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GLINYANAYA E.V.

DISCRETE ANALOGUE OF THE KRYLOV–VERETENNIKOV
EXPANSION

We consider a difference analogue of the stochastic flow with interaction in �. The
discrete-time flow is given by a difference equation with random perturbation which
is defined by a sequence of stationary Gaussian processes. We obtain the Itô–Wiener
expansion for a solution to the stochastic difference equation which can be regarded
as a discrete analogue of the Krylov–Veretennikov representation for a solution to
the stochastic differential equation.

1. Introduction

In the present paper, we study a discrete-time system of interacting particles which is
generated by a sequence of independent stationary Gaussian processes {ξn(u), u ∈ R}n≥1

with covariance function Γ, Γ(0) = 1, via the recurrence equation{
xn+1(u) = xn(u) + ξn+1(xn(u))
x0(u) = u, u ∈ R.

(1)

Here, {xn(u), n ≥ 0} describes the motion of a particle which starts from a point
u ∈ R. The interaction is understood as a probabilistic dependence between the random
variables {xn(u), u ∈ R}.

Similar schemes were investigated in connection with the synchronization of a system
of oscillators evolving in the presence of a random force [1]. For example, the phase
dynamics equation for an oscillator with a random perturbation has the form

dψ(t)
dt

= −ν + ε(t)q(ψ(t)), (2)

where ψ(t) = ϕ(t)−ωt is a difference between the phase of oscillations ϕ and the phase of
an external force; ν = ω−ω0 is the detuning frequency; ω is the frequency of an external
force, ω0 is the internal frequency; and ε(t) is the amplitude of an external force. The
main question for model (2) is as follows: “when does the noise destroy or enhance the
synchronization of oscillators?”

In the case where ν = 0 and with the discretization on the time, Eq. (2) yields

ψn+1 = ψn + ηn+1q(ψn). (3)

Consider model (1) with {ξn(u), u ∈ R}n≥1 of the following kind:

ξn(u) = η′n cosu+ η′′n sinu,

where {η′n}n≥1, {η′′n}n≥1 are independent sequences of independent standard Gaussian
random variables. In this case, we obtain the equation similar to (3):

xn+1(u) = xn(u) + η′n+1 cosxn(u) + η′′n+1 sinxn(u). (4)

The distance between points at the two-point motion of system (4) can be viewed as
the difference between the phases of oscillators.

2000 Mathematics Subject Classification. Primary 60H25, 60K37, 60H40.
Key words and phrases. random interaction systems, discrete-time flow, Itô–Wiener series expansion.
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Our model can be also regarded as a general iterative scheme:

Xn = Tn ◦ Tn−1 ◦ . . . ◦ T1X0,

where {Tn}n≥1 is a sequence of independent and identically distributed random maps of
Rk into itself, and X0 is an initial state. Such models are considered by many authors
(see, e.g., [2, 3, 4]). In general, the main questions that are studied for the random
sequence {Xn}n≥1 are the following ones:

i) existence and properties of stationary random measures of the system ;
ii) convergence of the sequence {Xn}n≥1 (almost sure, in probability, of the distribu-

tion) .
Since f(xn(u)) is a function of Gaussian processes, there exists the Itô–Wiener series

expansion for a solution to system (1). Our main goal is to obtain the explicit form of
such series expansion. The individual terms of the expansion can be used to analyze the
asymptotic behavior of our model. Note that, for the solution to a stochastic differential
equation, the Itô–Wiener series expansion was obtained in [6]. So, the obtained series
expansion for a solution to system (1) can be regarded as a discrete analogue of the
Krylov–Veretennikov representation.

2. Some properties of one- and two-point motion

In this section, we consider one- and two-point motions of system (1) and observe
some properties.

Lemma 1. Consider the sequences {xn(u)}n≥0 and {xn(u) − xn(v)}n≥0 for any fixed
points u, v ∈ R.

i) Let {ζn}n≥1 be a sequence of independent standard Gaussian random variables, and
let {zn}n≥0 be a sequence such that

z0 = u, zn+1 = zn + ζn+1. (5)

Then the sequences {xn(u)}n≥1 and {zn}n≥1 are identically distributed.
ii) Let {νn}n≥1 be a sequence of independent standard Gaussian random variables,

and let {yn}n≥0 be a sequence such that

y0 = u− v, yn+1 = yn +
√

2 − 2Γ(yn)νn+1. (6)

Then the sequences {xn(u) − xn(v)}n≥1 and {yn}n≥1 are identically distributed.

