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CORRELOGRAM ESTIMATION OF RESPONSE FUNCTIONS OF
LINEAR SYSTEMS IN SCHEME OF SOME INDEPENDENT

SAMPLES

The problem of estimation of an unknown response function from L2(R) of a linear
system is considered. The inputs are supposed to be stationary zero-mean Gauss-
ian almost surely sample continuous processes. We take the integral-type sample
input-output cross-correlograms as estimators of the response function and apply the
scheme of some independent samples, when the pair of inputs and outputs are ob-
served. The asymptotic normality of the distributions of centered cross-correlogram
estimations in the space of continuous functions and the construction of the confi-
dence bands for the limiting process are discussed.

1. Introduction

We consider a problem of estimation of an impulse response function H = (H(τ), τ ∈
R), of a time-invariant linear system by observations of responses of the system on
certain inputs using the cross-correlogram method. According to this approach, the
sample correlograms between the inputs and outputs are taken as estimators for the
unknown function H ([1], [5], [2], [7]-[10]).

To construct the cross-correlogram estimators, two schemes are usually applied; the
first is the scheme of one sample (one realization is observed on the unbounded expansion
of the observing set), and the second is the scheme of some independent samples (some
independent realizations are observed on the fix observing set). Using the first scheme,
the asymptotic properties of the cross-correlogram estimator for the response function
by perturbations of the system by Gaussian stationary processes were investigated, for
instance, in works ([5], [2], [9]). Using the second scheme, the asymptotic normality
of the correlogram estimators for the correlation function of a Gaussian process or a
homogeneous Gaussian field was considered, for example, in ([4], [6], [17]).

In this paper, we consider the estimators of the response real-valued function H ∈
L2(R) of the linear system that is perturbed by a family of stationary zero-mean Gauss-
ian almost surely sample continuous processes, using the scheme of some independent
samples, when the pair of inputs and outputs are observed. We remark that such a
scheme for solving the problem was not considered earlier.

We investigate the conditions for asymptotic normality of the integral-type zero-mean
cross-correlogram estimators for the response function in the space of continuous func-
tions and construct the confidence functional bands for the limiting process.

2. Definitions and preliminaries

We introduce the following notations used throughout the work:
R = (−∞,∞);
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Lp(R), p ∈ [1,∞), is the Banach space of Lebesgue p-integrable complex-valued func-
tions φ = (φ(x), x ∈ R) with the norm

‖φ‖p =
(∫ ∞

−∞
|φ(x)|p dx

) 1
p

;

L∞(R) is the Banach space of complex-valued essentially bounded functions φ =
(φ(x), x ∈ R) with the norm ‖φ‖∞ = supx∈R |φ(x)|;
C[a, b], [a, b] ⊂ R, is the separable Banach space of real-valued continuous functions

φ = (φ(x), x ∈ [a, b]) with the norm ‖φ‖∞ = supx∈[a,b] |φ(x)|.
Assume that XΔ = (XΔ(t), t ∈ R), Δ > 0, is a family of measurable real-valued

separable stationary zero-mean Gaussian processes that disturb a linear time-invariant
system. Let fΔ = (fΔ(λ), λ ∈ R), Δ > 0, be a family of spectral densities of the
processes XΔ, Δ > 0, satisfying the following conditions:

(1a) fΔ(λ) = fΔ(−λ), λ ∈ R;

(1b) fΔ ∈ L∞(R);

(1c) fΔ ∈ L1(R).

We also suppose that all XΔ are almost surely (a.s.) sample continuous processes.

Remark 2.1. By the Dudley theorem [12], a separable Gaussian mean-square continuous
centered process U = (U(t), t ∈ R) is a.s. sample continuous on R, if its Dudley integral
is convergent for any [a, b] ⊂ R. That is, for all h > 0 and any [a, b] ⊂ R,

(DI)
∫ h

0

H
1
2
σU ([a, b], ε)dε <∞,

where HσU ([a, b], ε) is a metric entropy of an interval [a, b] with respect to the pseudo-
metric driven by the mean-square deviation of the process U : σU (t, s) =

(
E|U(t) −

U(s)|2
) 1

2 , t, s ∈ R.
Moreover, if U is a stationary process, then, by the Fernique theorem (see [13]),

condition (DI) is not only sufficient but also is necessary for the a.s. continuity of the
realizations of U.

The processes XΔ,Δ > 0, are a.s. sample continuous on R, if, for example, their
spectral densities have the form

fΔ(λ) =
1
2π

exp

{
− λ2

Δ

}
, λ ∈ R.

