1

k with respect to μ is of the form(
Akd =

∑
n1,...,nd>k

(Ad, en1 ⊗ . . .⊗ end
)en1−k ⊗ . . .⊗ end−k

)∞

d=0

.
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Remark. If each measure να of the family {να, α ∈ A} is finitely absolutely continuous
with respect to μ and constants in Definition 1 can be chosen independently of α, then
we say that να !0 μ uniformly in α.

Denote (X,H, μ) = (C0([0, 1]), L2([0, 1]), μ). Choose ln ∈ X∗, n ≥ 1 such that
(Rμ(ln))n≥1 is an ONB in L2([0, 1]). Introduce the mapping ϕ : X → Ω = R∞, ϕ(x) =
(ln(x))n≥1. Denote ν0 := ν ◦ ϕ−1, μ0 := μ ◦ ϕ−1 = γ⊗∞

1 .

Using Proposition 3, we now construct measures ν ◦ π−1
k on X as the distributions

of series
∑∞
n=1 ωnRμ(ln) with respect to ν0 ◦ π−1

k . It is easy to see that ν ◦ π−1
k !0 μ

uniformly in k.

Theorem 3. ν ◦ π−1
k ⇒ μ, k → ∞.

Proof. As ν ◦ π−1
k !0 μ uniformly in k, the sequence (ν ◦ π−1

k )k≥1 is relatively compact
(see the proof of Proposition 3). On the other hand, the proof of Theorem 2 shows that
the unique limit point of this sequence is μ. �

The orthogonal polynomial expansion (Akd)
∞
d=0 of ν ◦ π−1

k with respect to μ has the
same form as that in Proposition 4. The connection between the Itô–Wiener expansion
and the weak convergence is shown by the following result.

Theorem 4. Consider an abstract Wiener space (X,H, μ) = (C0([0, 1]), L2([0, 1]), μ)
and a sequence (νk)∞k=1 of probabilities on (X,B(X)) such that νk !0 μ with the orthog-
onal polynomial expansion (Akd)

∞
d=0, k ≥ 1. If the convergence Akd → 0, k → ∞ in Zd(μ)

holds for every d ≥ 1, then νk ⇒ μ, k → ∞.

Proof. For any d ≥ 0, the sequence (Akd)
∞
k=0 is bounded in Zd(μ). Hence, νk !0 μ

uniformly in k, and the sequence (νk)∞k=1 is relatively compact. The rest of the proof
follows the pattern of the proof of Theorem 2. �
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