Proof. The proof is trivial and is omitted. �

From Lemma 1, (i) we can see that the one-point motions of system (1) are Gaussian
symmetric random walks. So, our model can be regarded as a discrete analogue of the
Harris flows with a Brownian one-point motion [7]. Note that the asymptotic behavior
for Gaussian symmetric random walks is well known:

P{ lim
n→∞

xn(0)√
2n ln lnn

= 1} = 1.

From Lemma 1, (ii) we can see that the joint motion of two points is specified by the
function Γ. Let us give the example with a different behavior of two-point motions in
system (1).

Example 1. For any two fixed points u1, u2 ∈ R, we denote yn = xn(u1) − xn(u2).
Consider two covariance functions Γ1 ≡ 1 and

Γ2(u) =

{
1 − |u|, |u| ≤ 1,
0, |u| > 1.
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In the first case, we get yn+1 = yn, so the distance between two any points does not change
in time. In the second case, we denote τ = inf{n : yn ∈ [−1, 1]}. Then {yn, n < τ} is a
symmetric random walk with Gaussian increments.

In [5], the following stochastic difference equation is considered:

xn+1 = xn
(
1 − hf(xn) +

√
hg(xn)ξn+1

)
. (7)

Here, ξn are independent random variables, and x0 ∈ R. The authors obtained [5] some
results on the asymptotic stability and the instability of the trivial solution xn ≡ 0 which
allow us to formulate the following proposition.

Lemma 2. If the covariance function Γ satisfies the condition

1 > Γ(x) ≥ 1 − K2x2

2
(8)

for any x ∈ R \ {0} and some constant K > 0, then, for any fixed points u, v ∈ R,

lim
n→∞(xn(u) − xn(v)) = 0 a.s.

Proof. Let the sequence {yn}n≥1 satisfy (6). We prove that lim
n→∞ yn = 0 a.s. From (6),

we get
yn+1 = yn

(
1 +

√
hg(yn)νn+1

)
,

where g(x) =
√

2−2Γ(x)√
hx

. Theorem 6 in [5] implies that if a function g is bounded and
g(x) �= 0, x ∈ R \ {0}, then lim

n→∞ yn = 0 a.s. From condition (8), it is follows that the

function g is bounded and g(x) �= 0, x ∈ R \ {0}, so lim
n→∞ yn = 0 a.s. �

3. Itô–Wiener expansion

In this section, we introduce basic definitions and notations related to the Itô–Wiener
expansion of Gaussian functionals and the Krylov–Veretennikov representation of solu-
tions to a stochastic differential equation driven by the Wiener process (see [8, 9, 10, 11]).

Let (Ω,F , P ) be a probability space, and let H be a real separable Hilbert space with
inner product (·, ·) and norm ‖·‖. By ξ, we denote a generalized Gaussian random element
in H which has the zero mean and the identical correlation operator. This means that
ξ is a linear map which maps elements of H into the set of Gaussian random variables
and has the property

∀ ϕ ∈ H : E(ξ, ϕ) = 0, E(ξ, ϕ)2 = ‖ϕ‖2.

By ξ, we also denote the white noise in H.
Let L2(Ω,F , P ) be the set of all square-integrable random variables on (Ω,F , P ). Let

Hk, k ≥ 1, be the space of k-linear symmetric Hilbert–Schmidt forms on H. We define
the inner product and the norm in Hk in the usual way:

∀ Tk, Sk ∈ Hk : (Tk, Sk)k :=
∞∑

i1,...,ik=1

Tk(ei1 , . . . , eik)Sk(ei1 , . . . , eik),

‖Tk‖2
k = (Tk, Tk)k,

where {ei, i ≥ 1} is an orthonormal basis for H. For any Qk ∈ Hk, let us consider the
random variable Qk(ξ, . . . , ξ) defined by

Qk(ξ, . . . , ξ) :=
∞∑

i1,...,ik=1

qi1,...,ik : (ei1 , ξ) · . . . · (eik , ξ) :,
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where qi1,...,ik = Qk(ei1 , . . . , eik), and : · : is the Wick product [11]. Note that

EQk(ξ, . . . , ξ)2 = k!‖Qk‖2
k. (9)

Suppose that the random variable η is σ(ξ)-measurable and in L2(Ω,F , P ). It is well
known [9] that there exists a unique sequence of forms Qk ∈ Hk such that

η =
∞∑
k=0

Qk(ξ, . . . , ξ), (10)

where the series converges in the square mean. Representation (10) is called the Itô–
Wiener expansion.