The reaction of the system to an input signal XΔ is represented by the integral

(2) YΔ(t) =
∫ ∞

−∞
H(t− s)XΔ(s) ds, t ∈ R,

which is interpreted as a mean-square Riemann integral.
From the definitions of the processes XΔ and YΔ, it follows that these processes are

jointly Gaussian and jointly stationary. Moreover, we suppose that the processes YΔ,
Δ > 0, are a.s. sample continuous on R. Without loss of generality, we also suppose that
all YΔ are separable processes.

Remark 2.2. Under certain restrictions on the response function H, the a.s. sample
continuity of the process XΔ yields the a.s. sample continuity of the process YΔ.
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Consider the pseudometrics driven by the mean-square deviations of the processes XΔ

and YΔ:

σXΔ(t, s) =
[
E|XΔ(t) −XΔ(s)|2

] 1
2

= 2
[ ∫ ∞

−∞
sin2

((t− s)λ
2

)
fΔ(λ)dλ

] 1
2
,

σYΔ(t, s) =
[
E|YΔ(t) − YΔ(s)|2

] 1
2

= 2
[ ∫ ∞

−∞

∣∣∣H∗(λ)
∣∣∣2 sin2

( (t− s)λ
2

)
fΔ(λ)dλ

] 1
2
,

t, s ∈ R,

where H∗ is the Fourier–Plancherel transform of the function H in the space L2(R).
For example, if supλ∈R |H∗(λ)| <∞, then the inequality

σYΔ(t, s) ≤
(

sup
λ∈R

|H∗(λ)|
)
σXΔ(t, s), t, s ∈ R,

holds true.
From the Marcus–Shepp comparison inequality for the Gaussian processes [18], which

is applied to the separable zero-mean Gaussian processes XΔ and YΔ, where XΔ ∈ C(R),
it follows that YΔ is an a.s. sample continuous process on R.

Suppose that we observe n independent realizations of the pair of processes (XΔ(t), t ∈
[0, T ]), (YΔ(t), t ∈ [0, T +T1]) (here, T +T1 > 0), which will be denoted by

(
X

(j)
Δ , Y

(j)
Δ

)
,

j = 1, . . . , n.
The properties of XΔ and YΔ imply that X(j)

Δ and Y
(j)
Δ , j = 1, ..., n, are jointly

Gaussian and a.s. sample continuous processes.
The so-called cross-correlogram

(3) Ĥ
(n)
T,Δ(τ) =

1
n

n∑
j=1

1
T

∫ T

0

Y
(j)
Δ (t+ τ)X(j)

Δ (t) dt, τ ∈ [0, T1],

will be used as an estimator for the response function H (here, T is the length of the
averaging interval [0, T ]).

Since X
(j)
Δ and Y

(j)
Δ are a.s. sample continuous processes, the process Ĥ

(n)
T,Δ =

(Ĥ(n)
T,Δ(τ),

τ ∈ [0, T1]) is also a.s. sample continuous. Moreover,

EĤ(n)
T,Δ(τ) =

∫ ∞

−∞
H(s)KXΔ(τ − s) ds, τ ∈ [0, T1].

By the last relation, EĤ(n)
T,Δ does not depend on the quantity n and the length T of the

averaging interval [0, T ].
Since, generally speaking, EĤ(n)

T,Δ(τ) �= H(τ), estimator (3) is biased.
Consider the empirical stochastic process

(4) Ẑ
(n)
T,Δ(τ) =

√
n
(
Ĥ

(n)
T,Δ(τ) − EĤ(n)

T,Δ(τ)
)
, τ ∈ [0, T1],

which is zero-mean and has the following correlation function for all τ1, τ2 ∈ [0, T1]:

C
(n)
T,Δ(τ1, τ2) = EẐ(n)

T,Δ(τ1)Ẑ
(n)
T,Δ(τ2) =

=
1
nT 2

n∑
j=1

n∑
l=1

∫ T

0

∫ T

0

[
EY (j)

Δ (t+ τ1)Y
(l)
Δ (s+ τ2) × EX(l)

Δ (s)X(j)
Δ (t)+

+EY (j)
Δ (t+ τ1)X

(l)
Δ (s) × EY (l)

Δ (s+ τ2)X
(j)
Δ (t)

]
dt ds =

=
1
T 2

∫ T

0

∫ T

0

[
KYΔ(t− s+ τ1 − τ2)×KXΔ(s− t) +KYΔ,XΔ(t− s+ τ1)
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×KYΔ,XΔ(s− t+ τ2)
]
dt ds,

where KYΔ is the correlation function of YΔ, KXΔ is the correlation function of XΔ, and
KYΔ,XΔ is the joint correlation function of YΔ and XΔ.

