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OLGA V. ARYASOVA AND ANDREY YU. PILIPENKO

ON THE STRONG UNIQUENESS OF A SOLUTION TO SINGULAR
STOCHASTIC DIFFERENTIAL EQUATIONS

We prove the existence and uniqueness of a strong solution for an SDE on a semi-axis
with singularities at the point 0. The result obtained yields, for example, the strong
uniqueness of non-negative solutions to SDEs governing Bessel processes.

Introduction

We consider a stochastic process the state space of which is a non-negative semi-axis.
Assume that up to the first hitting time of zero the process (x(t))t≥0 satisfies an SDE

x(t) = x0 +
∫ t

0

a(x(s))ds +
∫ t

0

σ(x(s))dw(s),

where x0 ≥ 0, a, σ are supposed to be locally Lipshitz continuous on (0,∞), (w(t))t≥0

is a Wiener process. Possible singularities of the coefficients generate different types
of behavior of the process in a neighborhood of zero. As a consequence, the integral
representation of (x(t))t≥0 may acquire various forms.

As an example let us consider the following SDE

(1) ρ(t) = ρ(0) + w(t) +
β − 1

2

∫ t

0

1
ρ(s)

ds, ρ(0) ≥ 0.

It is known that β-dimensional Bessel process with β > 1 is a unique non-negative strong
solution to (1) (cf. [2]). Note that this equation possesses no additional terms. Otherwise,
an additional summand can be represented by the local time (l(t))t≥0 of unknown process
(x(t))t≥0 at the point 0 like in Skorokhod equation

(2) x(t) = x0 +
∫ t

0

a(x(s))ds +
∫ t

0

b(x(s))dw(s) + l(t),

or by principal values of some functionals of the unknown process like in the following
representation for a β-dimensional Bessel process with β ∈ (0, 1) (cf. [13], Ch. XI)

(3) ρ(t) = ρ(0) + w(t) +
β − 1

2
k(t), ρ(0) ≥ 0.

Here k(t) = V.P.
∫ t
0 ρ

−1(s)ds which, by definition, is equal to
∫∞
0 aβ−2(Lρa(t)−Lρ0(t))da,

Lρa(t) ia a local time of the process ρ(t) at the point a.
It seems improbable to describe all possible forms of integral representations. Let f

be a twice continuously differentiable function on [0,∞) which is a constant in a neigh-
borhood of zero. Applying Itô formula (additional tricks are needed in some cases) we
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see that the stochastic differential of the function f(x(t)) has identical form for solutions
of equations (1)-(3). Namely,

(4) f(x(t)) = f(x0) +
∫ t

0

(
a(x(s))f ′(x(s)) +

1
2
σ2(x(s))f ′′(x(s))

)
ds

+
∫ t

0

σ(x(s))f ′(x(s))dw(s).

The differential has no singularities. Intuitively, the singularities at the point 0 are killed
by zero derivatives of the function f . We use this fact to formulate the problem as
an analogue of a martingale problem (see Section 1). The main result of this paper
is as follows: the existence of a weak non-negative solution for equation (4) spending
zero time at the point 0 implies the existence and uniqueness of a non-negative strong
solution spending zero time at 0. The pathwise uniqueness is obtained by method of Le
Gall [5] based on the fact that the maximum of two solution also solves the equation.
The formulation of a martingale problem involving a class of functions that are constant
in a neighborhood of possible singularities was used by many authors (see, for example,
[12], [15]).

The notations and definitions used are collected in Section 1. We prove the main
Theorem in Section 2. In Section 3 some examples are represented.

1. Notations and definitions

Let a, σ be real-valued Borel-measurable functions defined on [0,∞). From now on
we assume that the following condition is valid

Condition A. Suppose that the functions a and σ are locally Lipschitz continuous on
(0,∞), i.e. for each ε > 0 there exist constants Cε > 0 such that for all {x, y} ⊂ [ε,∞)

|a(x) − a(y)|+ |σ(x) − σ(y)| ≤ Cε|x− y|.
The set of continuous functions x : [0,∞) → [0,∞) is denoted by C+([0,+∞)). Let

Gt ≡ σ{x(s) : 0 ≤ s ≤ t, x ∈ C+([0,+∞))}, and G ≡ σ{x(s) : 0 ≤ s < ∞, x ∈
C+([0,+∞))} be σ-algebras on C+([0,+∞)). The set of real-valued functions which
are twice continuously differentiable on [0,∞) and constant in a neighborhood of zero is
denoted by C2

c ([0,+∞)). Given a probability measure P on (C+([0,+∞)),G), the family
of continuous, square integrable local Gt-martingales is denoted by Mc,loc

2 (P ).

Definition 1. Given x0 ≥ 0, a solution to the martingale problem M(a, σ, x0) is a
probability measure Px0 on (C+([0,+∞)),G) such that

(i) Px0(x(0) = x0) = 1.
(ii) For each f ∈ C2

c ([0,+∞)),

Yf (t) = f(x(t)) − f(x0)−
∫ t

0

[
a(x(s))f ′(x(s)) +

1
2
σ2(x(s))f ′′(x(s))

]
ds ∈Mc,loc

2 (Px0).

(iii)

EPx0

∫ ∞

0

�{0}(x(s))ds = 0.

Definition 2. The martingale problem is well-posed if for each x0 ≥ 0 there is exactly
one solution to the martingale problem starting from x0.