Example 2. Consider H = L2([0, 1]). We assume that a generalized Gaussian random
element ξ is given by

(f, ξ) =
∫ 1

0

f(t)dw(t),

where {w(t), t ∈ [0, 1]} is a Wiener process. Then, for any Hilbert–Schmidt formAk, there
exists the unique function ak that is invariant under any permutation of the arguments
such that, for any x1, . . . , xk ∈ L2([0, 1]),

Ak(x1, . . . , xk) =
∫ 1

0

k. . .

∫ 1

0

ak(t1, . . . , tk)x1(t1) . . . xk(tk)dt1 . . . dtk.

Let η be a σ(w)-measurable random variable, and let η ∈ L2(Ω,F , P ). Then the Itô–
Wiener expansion is as follows:

η = Eη +
∫ 1

0

f1(t)dw(t) +
∞∑
n=2

∫ 1

0

∫ tn

0

. . .

∫ t2

0

fn(t1, . . . , tn)dw(t1) . . . dw(tn),

where the functions fn ∈ L2([0, 1]n) are invariant under any permutation of the argu-
ments.

The Itô–Wiener expansion for the solution to the a stochastic differential equation
was obtained in [6]. Let {wt, t ∈ [0, 1]} be a one-dimensional Wiener process which is
defined on a complete probability space (Ω,F , P ). Consider the Cauchy problem for the
one-dimensional stochastic differential equation{

dx(t) = σ(x(t))dw(t) + b(x(t))dt, t ≥ 0
x(0) = x,

(11)

where x ∈ R, σ(·), b(·) are measurable bounded functions. Suppose that

∃ μ > 0 ∀ x ∈ R : |σ(x)| ≥ μ.

It is known that, under the given conditions, this stochastic equation has a weak
solution [6]. The Krylov–Veretennikov representation can be written with the use of
the fundamental solution to a parabolic partial differential equation associated with the
stochastic differential equation. Denote a(x) = 1

2σ
2(x) and consider{

∂
∂su(s, x) + a(x) ∂2

∂x2u(s, x) + b(x) ∂∂xu(s, u) = 0, s ∈ [0, t),
u(t, x) = ϕ(x), ϕ ∈ C∞

0 (R), t ∈ R.
(12)

Let Tt−s, s < t, be a set of operators that define a solution to (12) (which is solved
backward in time). It is known that Ttϕ(x) = Eϕ(x(t)), where x(t) is a solution to (11).



DISCRETE ANALOGUE OF THE KRYLOV–VERETENNIKOV EXPANSION 43

Denote Qt−sϕ(x) = σ(x) ∂
∂xTt−sϕ(x). Then the Itô–Wiener expansion for ϕ(x(t)) has the

form

ϕ(xt) = Ttϕ(x0) +
∞∑
i=1

∫
. . .

∫
ti<...<t1<t

TtiQti−1−ti . . . Qt−t1ϕ(x0)dwti . . . dwt1 .

4. Main result

Let us return to our system of interacting particles (1). Assume that a covariance
function Γ has the form

Γ(u) =
∫

R

ψ(u − v)ψ(v)dv,

where ψ is a symmetric function on R such that∫
R

ψ2(u)du = 1.

Let us find an analogue of the Krylov–Veretennikov representation for ϕ(xn(u)).
First of all, let us define the white noise ξ̇ which produces the sequence {ξn(u), u ∈

R}n≥1. For this purpose, we define the white noise ξ̇n on L2(R) which produces the
process {ξn(u), u ∈ R}. Under the assumption on the covariance function Γ, it can be
proved that there exists a Wiener process wn(t), t ∈ R, such that

ξn(u) =
∫

R

ψ(u− v)dwn(v).

Define the white noise ξ̇n on the space L2(R) by

(f, ξ̇n) =
∫

R

f(v)dwn(v).

We now define a separable Hilbert space

H = {F : F = (f1, f2, . . .), fk ∈ L2(R),
∞∑
k=1

‖fk‖2
L2
< +∞},

with the inner product on H :

(F,G) =
∞∑
k=1

(fk, gk)L2 .

