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SUFFICIENCY AND RAO–BLACKWELLIZATION OF VASICEK
MODEL

We use sufficiency and Rao–Blackwell theorem to obtain efficient estimators and
discretize the continuous time Vasicek process optimally.

1. Introduction

Parameter estimation in a continuous time process was first studied by Arató (1962)
under the directions of Kolmogorov. Consider the mean reverting Vasicek model of short
term interest rate

dηt = (β − θηt)dt+ dWt

where W is a Brownian motion, the parameter β is the level of mean reversion and the
parameter θ is the speed of mean reversion which needs to be estimated from data on
{ηt}. We use sufficiency and Rao-Blackwell theorem to obtain efficient estimators and
discretize the continuous process optimally. Sampling of diffusion processes can be done
at random and nonrandom time points, see Bishwal (2008). We will consider nonrandom
(deterministic) sampling. Arató and Fefyverneki (2002) devised method for the solving
maximum likelihood estimator which are solutions of complicated system of equations.
They used recursive methods like Newton’s method and another recursive method called
iteration with roots and compared the results with simulation studies. This question often
aries in financial econometrics and statistics: how often should one sample a continuous
time stochastic process at discrete time points? In general, it is believed that one should
sample as often as possible to get the best estimate. But this is not always the case.
Discretization problem of stationary processes was first studied by Vilenkin (1959) who
considered estimation of mean and correlation function of a stationary process, see also
Yaglom (1987). Vilenkin (1959) showed that there exists an optimal discretization based
on a certain number n∗ of equally spaced observation points on [0, T ] of the continuous
stationary process for which the estimator of mean is efficient (has minimum variance).
One should restrict oneself to some value of n∗ which gives the optimal discretization
and one should not strive to get the maximum possible number of observation points
since accuracy of results obtained becomes worse for increased sample size.

2. Sufficiency and Rao-Blackwellization

Consider the stationary Ornstein-Uhlenbeck process

dXt = −θXtdt+ dWt, 0 ≤ t ≤ T, θ > 0, X0 ∼ N
(

0,
1
2θ

)
.
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Let PTθ be the measure generated by the process X , PTW be the standard Wiener
measure and L be the Lebesgue measure. Then the Radon-Nikodym derivatives are
given by

dPTθ
dL (XT

0 ) =

√
θ

π
exp{−θX2

0}

and
dPTθ

d(PW × L)
(XT

0 ) =

√
θ

π
exp

{
−θ

2

2

∫ T

0

X2
t dt−

θ

2
[X2

T +X2
0 ] +

θT

2

}
.

Using∫ T

0

XtdXt =
∫ T

0

Xt(−θXtdt+ dWt) = −θ
∫ T

0

X2
t dt+

∫ T

0

XtdWt =
1
2
[X2

T −X2
0 − T ]

one gets

dPT0
d(PW × L)

(XT
0 ) =

√
θ

π
exp

{
−θ

2

2

∫ T

0

X2
t dt− θ

[∫ T

0

XtdXt +X2
0

]
+
θT

2

}
.

Consider the Vasicek model
dηt = (β − θXt)dt+ dWt

and if θ is known then
dPTβ
dPTθ

(ηT0 ) = exp

{
θβ

[
ηT + η0 + β

∫ T

0

ηtdt

]
+ β2

(
1 +

βT

2

)}
.

From this we see that (η0 + ηT ,
∫ T
0
ηtdt) is a system of sufficient statistics and

β̂T :=
η0 + ηT + θ

∫ T
0 ηtdt

2 + θT
is an efficient estimator in the sense of having minimum variance. One can use the
Rao-Blackwell theorem.
When β = 0 and θ is unknown, (X2

0 +X2
T ,

∫ T
0 X2

t dt) is a system of sufficient statistics,
but the maximum likelihood estimator is nonlinear function of sufficient statistics

θ̂T :=
− 1

2 [X2
0 +X2

T − T ] +
√

(1
2 [X2

0 +X2
T − T ])2 +

∫ T
0 X2

t dt

2
∫ T
0 X2

t dt
.

Using the transformation

s =
t

T
, ξs =

Xs√
T
, Ws =

Wt√
T

we have

dξs = −κ ξs ds + dWs, 0 ≤ s ≤ 1, ξ0 ∼ N
(

0,
1

2θT

)
.