Using the spectral representations of the correlation functions,

KXΔ(t) =
∫ ∞

−∞
eitλfΔ(λ)dλ, t ∈ R;

KYΔ(t) =
∫ ∞

−∞
eitλ|H∗(λ)|2fΔ(λ)dλ, t ∈ R;

KYΔ,XΔ(t) =
∫ ∞

−∞
eitλH∗(λ)fΔ(λ)dλ, t ∈ R,

we see, consequently, that the function C
(n)
T,Δ =

(
C

(n)
T,Δ(τ1, τ2), τ1, τ2 ∈ [0, T1]

)
does not

depend on the quantity n and has the form

(5) C
(n)
T,Δ(τ1, τ2) = CT,Δ(τ1, τ2) =

=
∫ ∞

−∞

∫ ∞

−∞

[
ei(τ1−τ2)λ2 |H∗(λ2)|2 + ei(τ1λ1+τ2λ2)H∗(λ1)H∗(λ2)

]
fΔ(λ1)fΔ(λ2)×

× 1
T 2

∣∣∣∣∣
∫ T

0

eit(λ2−λ1) dt

∣∣∣∣∣
2

dλ1dλ2 =

=
2π
T

∫ ∞

−∞

∫ ∞

−∞

[
ei(τ1−τ2)λ2 |H∗(λ2)|2 + ei(τ1λ1+τ2λ2)H∗(λ1)H∗(λ2)

]
ΦT (λ2 − λ1)×

× fΔ(λ1)fΔ(λ2) dλ1dλ2,

where H∗ is the Fourier–Plancherel transform of the function H in the space L2(R), and
ΦT is the Fejer kernel; that is,

ΦT (x) =
1

2πT

(sin (Tx/2)
x/2

)2

, x ∈ R.

Further, we will discuss the properties of the process Ẑ(n)
T,Δ as n → ∞ in the space of

continuous functions, by supposing that the parameters T and Δ have fixed values. For
this, we need some additional statements.

The first one is the strong law of large numbers in the separable Banach space C[0,M ],
where M > 0, (see [14]).

Statement 2.1. We assume that {(ξj(t), t ∈ [0,M ]), j ≥ 1}, is a sequence of independent
real-valued a.s. sample continuous stochastic processes that are the copies of a process
(ξ(t), t ∈ [0,M ]). If E supt∈[0,M ] |ξ(t)| <∞. Then

P

{
lim
n→∞ sup

t∈[0,M ]

∣∣∣ 1
n

n∑
j=1

ξj(t) − Eξ(t)
∣∣∣ = 0

}
= 1.

Moreover, Eξ(·) ∈ C[0,M ].

The second statement is the following version of the central limit theorem for the space
of continuous functions defined on the compact sets (see [15]).

Statement 2.2. Assume that {(ξj(t), t ∈ [0,M ]), j ≥ 1} is a sequence of independent
real-valued a.s. sample continuous stochastic processes that are the copies of a process
(ξ(t), t ∈ [0,M ]) such that Eξ(t) = 0 and Eξ2(t) < ∞, t ∈ [0,M ]. If there exists a
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function g, which is the modulus of continuity on some interval [0, u0], u0 > 0, and the
inequality

|ξ(t) − ξ(s)| < V g(|t− s|), |t− s| < u0,

holds true a.s., where V and g are such that EV 2 <∞ and∫ u0

0

g(u)
u| lnu| 12

du <∞,

then the distributions of the stochastic processes { 1√
n

∑n
j=1 ξj(t), t ∈ [0,M ]} converge

weakly as n → ∞ in the space C[0,M ] to a Gaussian process with a zero mean and a
correlation function Eξ(t1)ξ(t2), t1, t2 ∈ [0,M ].

3. Main results

In this section, we discuss the conditions for the asymptotic normality of the process
Ẑ

(n)
T,Δ as n → ∞ in the space of continuous functions and construct the confidence func-

tional bands for the limiting process.

3.1. Asymptotic properties of the centered estimator. Without loss of generality,
we suppose that, on the same complete probability space {Ω,F,P}, where the processes
XΔ, YΔ, Ĥ

(n)
T,Δ, and Ẑ

(n)
T,Δ are considered, a separable Gaussian process {ZT,Δ(τ), τ ∈

[0, T1]} with a zero mean and the correlation function CT,Δ is defined.
In the following lemma, we state the sufficient conditions for the asymptotic normality

of the process Ẑ(n)
T,Δ as n→ ∞ in the space of continuous functions C[0, T1].