We define the white noise ξ̇ in H as follows:

(F, ξ̇) =
∞∑
n=1

(fn, ξ̇n).

Observe that
∀ n ≥ 1 ∀ u ∈ R ξn(u) = (Ψn(· − u), ξ̇),

where Ψn(u) = (0, . . . , 0︸ ︷︷ ︸
n−1

, ψ(u), 0, . . .) ∈ H.

Consider Φ = ∩∞
n=1L2(R, N(0, n)), where

L2(R, N(0, n)) = {f : R → R
∣∣ 1√

2πn

∫
R

f2(x)e−
x2
2n dx <∞}.

We define the norm in L2(R, N(0, n)) by

‖f‖2
N(0,n) =

1√
2πn

∫
R

f2(x)e−
x2
2n dx.
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We now define the distance ρ in the space Φ. For any ϕ1, ϕ2 ∈ Φ, we take

ρ(ϕ1, ϕ2) =
∞∑
n=1

1
2n

‖ϕ1 − ϕ2‖N(0,n)

1 + ‖ϕ1 − ϕ2‖N(0,n)
.

Let us verify that, for any ϕ ∈ Φ and r ∈ R, the random variable ϕ(r + ξ1(r)) ∈
L2(Ω,F , P ).

For any ϕ ∈ Φ, r ∈ R and n ≥ 2, we have

Eϕ2(r + ξ1(r)) =
1√
2π

∫
R

ϕ2(x)e−
(r−x)2

2 dx =

=
√
n

1√
2πn

∫
R

ϕ2(x)e−
x2
2n e−x

2(n−1
2n )+xr− r2

2 dx ≤

≤
√
n sup
x∈R

e−x
2 n−1

2n +xr− r2
2

1√
2πn

∫
R

ϕ2(x)e−
x2
2n dx =

√
ne

r2
2(n−1) ‖ϕ‖2

N(0,n) < +∞, (13)

where we used

sup
x∈R

e−x
2 n−1

2n +xr− r2
2 = e−x

2 n−1
2n +xr− r2

2

∣∣∣∣
x=r n

n−1

= e
r2

2(n−1) .

Thus, ϕ(r+ξ1(r)) ∈ L2(Ω,F , P ) for any ϕ ∈ Φ and r ∈ R.We now denote the Itô–Wiener
expansion for ϕ(r + ξ1(r)) by

ϕ(r + ξ1(r)) =
∞∑
k=0

Qkϕ(r, ξ̇1, . . . , ξ̇1). (14)

We note also that, for any k ∈ N, relation (9) yields

Eϕ(r + ξ1(r))2 =
∞∑
j=0

EQjϕ(r, ξ̇1, . . . , ξ̇1)2 ≥ EQkϕ(r, ξ̇1, . . . , ξ̇1)2 = k!‖Qk‖2
k. (15)

Lemma 3. For any k ≥ 0 and r ∈ R, the function ϕ �→ Qkϕ(r, ·, . . . , ·) is a linear
continuous mapping from Φ onto L2(Rk).

Proof. The linearity is obvious. The continuity follows from

‖Qkϕ1(r, ·, . . . , ·) −Qkϕ2(r, ·, . . . , ·)‖2
k ≤ 1

k!
E((ϕ1(r + ξ1(r)) − ϕ2(r + ξ1(r)))2 ≤

≤ 1
k!
√
ne

r2
2(n−1) ‖ϕ1 − ϕ2‖2

N(0,n),

where we used (15) and (13). The lemma is proved. �

We now define an action of the operators Qk on the functions with values in a Hilbert
space. Let H be a Hilbert space. By Φ(R, H), we denote the set of all measurable
mappings f from R onto H such that ‖f‖H ∈ Φ. We define the distance in Φ(R, H) by

d(ϕ′, ϕ′′) :=
∞∑
n=1

1
2n

∥∥‖ϕ′(·) − ϕ′′(·)‖H
∥∥
N(0,n)

1 +
∥∥‖ϕ′(·) − ϕ′′(·)‖H

∥∥
N(0,n)

.

Let {ej}∞j=1 be an orthonormal basis for the Hilbert space H. Then, for any x ∈ R, we
have

ϕ(x) =
∞∑
j=1

ϕj(x)ej .