Definition 3. Given x0 ≥ 0, let a pair (x(t), w(t))t≥0 of continuous adapted processes
on a filtered probability space (Ω,F, (Ft) , P ) be such that

(i) (w(t))t≥0 is a standard (Ft)-Brownian motion,
(ii) the process (x(t))t≥0 takes values on [0,∞),
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(iii) for each t ≥ 0, and f ∈ C2
c ([0,∞)), the equality

(5) f(x(t)) = f(x0) +
∫ t

0

(
a(x(s))f ′(x(s)) +

1
2
σ2(x(s))f ′′(x(s))

)
ds

+
∫ t

0

σ(x(s))f ′(x(s))dw(s)

holds true P -a.s.
Then the pair (x,w) is called a weak solution to equation (5) with initial condition

x0.

Remark 1. Let f ∈ C2
c ([0,∞)). Then there exists δf > 0 such that f ′ = f ′′ = 0 on

[0, δf ]. This and Condition A ensure the existence of all the integrals on the right-hand
side of (5).

Remark 2. It is not hard to verify that the existence of a weak solution (x(t), w(t))t≥0

to equation (5) on a probability space (Ω,F, P ) with initial condition x0 is equivalent to
the existence of a probability measure P̃ on some probability space (Ω̃, F̃, P̃ ) satisfying
conditions (i) and (ii) of Definition 1. The process (x(t))t≥0 induces the measure P̃ on
(C+([0,∞)),G), namely P̃ = Px−1.

For the proof see Appendix.

Definition 4. The weak uniqueness holds for equation (5) if, for any two weak solutions
(x,w) and (x̃, w̃) (which may be defined on different probability spaces) with a common
initial value, i.e. x(0) = x0 P -a.s., x̃(0) = x0 P̃ -a.s. the laws of processes x and x̃
coincide.

Definition 5. The pathwise uniqueness holds for equation (5), if for any two weak solu-
tions (x,w) and (x̃, w) on the same probability space (Ω,F, P ) with common Brown-
ian motion and common initial value, i.e. x(0) = x̃(0) = x0 P -a.s., the equality
x(t) = x̃(t), t ≥ 0, fulfils P -a.s.

Denote by
(
F
w

t

)
the filtration of w completed with respect to P .

Definition 6. Given a process (w(t))t≥0, and x0 ≥ 0, we say that the process (x(t))t≥0 is
a strong solution to equation (5) with initial condition x0 if it is adapted to the filtration(
F
w

t

)
and conditions (i)-(iii) of Definition 3 hold.

Definition 7. The strong uniqueness holds for equation (5) if there exists a strong
solution to equation (5) and the pathwise uniqueness is valid for equation (5).

2. The main result

Unfortunately, we are not able to write equation (5) for the process (x(t))t≥0 itself
because the function f(x) = x does not belong to C2

c ([0,∞)). Instead, in the next Lemma
we obtain an SDE for the process ζδ(x(t)) = x(t) ∨ δ, t ≥ 0, which will often be used in
the sequel.

Lemma 1. Given δ > 0, put ζδ(x) = x ∨ δ, x ∈ [0,∞). Suppose (x(t))t≥0 is a weak
solution to equation (5). Then the equality

(6) ζδ(x(t)) = ζδ(x(0)) +
∫ t

0

a(x(s))�(δ,+∞)(x(s))ds

+
∫ t

0

σ(x(s))�(δ,+∞)(x(s))dw(s) +
1
2
Lxδ (t)
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is valid for all t ≥ 0. Here (Lxδ (t))t≥0 is a local time of the process (x(t))t≥0 at the point
δ defined by the formula

(7) Lxδ (t) = lim
ε↓0

1
ε

∫ t

0

�[δ,δ+ε)(x(s))ds, t ≥ 0.

Proof. We make use of a standard approximation of non-smooth function by smooth
ones like the construction in the proof of Tanaka’s formula (see, for example, Theorem
4.1, Ch. 3 of [8]). For a > 0, let us approximate the function ξa(x) = x ∨ a by twice
continuously differentiable functions. Put

ψ(x) =

{
C exp

(
1

(x−1)2−1

)
, 0 < x < 2,

0, otherwise,

where C is a constant such that
∫∞
−∞ ψ(x)dx = 1, and define, for n ≥ 1

un(x) =
∫ x

−∞
dy

∫ y

−∞
nψ(nz)dz.

Then the function un is twice continuously differentiable and un(x− a) + a→ ξa(x), as
n→∞. Further,

u′n(x− a)→ �(a,∞)(x), n→∞,
and

(8)
∫ ∞

−∞
u′′n(x− a)ϕ(x)dx→ ϕ(a), n→∞

for any continuous and bounded function ϕ.
Let ηδ ∈ C2

c ([0,∞)) be a non-decreasing and such that ηδ(x) = x on [δ/2,∞). The
process (ηδ(x(t)))t≥0 can be represented in the form (5), and thus it is a semimartingale.
By Itô formula we have

(9) un(ηδ(x(t)) − δ) + δ = un(ηδ(x(0)) − δ) + δ

+
∫ t

0

[
a(x(s))η′δ(x(s)) +

1
2
σ2(x(s))η′′δ (x(s))

]
u′n(ηδ(x(s)) − δ)ds

+
∫ t

0

σ(x(s))η′δ(x(s))u
′
n(ηδ(x(s)) − δ)dw(s)

+
1
2

∫ t

0

σ2(x(s))(η′δ(x(s)))
2u′′n(ηδ(x(s))− δ)ds.

By occupation times formula (cf. [11], Corollary 1, p. 216), the last integral on the
right-hand side of (9) is equal to∫ t

0

u′′n(ηδ(x(s)) − δ)d〈ηδ(x)〉(s) =
∫ +∞

−∞
u′′n(a− δ)Lηδ(x)

a (t)da→ L
ηδ(x)
δ (t),

as n→∞.
Here Lηδ(x)

δ (t) is a local time of the process (ηδ(x(t)))t≥0 at the point δ.
Note that ζδ(x) = x∨ δ = ηδ(x) ∨ δ, x ∈ [0,∞). Passing to the limit in (9) as n→∞

and taking into account that ηδ(x) = x, x > δ/2, we arrive at the equation (6). �
The main result of the paper is the following theorem.