Lemma 3.1. If there exists a function g, which is the modulus of continuity on some
interval [0, u0], u0 > 0, and such that the relation

(6) η = sup
t �= s

|t− s| < u0

t, s ∈ [0, T + T1]

|YΔ(t) − YΔ(s)|
g(|t− s|) <∞,

holds true a.s., and the condition

(7)
∫ u0

0

g(u)
u| lnu| 12

du <∞,

is satisfied, then the distributions of the processes {Ẑ(n)
T,Δ(τ), τ ∈ [0, T1]} converge weakly

as n→ ∞ in the space C[0, T1] to the distributions of the Gaussian process {ZT,Δ(τ), τ ∈
[0, T1]} with a zero mean and the correlation function CT,Δ.

Proof of Lemma 3.1. Let us verify the conditions of Statement 2.2. We write (4) as

Ẑ
(n)
T,Δ(τ) =

√
n
[
Ĥ

(n)
T,Δ(τ) − EĤ(n)

T,Δ(τ)
]

=

=
1√
n

n∑
j=1

1
T

∫ T

0

[
Y

(j)
Δ (t+ τ)X(j)

Δ (t) − EYΔ(t+ τ)XΔ(t)
]
dt

and note that, for all j = 1, ..., n,

ξ(j)(τ) =
1
T

∫ T

0

[
Y

(j)
Δ (t+ τ)X(j)

Δ (t) − EYΔ(t+ τ)XΔ(t)
]
dt, τ ∈ [0, T1].
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We remark that
{
(ξ(j)(τ), τ ∈ [0, T1]), j ≥ 1

}
is a sequence of independent a.s. sample

continuous zero-mean stochastic processes that are the copies of the process

ξ(τ) =
1
T

∫ T

0

[
YΔ(t+ τ)XΔ(t) − EYΔ(t+ τ)XΔ(t)

]
dt, τ ∈ [0, T1].

It is clear that
Eξ(τ) = 0, τ ∈ [0, T1];

Eξ2(τ) = CT,Δ(τ, τ) =

=
1
T 2

∫ T

0

∫ T

0

[
KYΔ(t− s)KXΔ(s− t) +KYΔ,XΔ(t− s+ τ)KYΔ,XΔ(s− t+ τ)

]
dtds <∞.

Since YΔ is the Gaussian sample continuous process and g is the continuous function,
it follows from (6) that, for any β > 0,

(8) E|η|β =

(
sup
t �= s

|t− s| < u0

t, s ∈ [0, T + T1]

|YΔ(t) − YΔ(s)|
g(|t− s|)

)β

<∞.

As |τ1 − τ2| < u0, formula (6) yields the estimator

|ξ(τ1)− ξ(τ2)| ≤
1
T

∫ T

0

|XΔ(t)||YΔ(t+ τ1)−YΔ(t+ τ2)|dt+E|XΔ(0)||YΔ(τ1)−YΔ(τ2)| ≤

≤
(

sup
t∈[0,T ]

|XΔ(t)|
)
·
(

sup
t∈[0,T ]

|YΔ(t+ τ1) − YΔ(t+ τ2)|
)

+ E|XΔ(0)||YΔ(τ1) − YΔ(τ2)| ≤

≤
[(

sup
t∈[0,T ]

|XΔ(t)|
)
· sup
t∈[0,T ]

(
sup

τ1 �= τ2
|τ1 − τ2| < u0

τ1, τ2 ∈ [0, T1]

|YΔ(t+ τ1) − YΔ(t+ τ2)|
g(|τ1 − τ2|)

)
+

+E|XΔ(0)| ·
(

sup
τ1 �= τ2

|τ1 − τ2| < u0

τ1, τ2 ∈ [0, T1]

|YΔ(τ1) − YΔ(τ2)|
g(|τ1 − τ2|)

)]
· g(|τ1 − τ2|) =

=

[(
sup
t∈[0,T ]

|XΔ(t)|
)
·
(

sup
t �= s

|t− s| < u0

t, s ∈ [0, T + T1]

|YΔ(t) − YΔ(s)|
g(|t− s|)

)
+

+E|XΔ(0)| ·
(

sup
t �= s

|t− s| < u0

t, s ∈ [0, T1]

|YΔ(t) − YΔ(s)|
g(|t− s|)

)]
· g(|τ1 − τ2|) =

=

[
sup
t∈[0,T ]

|XΔ(t)| · η + E|XΔ(0)| · η
]
· g(|τ1 − τ2|).

We note that V = supt∈[0,T ] |XΔ(t)| · η + E|XΔ(0)| · η and evaluate the second moment
of this variable.