Note that ∥∥‖ϕ(·)‖H
∥∥2

N(0,n)
=

1√
2πn

∫
R

‖ϕ(x)‖2
He

− x2
2n dx = (16)
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=
1√
2πn

∞∑
j=1

∫
R

ϕ2
j(x)e

− x2
2n dx =

∞∑
j=1

‖ϕj(·)‖2
N(0,n).

It follows from ϕj(·) ∈ Φ, j ≥ 1, that, for any r ∈ R,

ϕj(r + ξ1(r)) =
∞∑
k=0

Qkϕj(r, ξ̇1, . . . , ξ̇1).

We now define an action of the operator Qk on ϕ ∈ Φ(R, H) by

Qkϕ(r, ·, . . . , ·) :=
∞∑
j=1

Qkϕj(r, ·, . . . , ·)ej .

From (15) and (13), it follows that
∞∑
j=1

Qkϕj(r, x1, . . . , xk)2 ≤ |x1|2 . . . |xk|2
∞∑
j=1

‖Qkϕj(r, ·, . . . , ·)‖2
k ≤

≤ |x1|2 . . . |xk|2
∞∑
j=1

1
k!

Eϕ2
j (r + ξ1(r)) ≤ const

∞∑
j=1

‖ϕj‖2
N(0,n) < +∞.

So, the action of the operator Qk on ϕ ∈ Φ(R, H) is well-defined. It can be easily verified
that the definition does not depend on the choice of the basis {ej , j ≥ 1}.

Thus, the operator Qk maps the function ϕ ∈ Φ(R, H) into the Hilbert–Schmidt form
with values in the Hilbert space H. As in the one-dimensional case, for any ϕ ∈ Φ(R, H),
we obtain

ϕ(r + ξ1(r)) =
∞∑
k=0

∞∑
j=1

Qkϕj(r, ξ̇1, . . . , ξ̇1)ej =:
∞∑
k=0

Qkϕ(r, ξ̇1, . . . , ξ̇1),

where Qkϕ(r, ξ̇1, . . . , ξ̇1) are random elements in H.

Lemma 4. For any k ≥ 0 and r ∈ R, the function

Φ(R, H) � ϕ �→ Qkϕ(r, ·, . . . , ·)
is a linear continuous mapping from Φ(R, H) onto the space of multilinear symmetric
Hilbert–Schmidt forms with values in the Hilbert space H.

Proof. The proof is similar to that of Lemma 2 and is omitted. �

Example 3. For the sequel, we need to define an action of Qk on multilinear Hilbert–
Schmidt forms. Let H = L2(Rk). Consider Ak ∈ Φ(R, H). Let {Eik(·, . . . , ·)}∞i=1 be an
orthogonal basis for L2(Rk). Then we have

Ak(x, ·, . . . , ·) =
∞∑
i=1

ai(x)Eik(·, . . . , ·).

For any r ∈ R with the use of the general construction described above, we obtain

Ak(r + ξ1(r), ·, . . . , ·︸ ︷︷ ︸
k

) =
∞∑
j=0

QjAk(r, ξ̇1, . . . , ξ̇1︸ ︷︷ ︸
j

, ·, . . . , ·︸ ︷︷ ︸
k

),

where we denoted

QjAk(r, ξ̇1, . . . , ξ̇1︸ ︷︷ ︸
j

, ·, . . . , ·︸ ︷︷ ︸
k

) :=
∞∑
i=1

Qj(ai, r, ξ̇1, . . . , ξ̇1)Eik(·, . . . , ·).
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In general, the action of a random mapping on random elements is not well-defined.
But in the case where a random mapping Qj and a random element Ak(r + ξ(r)) are
independent, their composition is well-defined [10].

We note that the white noise ξ̇j can be regarded as that on the space

Lj = {F = {0, . . . , 0︸ ︷︷ ︸
j−1

, f, 0, . . .}), f ∈ L2(R)}.

Assume that the mapping Ak is defined on the space L2.
Then the form Ak(r + ξ1(r), ·, . . . , ·︸ ︷︷ ︸

k

) is defined on the space L2 and measurable with

respect to the white noise in L1. From the orthogonality of the spaces L1 and L2, it
follows that

Ak(r + ξ1(r), ξ̇2, . . . , ξ̇2︸ ︷︷ ︸
k

) =
∞∑
j=0

QjAk(r, ξ̇1, . . . , ξ̇1︸ ︷︷ ︸
j

, ξ̇2, . . . , ξ̇2︸ ︷︷ ︸
k

).