Theorem 1. Suppose a, σ satisfy Condition A and σ(x) �= 0, x ≥ 0. If for each x0 ≥ 0
there exists a solution to the martingale problem M(a, σ, x0), then for each x0 ≥ 0 there
exists a strong solution to equation (5) with initial condition x0 spending zero time at the
point 0 and the strong uniqueness holds in the class of solutions spending zero time at 0.
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We split the proof of Theorem into two steps. At the first one we show that the
existence of a solution to the martingale problem provides well-posedness. At the second
one the pathwise uniqueness is obtained from weak uniqueness. These two steps are
formulated as Lemmas in the following way.

Lemma 2 (weak uniqueness). Suppose a, σ satisfy the conditions of Theorem 1. Let for
each x0 ≥ 0, there exists a solution to martingale problem M(a, σ, x0). Then the weak
uniqueness holds for equation (5).

Proof. We would like to get a law of the process (x(t))t≥0. But we don’t know an
integral representation for (x(t))t≥0 itself. Instead, we consider the process (x(t)∨ δ)t≥0.
Applying a space transformation and change of time to the process (x(t) ∨ δ)t≥0 we will
see that the law of the process obtained coincides with that of the Wiener process with
reflection at the point δ.

Similarly to Theorem 12.2.5 of [14] it can be shown that the existence of solution
to the martingale problem for each x0 ≥ 0 implies the existence of a strong Markov,
time homogeneous measurable Markov family {P̃x0 : x0 ∈ [0,∞)} such that for each
x0 ∈ [0,∞), P̃x0 is a solution to the martingale problem starting from x0. And by
Theorem 12.2.4 of [14] to prove the uniqueness of a solution to the martingale problem it is
sufficient to prove the uniqueness only for the family of strong Markov, time homogeneous
solutions. If P̃x0 is such a solution starting from x0, then according to Remark 2 there
exists a pair (x,w) on some probability space (Ω,F , Px0) which is a weak solution to
equation (5) and Px0x

−1 = P̃x0 . This yields that (x(t))t≥0 is a strong Markov and time
homogeneous process.

Note that if the process (x(t))t≥0 does not hit zero the assertion of Lemma is trivial.
So from now on we suppose that starting from x0 the process (x(t))t≥0 hits zero P -a.s.

We follow the proof of Theorem 2.12 of [1]. Denote

ρ(x) = exp
(∫ 1

x

2a(y)
σ2(y)

dy

)
, x ∈ (0, 1],

s(x) =

{∫ x
0
ρ(y)dy if

∫ 1

0
ρ(y)dy <∞,

− ∫ 1

x
ρ(y)dy if

∫ 1

0
ρ(y)dy =∞.

Let ζδ(x(t)) = x(t) ∨ δ, t ≥ 0. Then by Lemma 1

ζδ(x(t)) = ζδ(x(0)) +
∫ t

0

a(x(s))�(δ,+∞)(x(s))ds

+
∫ t

0

σ(x(s))�(δ,+∞)(x(s))dw(s) +
1
2
Lxδ (t), t ≥ 0.

Set Δ = s(δ), y(t) = s(x(t) ∨ δ) = s(x) ∨Δ, t ≥ 0. By Itô-Tanaka formula applied to
the function x 
→ s(x) ∨Δ, we have

y(t) = y(0) +
∫ t

0

ρ(x(s))σ(x(s))�(δ,+∞)(x(s))dM(s) +
1
2
ρ(δ)Lxδ (t),

where M(s) =
∫ t
0 σ(x(s))dw(s). Applying Itô-Tanaka formula to the function y 
→ y∨Δ,

we get

y(t) = y(t) ∨Δ = y(0) +
∫ t

0

ρ(s−1(y(s)))σ(x(s))�(Δ,+∞)(y(s))dM(s) +
1
2
ρ(δ)LyΔ(t)

= y(0) +N(t) +
1
2
ρ(δ)LyΔ(t),

where N(t) =
∫ t
0 ρ(s

−1(y(s)))σ(x(s))�(Δ,+∞)(y(s))dM(s).
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Consider Dt =
∫ t
0
�(Δ,+∞)(y(s))ds. Let us show that Dt → ∞ as t → ∞. Set for

a, b > 0, Ta,b = inf{t > 0 : x(t) = a or b}. Define

μ0 = inf{t > 0 : x(t) = 0}, and for k = 1, 2, . . . ,
μk = inf{t > 0 : t ≥ μk−1 + 1, x(t) ≥ 2δ or x(t) = 0}

If the process can hit zero in finite time then for all y ∈ [0, 2δ], Py(T0,2δ < ∞) = 1 (cf.
[1], Section 2). Then

(10) P0(μ1 <∞) = P0(x(1) > 2δ) +
∫

[0,2δ]

Py(T0,2δ <∞)P0(x(1) ∈ dy)

= P0(x(1) > 2δ) + P0(x(1) ∈ [0, 2δ]) = 1.

Let

τ1 = inf{t ≥ 0 : x(t) = 2δ}, for k = 1, 2, . . . ,
κk = inf{t > τk : x(t) = δ}, and for k = 2, 3, . . . ,
τk = inf{t > κk−1 : x(t) = 2δ}.