22 I. P. BLAZHIEVSKA

Since XΔ and YΔ are Gaussian a.s. sample continuous processes, the relations

(9) E

(
sup
t∈[0,T ]

|XΔ(t)|
)α

<∞; E

(
sup

t∈[0,T+T1]

|YΔ(t)|
)α

<∞,

hold true for all α > 0. Thus, together with (8), we get

EV 2 = E

[
sup
t∈[0,T ]

|XΔ(t)| · η + E|XΔ(0)| · η
]2

≤

≤ 2

[
E
(

sup
t∈[0,T ]

|XΔ(t)| · η
)2

+ E
(
E|XΔ(0)| · η

)2
]
≤

≤ 2

[(
E
(

sup
t∈[0,T ]

|XΔ(t)|
)4

·Eη4
) 1

2
+

(
E|XΔ(0)|

)2

· Eη2

]
<∞.

So, all conditions of Statement 2.2 are satisfied. This means that the distributions of
the processes { 1√

n

∑n
j=1 ξ

(j)(τ), τ ∈ [0, T1]} converge weakly as n→ ∞ to the Gaussian
zero-mean process with the correlation function CT,Δ. Lemma 3.1 is proved completely.

�

The following lemma gives the connection between the mean-square deviations of the
limiting process ZT,Δ and the mean-square deviations of the process YΔ.

Lemma 3.2. For all τ1, τ2 ∈ [0, T1], the inequality

(10) E
∣∣∣ZT,Δ(τ1) − ZT,Δ(τ2)

∣∣∣2 ≤ 2KXΔ(0)E
∣∣∣YΔ(τ1) − YΔ(τ2)

∣∣∣2
holds true.

Proof of Lemma 3.2. First of all, we consider the expression that appears in the repre-
sentation of the correlation function (5) of the limiting process ZT,Δ:

(11) GT,Δ(τ1, τ2) =

=
∫ ∞

−∞

∫ ∞

−∞

[
ei(τ1−τ2)λ2 |H∗(λ2)|2 + ei(τ1λ1+τ2λ2)H∗(λ1)H∗(λ2)

]
fΔ(λ1)fΔ(λ2)dλ1dλ2 =

=
∫ ∞

−∞
fΔ(λ1)dλ1 ·

∫ ∞

−∞
ei(τ1−τ2)λ2 |H∗(λ2)|2fΔ(λ2)dλ2+

+
∫ ∞

−∞
eiτ1λ1H∗(λ1)fΔ(λ1)dλ1 ·

∫ ∞

−∞
eiτ2λ2H∗(λ2)fΔ(λ2)dλ2 =

= KXΔ(0) ·KYΔ(τ1 − τ2) +KYΔ,XΔ(τ1) ·KYΔ,XΔ(τ2),

where KXΔ , KYΔ and KYΔ,XΔ are the correlation functions of the processes XΔ, YΔ

and the joint correlation function of these processes, respectively.
Let us write the mean-square deviation of ZT,Δ for all τ1, τ2 ∈ [0, T1] as

E
∣∣∣ZT,Δ(τ1) − ZT,Δ(τ2)

∣∣∣2 = CT,Δ(τ1, τ1) − 2CT,Δ(τ1, τ2) + CT,Δ(τ2, τ2) =

=
∫ ∞

−∞

∫ ∞

−∞

{[
ei(τ1−τ1)λ2 |H∗(λ2)|2 + ei(τ1λ1+τ1λ2)H∗(λ1)H∗(λ2)

]
fΔ(λ1)fΔ(λ2)−
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− 2
[
ei(τ1−τ2)λ2 |H∗(λ2)|2 + ei(τ1λ1+τ2λ2)H∗(λ1)H∗(λ2)

]
fΔ(λ1)fΔ(λ2)+

+
[
ei(τ2−τ2)λ2 |H∗(λ2)|2 + ei(τ2λ1+τ2λ2)H∗(λ1)H∗(λ2)

]
fΔ(λ1)fΔ(λ2)

}
×

× 1
T 2

∣∣∣∣∣
∫ T

0

eit(λ2−λ1) dt

∣∣∣∣∣
2

dλ1dλ2.