Thus, without loss of generality, it is enough to consider the normalized case T = 1 with
the unknown parameter κ = θT . Then κ→ ∞ gives the stationary regime and κ→ −∞
gives the nonstationary regime.
The MLE of κ is given by

κ̂ := − ξ21 − 1

2
∫ 1

0 ξ
2
sds

.

Assuming κ known and β unknown, (if κ→ 0) consider the estimator

β̃ :=
η0 + ηT

2
.

Proposition 1 The variance of the estimator β̃ satisfies var(β̃) < var(
∫ 1

0
ηtdt) when

κ < 2.
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This means that one should restrict oneself to some value of N and should not strive
to get the maximum possible number of observations since the accuracy of the result
becomes worse with increased sample size.
Proposition 2 Given κ, there is an optimal division (minimal number of grid) points
N∗ such that (0 = t0 < t1 < t2 < · · · < tN−1 < tN = 1) β̃N∗ is the best, i.e.,

var(β̃2) ≥ var(β̃3) ≥ · · · ≥ var(β̃N∗) < var(β̃N∗+1) < var(β̃N∗+2) < · · · < var(β̃N )
where

β̃m :=
1

m+ 1

m∑
i=0

ηti .

This estimator was studied by Vilenkin (1959) who showed that there exists a number
of points N∗ <∞ such that

var(β̃N∗) ≤ var(IT )

where

IT =
1
T

∫ T

0

ηtdt.

Ryzhov (1971, 1972) considered a different estimator

β̌m :=
1
m

m∑
i=1

ηti .

He showed that
var(β̌m) ≥ var(IT )

for any m. The problem with Ryzhov’s estimator is that it not sufficient as excludes one
end point observation.

It is known that the Laplace transform ψ(p, κ) := Eκ exp{−p
∫ 1

0
ξ2sds} is given by

ψ(p, κ) = (cosh ν +
κ

ν
sinh ν)−1/2

where ν := (κ2 + 2p)−1. See Novikov (1972) and Arató (1982).
At the same time, the two dimensional Laplace transform

φ(p, r;κ) := Eκ exp{−r
2

(ξ21 − 1) − p

∫ 1

0

ξ2sds}

is given by

φ(p, r;κ) = ψ

(
1
2
(�2 − (κ− r)2), κ− r

)
where � := (κ2 + 2p)1/2.

The density function of κ̂ can be computed by Cramér’s theorem. The distribution
function of κ̂ is given by

Fκ̂(x) =
1

2πj

∫
R

ψ(jt, κ) − φ(jt,−jtx;κ)
t

dt

where j =
√
−1. See Rao (1978).

If κ→ ∞, then
κ̂− κ√

κ

D→ N (0, 2).

See Arató (1982).
If κ→ −∞, then

2κeκ(κ̂− κ) D→ C
where C denotes standard Cauchy distribution.
Note that a discretely observed Ornstein-Uhlenbeck process is a Gaussian autoregressive
process of order 1.
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Let the Ornstein-Uhlenbeck process be observed at discrete time points i
n , i = 0, 1, . . . , n.

Denote ζi := ξ i
n
, i = 0, 1, . . . , n.

Then ζi satisfies the equation
ζi+1 = γζi + εi

where γ = exp{−κ
n} and εi is a zero mean white noise process.

The MLE of γ

γ̂n =
∑n

i=1 ζiζi−1∑n
i=1 ζ

2
i−1

.

Proposition 3 If (1 − γ2)n→ ∞, then√
n(γ̂n − γ)√
(1 − γ2)

D→ N (0, 1).

Due to strong Markov property of ξt, for t > s, we have
E(ξt|Fs) = ξse

−θ(t−s).
The mean integrated squared error is given by, for t > s

E

[∫ T

0

(ξt − E(ξt|Fs))2dt
]

= E

[∫ t1

0

(ξt − E(ξt|Fs))2dt+
∫ tn

t1

(ξt − E(ξt|Fs))2dt+
∫ T

tn

(ξt − E(ξt|Fs)2dt
]

= E

[∫ t1

0

(ξt)2dt+
n−1∑
i=1

∫ ti+1

ti

(ξt − E(ξt|Fs))2dt+
∫ T

tn

(ξt − E(ξt|Fs))2dt
]

Given the observations at 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T , the least squares estimate is
E(ξt|Fs) = 0 if t ∈ [0, t1) and ξtie−θ(t−ti) if t ∈ [ti, ti+1).

The minimizer of the mean integrated squared error gives the optimum sampling time.
Proposition 4 The optimum sampling time satisfies

n∗ =
1
2

+
log(1 − 2θ)

4θ
.
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