Equality (10) yields P0(τ1 < ∞) = 1. Indeed, note that P0(x(μ1) = 0) = α ∈ (0, 1).
Then, by strong Markov property

P0(τ1 =∞) ≤ P0(τ1 ≥ μn) ≤ P0(
n⋂
k=1

(x(μk) = 0))

= (P0(x(μ1) = 0))n = αn → 0, as n→∞.
Thus P0(τ1 < ∞) = 1. Let for k = 1, 2, . . . , ζk = κk − τk. Then {ζk : k ≥ 1} is a
sequence of positive independent identically distributed random variables. Consequently,
D∞ ≥

∑n
k=1 ζk →∞, as n→∞. So limt→+∞Dt = +∞

Put
ϕδ(t) = inf{s ≥ 0 : D(s) > t},

and

(11) U(t) = y(ϕδ(t)) = U(0) +N(ϕδ(t)) +
1
2
ρ(δ)LyΔ(t), t ≥ 0.

It can be seen that the process K(t) = N(ϕδ(t)) is a martingale and

〈K〉(t) =
∫ t

0

κ
2(U(s))ds, t ≥ 0,

where κ(x) = ρ(s−1(x))σ(s−1(x)), x > 0. By Itô-Tanaka formula we have
(12)

U(t) = U(0)+
∫ t

0

�(Δ,+∞)(U(s))dK(s)+
1
2

∫ t

0

�(Δ,+∞)(U(s))dLyΔ(ϕδ(t))+
1
2
LUΔ(t), t ≥ 0.

Making use change of variables in Lebesgue-Stiltjes integrals and taking into account
that measure dLyΔ(ϕδ(t)) increases only on the set {t ≥ 0 : y(ϕδ(t)) = Δ}, we arrive at
the equality∫ t

0

�(Δ,+∞)(U(s))dLyΔ(ϕδ(s)) =
∫ ϕδ(t)

ϕδ(0)

�(Δ,+∞)(y(s))dL
y
Δ(s) = 0.

Comparing (11) with (12) we get from the uniqueness of the semimartingale decomposi-
tion of U that ∫ t

0

�(Δ,+∞)(U(s))dK(s) = K(t), t ≥ 0,
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and

U(t) = U(0) +K(t) +
1
2
LUΔ(t), t ≥ 0.

Consider

A(t) =
∫ t

0

κ
2(U(s))ds,

and put
A(∞) = lim

t→∞ κ
2(U(s))ds,

τ(t) = inf{s ≥ 0 : A(s) > t}, 0 ≤ t < A(∞).

Arguing as above we arrive at the equation

V (t) = U(τ(t)) = V (0) + J(t) +
1
2
LVΔ(t), 0 ≤ t < A(∞),

where J(t) = K(τ(t)), 0 ≤ t < A(∞), and 〈J〉(t) =
∫ τ(t)
0

κ2(U(s))ds = t. By Theorem
7.2, Ch.2 of [8] there exists a Brownian motion (w(t))t≥0 (defined, possibly, on an enlarged
probability space) such that J coincides with w on [0, A(∞)). Skorokhod’s lemma (cf.
[13], Ch.VI, Lemma 2.1) and Lemma 2.3, Ch.VI of [13] allow us make the conclusion that
the process V is a Brownian motion started at V (0) = s(x(0))∨Δ, reflected at Δ. Thus
the measure P δ = Law(U(t) : t ≥ 0) = Law(y(ϕδ(t)) : t ≥ 0) is determined uniquely
and does not depend on the choice of a solution P̃x0 . This entails that the law of the
process x(ϕδ(t)) ∨ δ is uniquely defined. Note that item (iii) of Definition 1 provides
that the process (x(t))t≥0 spends zero time at the point 0 Px0-a.s. Then for each T > 0,
ϕδ(t) ⇒ t on [0, T ] and, consequently, x(ϕδ(t)) ⇒ x(t), as δ ↓ 0 Px0 -a.s. Therefore,
Law(x(t) : t ≥ 0) is defined uniquely and does not depend on the choice of the solution
P̃x0 . Then according to Remark 2 the weak uniqueness holds for equation (5). �

Lemma 3 (pathwise uniqueness). Let the weak uniqueness hold for equation (5). Then
the pathwise uniqueness holds true for (5).

Proof. Let (x1(t))t≥0, (x2(t))t≥0 be processes defined on the same probability space
(Ω,F, (Ft) , P ) and let each of them is a weak solution to equation (5). The idea of
the proof is as follows. We will see that the process ((x1 ∨ x2)(t))t≥0 is also a weak
solution to equation (5).

By Theorem IV-68 of [11] we have

(13) (ζδ(x1) ∨ ζδ(x2)) (t) = ζδ(x1(t)) + (ζδ(x2(t))− ζδ(x1(t))+

= ζδ(x0) +
∫ t

0

�ζδ(x2(s))−ζδ(x1(s))>0dζδ(x2(s)) +
∫ t

0

�ζδ(x2(s))−ζδ(x1(s))≤0dζδ(x1(s))

+
1
2
L
ζδ(x1)−ζδ(x2)
0 (t),

where Lζδ(x1)−ζδ(x2)
0 (t) is a local time of the process (ζδ(x1(t))− ζδ(x2(t)))t≥0 at 0. Then

(14) (ζδ(x1) ∨ ζδ(x2)) (t) = ζδ(x0) +
∫ t

0

a((x1 ∨ x2)(s))�(δ,+∞)((x1 ∨ x2)(s))ds

+
∫ t

0

σ((x1 ∨ x2)(s))�(δ,+∞)((x1 ∨ x2)(s))dw(s)

+
1
2
Lx1∨x2
δ (t) +

1
2
L
ζδ(x1)−ζδ(x2)
0 (t).