Theorem 1. Let {xn(u), u ∈ R}n≥1 be a sequence that satisfies Eq. (1). For any
ϕ ∈ Φ, n ≥ 1, we have

ϕ(xn(u)) =
∞∑
k=0

∑
l1+...+ln=k
l1,...,ln≥0

QlnQln−1 . . . Ql1ϕ(u, ξ̇n, . . . , ξ̇n︸ ︷︷ ︸
ln

, . . . , ξ̇1, . . . , ξ̇1︸ ︷︷ ︸
l1

).

Proof. First of all, let us verify that the iterated action of the operatorsQj is well-defined.
Note that {ξn(u)}n≥1 are identically distributed. So, for xn(u) by (14), we have

ϕ(xn(u)) = ϕ(xn−1(u) + ξn(xn−1(u))) =
∞∑
k1=0

Qk1ϕ(xn−1(u), ξ̇n, . . . , ξ̇n).

From the definition of an action of the operators Qk on the functions with values in a
Hilbert space, the action of the operator Qk2 on Qk1 is well-defined in the case where
‖Qk−1ϕ(·, ·, . . . , ·︸ ︷︷ ︸

k1

)‖2
k1

∈ Φ. To verify this condition, we note that relations (15) and (13)

imply that, for any n,

‖Qk1ϕ(r, ·, . . . , ·)‖2
k1 ≤ 1

k1!
Eϕ2(r + ξ1(r)) ≤

1
k1!

√
ne

r2
2(n−1) ‖ϕ‖2

N(0,n).

Thus, for any m ≥ 1, we put n > m+ 1 and obtain

1√
2πm

∫
R

‖Qkϕ(r, ·, . . . , ·)‖2
k1e

− r2
2m dr ≤ 1

k1!
√
n‖ϕ‖2

N(0,n)

∫
R

e
r2

2(n−1) e−
r2
2m dr < +∞.

So, the action of the operator Qk2 on Qk1 is well-defined. Applying the construction
from Example 3 to the mapping Ak(x, ·, . . . , ·) = Qk1ϕ(x, ·, . . . , ·), we obtain

Qk1ϕ(xn−2(u) + ξn−1(xn−2(u)), ·, . . . , ·︸ ︷︷ ︸
k1

) =

=
∞∑
k2=0

Qk2Qk1ϕ(xn−1(u), ξ̇n−1, . . . , ξ̇n−1︸ ︷︷ ︸
k2

, ·, . . . , ·︸ ︷︷ ︸
k1

).

Note also that the Hilbert space

H = {F : F = (f1, f2, . . .), fk ∈ L2(R),
∞∑
k=1

‖fk‖2
L2
< +∞},
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splits into the direct sum

H =
∞⊕
n=1

Ln,

where Ln is the subspace of H :

Ln = {F ∈ H : F = (0, . . . , 0︸ ︷︷ ︸
n−1

, f, 0, . . .)}, f ∈ L2(R).

In these terms, the form Qkϕ(xn−1(u) + ξn(xn−1(u)), ·, . . . , ·︸ ︷︷ ︸
k

) is defined on the subspace

Ln+1 and measurable with respect to the white noise in Ln. This implies that

Qk1ϕ(xn−1(u) + ξn(xn−1(u)), ξ̇n+1, . . . , ξ̇n+1) =

=
∞∑
k2=0

Qk2Qk1ϕ(xn−1(u), ξ̇n, . . . , ξ̇n︸ ︷︷ ︸
k2

, ξ̇n+1, . . . , ξ̇n+1︸ ︷︷ ︸
k1

).

We note also that

‖QkmQkm−1 . . . Qk1ϕ(u, ·, . . . , ·)‖2
km+...+k1 ≤

≤ 1
km!

√
le

u2
2(l−1)

∥∥‖Qkm−1 . . .Qk1ϕ(·, ·, . . . , ·)‖km−1+...+k1

∥∥2

N(0,l)
∈ Φ.

Using similar arguments, we complete the proof.
�

It is obvious that the zero-order expansion term for ϕ(xn(u)) is equal to Eϕ(xn(u)).
It follows from Lemma 1 that

Eϕ(xn(u)) =
1√
2πn

∫
R

ϕ(u + v)e−
v2
2n dv.