In view of (11) and since 1
T 2

∣∣∣∣∣ ∫ T0 eit(λ2−λ1) dt

∣∣∣∣∣
2

≤ 1, we obtain

E
∣∣∣ZT,Δ(τ1) − ZT,Δ(τ2)

∣∣∣2 ≤ GT,Δ(τ1, τ1) − 2GT,Δ(τ1, τ2) +GT,Δ(τ2, τ2) =

= KXΔ(0) ·KYΔ(τ1 − τ1) +KYΔ,XΔ(τ1) ·KYΔ,XΔ(τ1)−

−2
[
KXΔ(0) ·KYΔ(τ1 − τ2) +KYΔ,XΔ(τ1) ·KYΔ,XΔ(τ2)

]
+

+KXΔ(0) ·KYΔ(τ2 − τ2) +KYΔ,XΔ(τ2) ·KYΔ,XΔ(τ2) =

= 2KXΔ(0)
[
KYΔ(0) −KYΔ(τ1 − τ2)

]
+

+

[(
KYΔ,XΔ(τ1)

)2

− 2KYΔ,XΔ(τ1) ·KYΔ,XΔ(τ2) +
(
KYΔ,XΔ(τ2)

)2
]

=

= 2KXΔ(0)
[
KYΔ(0) −KYΔ(τ2 − τ2)

]
+

[
KYΔ,XΔ(τ1) −KYΔ,XΔ(τ2)

]2

.

Thus,

(12) E
∣∣∣ZT,Δ(τ1) − ZT,Δ(τ2)

∣∣∣2 ≤ 2KXΔ(0)
[
KYΔ(0) −KYΔ(τ2 − τ2)

]
+

+
∣∣∣KYΔ,XΔ(τ1) −KYΔ,XΔ(τ2)

∣∣∣2.
The Cauchy–Schwartz inequality yields∣∣∣KYΔ,XΔ(τ1) −KYΔ,XΔ(τ2)

∣∣∣ ≤ ∫ ∞

−∞
|1 − ei(τ1−τ2)λ||H∗(λ)|fΔ(λ)d λ =

= 2
∫ ∞

−∞

∣∣∣ sin (τ1 − τ2)λ
2

∣∣∣|H∗(λ)|
√
fΔ(λ) ·

√
fΔ(λ)d λ ≤

≤ 2

(∫ ∞

−∞
sin2

( (τ1 − τ2)λ
2

)
|H∗(λ)|2fΔ(λ)dλ

) 1
2

·
(∫ ∞

−∞
fΔ(λ)d λ

) 1
2

.

Since

E
∣∣∣YΔ(τ1) − YΔ(τ2)

∣∣∣2 =

= 2
[
KYΔ(0) −KYΔ(τ1 − τ2)

]
= 4

∫ ∞

−∞
sin2

( (τ1 − τ2)λ
2

)
|H∗(λ)|2fΔ(λ)dλ

and

KXΔ(0) =
∫ ∞

−∞
fΔ(λ)d λ,

formula (12) yields

E
∣∣∣ZT,Δ(τ1) − ZT,Δ(τ2)

∣∣∣2 ≤ 2KXΔ(0)
[
KYΔ(0) −KYΔ(τ2 − τ2)

]
+
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+

[
2
(∫ ∞

−∞
sin2

( (τ1 − τ2)λ
2

)
|H∗(λ)|2fΔ(λ)dλ

) 1
2

·
(∫ ∞

−∞
fΔ(λ)d λ

) 1
2
]2

=

= 4KXΔ(0)
[
KYΔ(0) −KYΔ(τ2 − τ2)

]
= 2KXΔ(0) · E

∣∣YΔ(τ1) − YΔ(τ2)
∣∣2.

Thus, Lemma 3.2 is proved completely. �

In the statement given below, the asymptotic properties of the processes Ĥ(n)
T,Δ and

Ẑ
(n)
T,Δ as n → ∞ are established. (We suppose that the parameters T and Δ have fixed

values.)

Theorem 3.1. (i) P
{

limn→∞ supτ∈[0,T1]

∣∣∣Ĥ(n)
T,Δ(τ) −EĤ

(n)
T,Δ(τ)

∣∣∣ = 0
}

= 1;

(ii) Ẑ
(n)
T,Δ ∈ C[0, T1] a.s. for all n ≥ 1;

(iii) ZT,Δ ∈ C[0, T1] a.s.;
(iv) If the process YΔ is such that, for some ε > 0, the relation

(13) P

{
sup
t �= s

t, s ∈ [0, T + T1]

|YΔ(t) − YΔ(s)|
| ln |t− s|| 12+ε

<∞
}

= 1

holds true, then the distributions of stochastic processes {Ẑ(n)
T,Δ(τ), τ ∈ [0, T1]} converge

weakly as n → ∞ in the space C[0, T1] to the distributions of the Gaussian process
{ZT,Δ(τ), τ ∈ [0, T1]} with a zero mean and the correlation function CT,Δ.