Consider the last summand in the right-hand side of (14).
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The properties of the local time (cf. Theorem 69, [11], p. 214) implies that
L
ζδ(x1)−ζδ(x2)
0 (·) increases only on {t : ζδ(x1(t)) = ζδ(x2(t))}. We prove that increases

only on {t : ζδ(x1(t)) = ζδ(x2(t)) = δ}.
Let q ∈ [0,∞) ∩� be such that ζδ(x1(q)) > δ, ζδ(x2(q)) > δ.Define

aq = sup{t < q : (ζδ(x1) ∧ ζδ(x2))(t) = δ},
bq = inf{t > q : (ζδ(x1) ∧ ζδ(x2))(t) = δ},

and Iq = (aq, bq). Suppose ζδ(x1)(q) = ζδ(x2)(q). Then by Theorem on homeomor-
phisms of flows (cf. Theorem V-46, [11]) applied to equation (6), we have ζδ(x1(t)) =
ζδ(x2(t)), t ∈ [q, bq). On the other hand, if there exists r < q such that ζδ(x1(r)) �=
ζδ(x2(r)), by the same theorem ζδ(x1(q)) �= ζδ(x2(q)). Thus ζδ(x1(q)) = ζδ(x2(q)) im-
plies ζδ(x1(t)) = ζδ(x2(t)), t ∈ Iq, and (ζδ(x1) ∨ ζδ(x2))(t) = ζδ(x1(t)), t ∈ Iq. Com-
parison (14) with (6) permits the conclusion that L

ζδ(x1)−ζδ(x2)
0 (t) = 0, t ∈ Iq. In

the case of ζδ(x1(q)) �= ζδ(x2(q)) we get ζδ(x1(t)) �= ζδ(x2(t)), t ∈ Iq. So for every
[α, β] ∈ Iq there exists ε0 > 0 such that |ζδ(x1(t)) − ζδ(x2(t))| > ε0, t ∈ [α, β]. Then for
all ε ∈ [0, ε0), �[0,ε]|ζδ(x2(t))− ζδ(x1(t))| = 0, t ∈ [α, β]. From Corollary 3 of [11], p.225
we obtain

L
ζδ(x1)−ζδ(x2)
0 (t)

= lim
ε↓0

1
ε

∫ t

0

�[0,ε]|ζδ(x2(s)) − ζδ(x1(s))|d〈ζδ(x1)− ζδ(x2)〉(s) = 0, t ∈ [α, β].

Therefore, Lζδ(x1)−ζδ(x2)
0 (·) can increases only on {t : ζδ(x1(t)) = ζδ(x2(t)) = δ}, i.e.

on {t : (ζδ(x1) ∨ ζδ(x2))(t) = δ}.
Let f ∈ C2

c ([0,∞)). Then there exists δ > 0 such that f is constant on [0, 2δ], and we
have

f ((x1 ∨ x2)(t)) = f ((ζδ(x1) ∨ ζδ(x2))(t)) , 0 ≤ t < +∞.
We have seen that the local times Lζδ(x1)−ζδ(x2)

0 (·) and Lx1∨x2
δ (·) do not increase on

{t : (x1∨x2)(t) > 2δ}. Taking into account that f ′(x) = f ′′(x) = 0 on [0, 2δ] and making
use of Itô formula we obtain

f((x1 ∨ x2)(t)) = f(x0) +
∫ t

0

a((x1 ∨ x2)(s))f ′((x1 ∨ x2)(s))ds

+
∫ t

0

σ((x1 ∨ x2)(s))f ′((x1 ∨ x2)(s))dw(s) +
1
2

∫ t

0

σ2((x1 ∨ x2)(s))f ′′((x1 ∨ x2)(s))ds.

Therefore, the process ((x1∨x2)(t))t≥0 satisfies equation (5). By the weak uniqueness
for all t ≥ 0, EP (x1 ∨ x2)(t) = EPx1(t) = EPx2(t). This yields (x1 ∨ x2)(t) = x1(t) =
x2(t), t ≥ 0 P -a.s. �
Proof of Theorem. Let for each x0 ≥ 0, there exists a solution to the martingale problem
M(a, σ, x0). Then by Lemma 2 the weak uniqueness holds for equation (5). Then the
assertion of Theorem follows from Lemma 3 similarly to Yamada-Watanabe theorem (cf.
Theorem IV-1.1 of [8]). �
Remark 3. The statement of the Theorem holds true if σ = 0 on some set B ⊂ (0,∞).
Indeed, let at first the set B does not have limit points in some neighborhood of 0.
Suppose x0 ∈ B and a(x0) = 0. Then a solution of equation (5) stays at the point x0

forever. Suppose a(x0) �= 0. If for some y ∈ B such that y < x0, a(y) = 0, a solution
starting from x0 never hits the point y due to homeomorphic property of solutions of
SDE (see [9], Ch. 4.4). If there exists y ∈ B such that y ≤ x0 and a(y) > 0, then a
solution of (5) never attends the half-interval [0, y). In two last cases the assertion of
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the Theorem is fulfilled because a, σ are Lipshitz continuous on [y,∞) (see, for example
[7]). If for all y ∈ B the inequality y > x0 holds, we need to prove the uniqueness only
up to the time of hitting B by a solution. The case when for all y ∈ B such that y ≤ x0,
we have a(y) < 0 is reduced to the previous one. Thus, if the set B does not have limit
points in some neighborhood of 0, then a solution to equation (5) either attends a point
of B just once or does not attends it or lives in it forever. The assertion of Theorem
holds true in this case.