Let us give the explicit form of the first-order expansion term for ϕ(xn(u)). When n = 1,
we have

ϕ(u + ξ1(u)) =
∞∑
k=0

Qkϕ(u, ξ̇1, . . . , ξ̇1).

On the other hand, ϕ(u + ξ1(u)) as a function of the Gaussian random variable can be
represented as a series in Hermite polynomials,

ϕ(u+ ξ1(u)) =
∞∑
k=0

Hk(ξ1(u))
1
k!

∫
R

ϕ(u + v)Hk(v)p1(v)dv,

where pn(x) = 1√
2πn

e−
x2
2n . Using this representation, we get

Q0ϕ(u) =
1√
2π

∫
R

ϕ(u + v)e−
v2
2 dv

Q1ϕ(u, ξ̇1) = H1(ξ1(u))
1√
2π

∫
R

ϕ(u + v)H1(v)e−
v2
2 dv =

= ξ1(u)
1√
2π

∫
R

ϕ(u + v)ve−
v2
2 dv = ξ1(u)

1√
2π

∫
R

ϕ′(u + v)e−
v2
2 dv =

=
1√
2π

∫
R

ψ(u− y)dw1(y)
∫

R

ϕ′(u+ v)e−
v2
2 dv =

=
∫

R

∫
R

ϕ′(u+ v)p1(v)ψ(u − y)dvdw1(y).
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We recall that

ϕ(xn(u)) =
∞∑
k=0

∑
l1,...,ln≥0
l1+...+ln=k

Ql1Ql2 . . . Qlnϕ(u, ξ̇1, . . . , ξ̇1︸ ︷︷ ︸
l1

, . . . , ξ̇n, . . . , ξ̇n︸ ︷︷ ︸
ln

).

Thus, the first-order expansion term for ϕ(xn(u)) has the form
n−1∑
j=0

Qj0Q1Q
n−j−1
0 ϕ(u, ξ̇j+1).

For Qk0ϕ(u), we get the explicit form

Qk0ϕ(u) =
∫

R

ϕ(u + v)pk(v)dv.

Then the action of Qn−j−1
0 on the random variable ϕ(xn(u)) = ϕ(xn−1(u)+ξn(xn−1(u)))

is as follows:
Qn−j−1

0 ϕ(xj+1(u)) =
∫

R

ϕ(xj+1(u) + v)pj+1dv.

By definition, we put (Tkf)u = Qk0(f, u) and θxf = f(· + x). Then we obtain

Qj0Q1Q
n−j−1
0 ϕ(u, ξ̇j+1) = Tj

∫
R

∫
R

((θvTn−j−1ϕ)′vθ−yψ)up1(v)dvdwj+1(y) =

=
∫

R

∫
R

(Tj(θvTn−j−1ϕ)′vθ−yψ)up1(v)dvdwj+1(y).

Example 4. For the covariance function Γ(u) = cosu, we will give the explicit form of
the first expansion term. In this case, system (1) has the form{

xn+1(u) = xn(u) + η′n+1 cosxn(u) + η′′n+1 sinxn(u)
x0(u) = u,

where {η′n}n≥1, {η′′n}n≥1 are independent sequences of independent standard Gaussian
random variables. The first expansion term for xn(u) has the form

n∑
k=1

(η′k cosu+ η′′k sinu)e−
k−1
2 . (17)

Indeed, for n = 1, we have

x1(u) = u+ η′1 cosu+ η′′1 sinu,

and relation (15) is obvious. Suppose that the first expansion term for xn(u) has the
form (15). For xn+1(u), we obtain

xn+1(u) = xn(u) + η′n+1 cosxn(u) + η′′n+1 sinxn(u).

We note that η′n+1 does not depend on σ(η′1, . . . , η
′′
n), and η′′n+1 does not depend on

σ(η′1, . . . , η
′′
n). So, the first expansion term for xn+1(u) has the form
n∑
k=1

(η′k cosu+ η′′k sinu)e−
k−1
2 + η′n+1E cos xn(u) + η′′n+1E sinxn(u) =

=
n+1∑
k=1

(η′k cosu+ η′′k sinu)e−
k−1
2 ,

where we used the relations

E cosxn(u) =
∫

R

cos(u+ v)pn(v)dv = e−
n
2 cosu,
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E sinxn(u) =
∫

R

sin(u+ v)pn(v)dv = e−
n
2 sinu,

pn(x) = 1√
2πn

e−
x2
2n .
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