Proof of Theorem 3.1. Proof of (i). Let us verify the conditions of Statement 2.1.
Note that, for all j = 1, ..., n,

ξ(j)(τ) =
1
T

∫ T

0

Y
(j)
Δ (t+ τ)X(j)

Δ (t)dt, τ ∈ [0, T1].

According to the problem considered, the sequence
{
(ξ(j)(τ), τ ∈ [0, T1]), j ≥ 1

}
is a

sequence of independent a.s. sample continuous stochastic processes that are the copies
of the process

ξ(τ) =
1
T

∫ T

0

YΔ(t+ τ)XΔ(t)dt, τ ∈ [0, T1].

In particular, it is known that

Eξ(τ) = EĤ(n)
T,Δ(τ), τ ∈ [0, T1].

Since XΔ and YΔ are Gaussian a.s. sample continuous processes, the relations

E

(
sup
t∈[0,T ]

|XΔ(t)|
)α

<∞; E

(
sup

t∈[0,T+T1]

|YΔ(t)|
)α

<∞,

holds true for any α > 0; this yields

E sup
τ∈[0,T1]

|ξ(τ)| = E sup
τ∈[0,T1]

∣∣∣∣∣ 1
T

∫ T

0

YΔ(t+ τ)XΔ(t)dt

∣∣∣∣∣ ≤
≤ E sup

τ∈[0,T1]

(
sup
t∈[0,T ]

|YΔ(t+ τ)XΔ(t)|
)

≤

≤ E

(
sup

t∈[0,T+T1]

|YΔ(t)| × sup
t∈[0,T ]

|XΔ(t)|
)

≤
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≤
[
E
(

sup
t∈[0,T+T1]

|YΔ(t)|
)2

] 1
2

×
[
E
(

sup
t∈[0,T ]

|XΔ(t)|
)2

] 1
2

<∞.

Thus, for the sequence
{

(ξ(j)(τ), τ ∈ [0, T1]), j ≥ 1
}
, all conditions of Statement 2.1

are satisfied. Therefore,

P

{
lim
n→∞ sup

τ∈[0,T1]

∣∣∣ 1
n

n∑
j=1

ξ(j)(τ) − Eξ(τ)
∣∣∣ = 0

}
= 1.

Since 1
n

∑n
j=1 ξ

j(τ) = Ĥ
(n)
T,Δ(τ) and Eξ(τ) = EĤ(n)

T,Δ(τ), τ ∈ [0, T1], statement (i) of

Theorem 3.1 is proved completely. We remark that EĤ(n)
T,Δ(·) ∈ C[0, T1].

Proof of (ii). The proof follows immediately from the representation

Ẑ
(n)
T,Δ(τ) =

√
n
(
Ĥ

(n)
T,Δ(τ) − EĤ(n)

T,Δ(τ)
)
, τ ∈ [0, T1],

where the estimator Ĥ(n)
T,Δ is an a.s. sample continuous process, and EĤ(n)

T,Δ(·) ∈ C[0, T1].
Proof of (iii). Let us rewrite relation (11) from Lemma 3.2 in the form

σZT,Δ(τ1, τ2) ≤
√

2KXΔ(0)σYΔ(τ1, τ2), τ1, τ2 ∈ [0, T1],

where σZT,Δ is the pseudometric generated by the mean-square deviations of the process
ZT,Δ. Since YΔ and ZT,Δ are separable zero-mean Gaussian processes and YΔ ∈ C[0, T1]
a.s., the Marcus–Shepp comparison inequality for Gaussian processes [18] yields ZT,Δ ∈
C[0, T1] a.s. So, we proved statement (iii) of Theorem 3.1.

Proof of (iv). The proof follows immediately from Lemma 3.1, if we denote

g(u) = | lnu|−( 1
2+ε).

Thus, Theorem 3.1 is proved completely. �
Remark 3.1. It is well-known (see, e.g., [12]) that condition (13) is satisfied if, for suffi-
ciently small h, the inequality

(14) E|YΔ(t) − YΔ(s)|2 = O
(
| ln |t− s||−(2+ε)

)
holds true uniformly on |t− s| < h.

Remark 3.2. It can be shown (see, e.g., [16]) that condition (14) holds true if, for some
δ > 0,

(15)
∫ ∞

0

ln2+δ(1 + λ)|H∗(λ)|2fΔ(λ) dλ <∞.