Now, suppose that 0 is a limit point of the set B. Suppose there exists a subsequence
{yn : n ≥ 1} ⊂ B such that yn → 0 as n→ ∞ and a(yn) ≥ 0. Then starting away from
0, a solution never hits some neighborhood of 0 and the assertion of Theorem holds true.
If such a subsequence does not exist, then there is a neighborhood of 0, say U , such that
for all y ∈ B ∩ U , a(y) < 0. In this case, starting from 0 a solution does not attend the
interval (y,+∞) for all y ∈ B ∩ U . Thus, if 0 is a limit point of B, a solution either
hits 0 in finite time with positive probability or does not hit 0 a.s. In the former case a
solution stays at the point 0 forever. But this contradicts with item (iii) of Definition 1.
In the latter case the assertion of Theorem is obvious.

3. Examples

Example 1 (Skorokhod equation ([7], §23)). Let a, b be functions on [0,∞). Let
(w(t))t≥0 be a Wiener process, x0 ≥ 0. Recall the definition of a solution to Skorokhod
problem.

Let (x, l) be a pair of continuous processes adapted to the filtration (F
w

t ) and such
that

(i) x is non-negative,
(ii) l(0) = 0, l(·) is nondecreasing,
(iii) l(·) increases only at those moments of time when x(t) = 0, i.e. for each t ≥ 0,

(15)
∫ t

0

�{0}(x(s))dl(s) = l(t),

(iv) for each t ≥ 0, the relation

(16) x(t) = x0 +
∫ t

0

a(x(s))ds +
∫ t

0

b(x(s))dw(s) + l(t)

holds and all the integrals in the right-hand side of (16) are well-defined.
Then the pair (x, l) is called a strong solution to equation (16).

If (x, l) is such a solution, then for each f ∈ C2
c ([0,∞)), by Itô formula for semimartin-

gales, we have

(17) f(x(t)) = f(x0) +
∫ t

0

f ′(x(s))b(x(s))dw(s) +
∫ t

0

f ′(x(s))a(x(s))ds

+
1
2

∫ t

0

f ′′(x(s))b2(x(s))ds +
∫ t

0

f ′(x(s))dl(s).

According to (15), the last member in the right-hand side of (17) is equal to 0. Thus, if
the pair of the processes (x, l) is a strong solution to equation (16), then the process x is
a strong solution to equation (5) in the sense of Definition 6.

Example 2 (β-dimensional Bessel processes). Let ρ be a Bessel process of dimension β.
It is known ( see [13], p.446) that this process has a transition probability density

pβt (x, y) = t−1(y/x)νy exp (−(x2 + y2)/2t)Iν(xy/t) for x > 0, t > 0,

and
pβt (0, y) = 2−νt−(ν+1)Γ−1(ν + 1)y2ν+1 exp(−y2/2t),
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where ν = β/2 − 1. If 0 < β < 2 the point 0 is instantaneously reflecting and for β ≥ 2
it is polar.
1) Let β > 1. In this case the process ρ is a semimartingale, which satisfies the SDE of

the form (see [13], Ch.XI, §1).

(18) ρ(t) = ρ(0) + w(t) +
β − 1

2

∫ t

0

1
ρ(s)

ds, ρ(0) ≥ 0.

Cherny [2] has shown that there exists a unique non-negative strong solution to equa-
tion (18). Let ρ be a non-negative solution to (18). Applying Itô formula we get the
equation

f(ρ(t)) = f(ρ(0)) +
∫ t

0

f ′(ρ(s))dw(s) +
β − 1

2

∫ t

0

f ′(ρ(s))
ρ(s)

ds+
1
2

∫ t

0

f ′′(ρ(s))ds.

Thus, (ρ, w) is a weak solution to equation (5) in the sense of Definition 3. Then
according to Theorem there exists a strong solution to (5) and the strong uniqueness
holds. Therefore we obtain the result of Cherny from ours.

2) Let 0 < β < 1 and let (ρ(t))t≥0 be a Bessel process on some probability space
(Ω,F, (Ft), P ). Then the process ρ is not a semimartingale. Nonetheless it has the
family of local times defined by the formula

(19)
∫ t

0

φ(ρ(s))ds =
∫ ∞

0

φ(x)Lρx(t)x
β−1dx.

valid for all t > 0 and for every positive measurable function φ on [0,∞) a.s. The
Bessel process of dimension β is a weak solution to the following equation (cf. [13],
Ch.XI, Ex. 1.26)

(20) ρ(t) = ρ(0) + w(t) +
β − 1

2
k(t), ρ(0) ≥ 0,

where (w(t))t≥0 is an (Ft)-Wiener process, k(t) = V.P.
∫ t
0 ρ

−1(s)ds which, by defini-
tion, is equal to

∫∞
0 aβ−2(Lρa(t)− Lρ0(t))da.

Let us check that the pair (ρ, w) is a weak solution to equation (5) in the sense of
Definition 3. Then the Theorem yields that there exists a unique strong solution to
equation (20). To prove this we need the following Lemma.

Lemma 4. Let t1, t2 ∈ �, t1 < t2. Then for almost all ω ∈ Ω such that ρ(t, ω) >
0, t ∈ [t1, t2], the equality

(21) k(t2)− k(t1) =
∫ t2

t1

1
ρ(s)

ds

holds.

Proof. There exists ε > 0 such that ρ(t) ≥ ε, t ∈ [t1, t2]. The properties of the local
time imply that for all a < ε, Lρa(t2) = Lρa(t1). Then

k(t2)− k(t1) =
∫ ∞

0

aβ−2 [(Lρa(t2)− Lρ0(t2))− (Lρa(t1)− Lρ0(t1))] da

=
∫ ∞

0

�[ε,∞)(a)
a

aβ−1(Lρa(t2)− Lρa(t1))da.

By (19) we get

k(t2)− k(t1) =
∫ t2

t1

�[ε,∞)(ρ(s))
1
ρ(s)

ds =
∫ t2

t1

1
ρ(s)

ds.

�
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Because of the continuity of the process (ρ(t))t≥0 there exists Ω̃ ∈ Ω, P (Ω̃) = 1,
such that for all ω ∈ Ω̃, formula (21) holds true for all t1, t2 ≥ 0 satisfying ρ(t) >
0, t ∈ [t1, t2].

Let τ be a stopping time such that ρ(τ) �= 0 P-a.s. Put σ = inf{s ≥ τ : ρ(s) = 0}.
We have

ρ(t) = ρ(τ) + w(t) − w(τ) +
β − 1

2

∫ t

τ

ds

ρ(s)
, t ∈ [τ, σ).

Let f ∈ C2
c ([0,∞)). Itô formula for semimartingales yields

(22)

f(ρ(t))−f(ρ(τ)) =
∫ t

τ

f ′(ρ(s))dw(s)+
β − 1

2

∫ t

τ

f ′(ρ(s))
ρ(s)

ds+
1
2

∫ t

τ

f ′′(ρ(s))ds, t ∈ [τ, σ).

Choose δ > 0 such that f is constant on [0, 2δ]. Define

τ0 = 0,
for i ≥ 0, κi = inf{t > τi : ρ(t) = δ/2},

and for i ≥ 1, τi = inf{t > κi−1 : ρ(t) = δ},

Then

f(ρ(t)) = f(ρ(0)) +
∞∑
k=0

[f(ρ(κk ∧ t))− f(ρ(τk ∧ t))] +
∞∑
k=0

[f(ρ(τk+1 ∧ t))− f(ρ(κk ∧ t))].

The second sum in the right-hand side is equal to zero. If f(ρ(0)) < δ/2, then
f(ρ(κ0 ∧ t))− f(ρ(τ0)) = 0.

Suppose ρ(0) ≥ δ/2. It follows from (22) that

(23) f(ρ(t)) = f(ρ(0)) +
∞∑
k=0

∫ κk∧t

τk∧t
f ′(ρ(s))dw(s) +

β − 1
2

∞∑
k=0

∫ κk∧t

τk∧t

f ′(ρ(s))
ρ(s)

ds

+
1
2

∞∑
k=0

∫ κk∧t

τk∧t
f ′′(ρ(s))ds, t ≥ 0.

Note that for all t ∈ [κk, τk+1], k ≥ 0, f ′(ρ(t)) = f ′′(ρ(t)) = 0. Then (23) can be
rewritten in the form

(24)

f(ρ(t)) = f(ρ(0)) +
∫ t

0

f ′(ρ(s))dw(s) +
β − 1

2

∫ t

0

f ′(ρ(s))
ρ(s)

ds+
1
2

∫ t

0

f ′′(ρ(s))ds, t ≥ 0.

If ρ(0) < δ/2 equation (24) can be obtained similarly.
Hence, the pair (ρ, w) is a weak solution to equation (5) and, consequently, the

strong existence and uniqueness hold for equation (20).

Example 3. Let the process (x(t))t≥0 be a weak solution to an SDE of the form

(25) x(t) = x(0) +
∫ t

0

a(|x(s)|)ds +
∫ t

0

b(|x(s)|)dw(s),

where the coefficients a and b are locally Lipshitz continuous on (0,∞).
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Then for each even function being constant in a neighborhood of zero according to Itô
formula, we get

(26) f(x(t)) = f(x(0)) +
∫ t

0

a(|x(s)|)f ′(x(s))ds +
∫ t

0

b(|x(s)|)f ′(x(s))dw(s)

+
1
2

∫ t

0

b2(|x(s)|)f ′′(x(s))ds.

Note that if the process (x(t))t≥0 is a weak solution to equation (25) spending zero
time at the origin then the process y(t) = |x(t)|, t ≥ 0, satisfies equality (26) for each
f ∈ C2

c ([0,+∞)). By Theorem 1 the process y(t), t ≥ 0, is a unique non-negative strong
solution to (26) spending zero time at the origin.

Consider an SDE which can be regarded as an example of equation of the form (25)

(27) x(t) = x(0) +
∫ t

0

|x(s)|αdw(s), α ∈ (0, 1/2).

It is known that there exists a weak solution to (27) spending zero time at the point 0
(cf. [10], 3.10b).

Remark 4. Girsanov [6] has shown that without additional assumption this equation has
infinitely many weak solutions.

Remark 5. It can be proved (cf. [3]) that in the class of solutions spending zero time at
the point 0 the pathwise uniqueness holds and a strong solution exists.

So, there exists a weak solution to the equation

(28) f(x(t)) = f(x(0)) +
∫ t

0

(x(s))αf ′(x(s))dw(s) +
1
2

∫ t

0

(x(t))2αf ′′(x(s))ds

in the sense of Definition 3 spending zero time at the point 0. According to Theorem
1 there is a strong solution to (28) spending zero time at the point 0. Certainly, this
solution coincides with the unique strong solution to the equation

x(t) = x(0) +
∫ t

0

(x(s))αdw(s) + dLx0(t), α ∈ (0, 1/2),

spending zero time at the point 0 which was constructed by Bass and Chen (see [4]).
Here (Lx0(t))t≥0 is a local time of the process (x(t))t≥0 at the point 0 defined by formula
(7).