3.2. Construction of confidence bands for the limiting process. In addition to
Theorem 3.1 of the asymptotic normality of Ẑ(n)

T,Δ, we have that, for all x > 0,

lim
n→∞P

{
sup

τ∈[0,T1]

∣∣∣√n(Ĥ(n)
T,Δ(τ) − EĤ(n)

T,Δ(τ)
)∣∣∣ > x

}
= P

{
sup

τ∈[0,T1]

∣∣∣ZT,Δ(τ)
∣∣∣ > x

}
.

This relation gives the immediate cause for the construction of the confidence bands
for the limiting process ZT,Δ, which are sufficiently accurate if n is a large number. To
seek the estimators of the corresponding probability, we use the technique of work [3].

The following theorem holds true.

Theorem 3.2. For the Gaussian zero-mean process {ZT,Δ(τ), τ ∈ [0, T1]} with the
correlation function CT,Δ, the inequality

(16) P

{
sup

τ∈[0,T1]

∣∣∣ZT,Δ(τ)
∣∣∣ > x

}
≤ 2P

{
sup

τ∈[0,T1]

(√
2KXΔ(0)YΔ(τ) + ξg(τ)

)
> x

}
,
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holds true for all x > 0; here, for τ ∈ [0, T1],

g2(τ) = sup
τ∈[0,T1]

(
max{0, 2KXΔ(0)KYΔ(0)−CT,Δ(τ, τ)}

)
−
(
2KXΔ(0)KYΔ(0)−CT,Δ(τ, τ)

)
,

and ξ is an N(0, 1)-distributed random variable, which is independent of the process YΔ.

Proof of Theorem 3.2. The proof follows immediately from the comparison inequality
for the distributions of the maxima of Gaussian processes [3], which is applied to the
separable zero-mean Gaussian processes ZT,Δ and YΔ satisfying condition (10). �

The statements below are the analogs of some facts considered in [3] and [11]. There-
fore, we give them without proofs.

Remark 3.3. For the Gaussian zero-mean process {ZT,Δ(τ), τ ∈ [0, T1]} with the corre-
lation function CT,Δ, the inequality

(17) P

{
sup

τ∈[0,T1]

∣∣∣ZT,Δ(τ)
∣∣∣ > x

}
≤

≤ 2P

{
sup

τ∈[0,T1]

YΔ(τ) >
γ√

2KXΔ(0)
x

}
+ 2P

{
ξ sup
τ∈[0,T1]

g(τ) > (1 − γ)x

}
holds true for all x > 0; here,

g(τ) =√√√√ sup
τ∈[0,T1]

(
max{0, 2KXΔ(0)KYΔ(0) − CT,Δ(τ, τ)}

)
−

(
2KXΔ(0)KYΔ(0) − CT,Δ(τ, τ)

)
,

τ ∈ [0, T1],

and γ is any number from [0, 1].

Remark 3.4. For the Gaussian zero-mean process {ZT,Δ(τ), τ ∈ [0, T1]} with the corre-
lation function CT,Δ, the inequality

P

{
sup

τ∈[0,T1]

∣∣∣ZT,Δ(τ)
∣∣∣ > 2x

}
≤

(18) ≤ 2P

{
sup

τ∈[0,T1]

|YΔ(τ)| > x√
2KXΔ

}
+ 4 exp

{
− x2

ΘT1

}
holds true for all x > 0; here, ΘT1 = 4 supτ∈[0,T1]

∣∣2KXΔ(0)KYΔ(0) − CT,Δ(τ, τ)
∣∣.

Remark 3.5. We can use all results considered in this paper for the estimation of the
error term √

n|Ĥ(n)
T,Δ(τ) −H(τ)|, τ ∈ [0, T1].

This fact follows from the inequality

|Ĥ(n)
T,Δ(τ) −H(τ)| ≤ |Ĥ(n)

T,Δ(τ) − EĤ(n)
T,Δ(τ)| + |EĤ(n)

T,Δ(τ) −H(τ)|, τ ∈ [0, T1],

if the term |EĤ(n)
T,Δ(τ)−H(τ)| is made sufficiently small, by choosing the corresponding

parameters T and Δ and assuming some additional conditions on the local smoothness
of the response function H (see, e.g., [2]).
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Conclusion

In this paper, we have studied the estimators of the response real-valued function
H ∈ L2(R) of the linear system that is disturbed by a family of stationary zero-mean
Gaussian a.s. sample continuous processes, by applying the scheme of some independent
samples, when the pair of inputs and outputs are observed. We have investigated the
conditions for the asymptotic normality of corresponding centered cross-correlogram es-
timators in the space of continuous functions and constructed the confidence bands for
the limiting process. In particular, under some conditions on the parameters T,Δ and
the local smoothness of the response function H, all results of this paper hold true for
the corresponding error term of the estimation.
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