Appendix

Proof of assertion of Remark 2. The ”only if” assertion is trivial.
To prove the ”if” assertion we can argue as in Prop.2.1, Ch.IV of [8]. Suppose P

is a solution to the martingale problem M(a, σ, x0) on space (C+([0,+∞)),G), (Gt)),
and f ∈ C2

c ([0,∞)). Then the process Yf (t) is a continuous, square integrable local
martingale with respect to P . Applying condition (ii) of Definition 1 to the function f2,
we calculate the characteristics of the process (Yf (t))t≥0. Namely,

〈Yf 〉(t) =
∫ t

0

σ2(x(s))(f ′(x(s)))2ds.

Consequently, there is a Brownian motion (wf (t))t≥0 defined on an extension of
(C+([0,∞)),G, (Gt), P ) such that

Yf (t) =
∫ t

0

σ(x(s))f ′(x(s))dwf (s).

We will show that it can be chosen the same Brownian motion for all f ∈ C2
c ([0,∞)).
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Similarly to the Proof of Lemma 1, for k = 1, 2, . . . , consider a non-decreasing function
ηk ∈ C2

c ([0,∞)) such that ηk(x) = x, x > 1/k, and ηk is a constant on [0, 1
2k ].

Let us fix k and put

τl = inf{t : ηk(x(t)) > l}, l = 1, 2, . . . .

Then, for all l = 1, 2, . . . ,

ηk(x(t ∧ τl))− ηk(x0)−
∫ t∧τl

0

[
a(x(s))η′k(x(s)) +

1
2
σ2(x(s))η′′k (x(s))

]
ds

is a continuous, square integrable P -martingale. Then Yηk
(t) ∈ Mc,loc

2 (P ), and there ex-
ists a Brownian motion (wk(t))t≥0 on an extension (Ωk,Fk, Pk) of (C+([0,∞)),G, (Gt), P )
such that

(29) ηk(x(t)) = ηk(x0) +
∫ t

0

(
a(x(s))η′k(x(s)) +

1
2
σ2(x(s))η′′k (x(s))

)
ds

+
∫ t

0

σ(x(s))η′k(x(s))dwk(s).

Fix m ≥ 1. Then for all k ≥ m, ηm(x) = ηk(x), x > 1/m. Put

(30) w̃m(t) :=
∫ t

0

�( 1
m ,+∞)(x(s))dwm(s).

As a consequence of the following simple Lemma we have that for each m ≥ 1 the process
(w̃m(t))t≥0 is adapted w.r.t. the filtration generated by the process (x(t))t≥0 and for all
k ≥ m,
(31)∫ t

0

�( 1
m ,+∞)(x(s))dwk(s) =

∫ t

0

�( 1
m ,+∞)(x(s))dwm(s) =

∫ t

0

�( 1
m ,+∞)(x(s))dw̃m(s) a.s.

Lemma 5. Let A be an open set in �. Let x0 ∈ A, (x(t))t≥0 be a continuous adapted
process on a probability space (Ω,Ft, P ). Let (w(t))t≥0 be a Wiener process on some
extension of the space (Ω,Ft, P ). Suppose a, b, f are continuous functions on R, b(x) �= 0
for x ∈ A, and for all t ≥ 0, the equality

f(x(t)) = f(x0) +
∫ t

0

a(x(s))ds +
∫ t

0

b(x(s))dw(s)

holds. Put Fxt = σ{x(s) : 0 ≤ s ≤ t}. Then the process
∫ t
0
�A(x(s))dw(s), t ≥ 0, is

adapted w.r.t. (Fxt ).
Moreover, suppose (w̄(t))t≥0 is a Wiener process on an extension of the probability

space (Ω,Ft, P ), ā, b̄, f̄ are continuous functions on R, b̄(x) �= 0 for x ∈ A, and the
equality

f̄(x(t)) = f̄(x0) +
∫ t

0

ā(x(s))ds +
∫ t

0

b̄(x(s))dw̄(s)

holds.
If a(x) = ā(x), b(x) = b̄(x), f(x) = f̄(x) on A, then

(32)
∫ t

0

�A(x(s))dw(s) =
∫ t

0

�A(x(s))dw̄(s).

The proof is trivial.
The sequence {w̃m : m ≥ 1} defined in (30) is fundamental in mean square on compact

intervals. Indeed, for k ≥ m,T > 0, using martingale inequality (cf. [8], Theorem I-6.10)
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and (31), we get

E

[
sup
t∈[0,T ]

|w̃k(t)− w̃m(t)|
]2

≤ 4E|w̃k(T )− w̃m(T )|2 =

4E

[∫ T

0

(
�( 1

k ,+∞) − �( 1
m ,+∞)

)
(x(s))dwk(s)

]2

≤ 4E
∫ T

0

�( 1
k ,

1
m ](x(s))ds→ 0,m→ +∞.

Then the sequence {w̃m : m ≥ 1} is uniformly convergent on compact intervals in
probability. Denote the limit of the sequence {w̃m : m ≥ 1} by w̃.

The process (w̃(t))t≥0 ∈Mc,loc
2 (P ) and

〈w̃(t)〉(t) =
∫ t

0

�(0,∞)(x(s))ds = t.

Here we used the fact that the process (x(t))t≥0 spends zero time at the point 0. Thus
the process (w̃(t))t≥0 is a Wiener process. Besides, by construction,

w̃k(t) =
∫ t

0

�( 1
k ,+∞)(x(s))dw̃(s).

Let f ∈ C2
c ([0,∞)) be such that f is constant on [0, 1/k]. Then there exists a Wiener

process (wf (t))t≥0 such that

(33) f(x(t)) = f(x0) +
∫ t

0

(
a(x(s))f ′(x(s)) +

1
2
σ2(x(s))f ′′(x(s))

)
ds

+
∫ t

0

σ(x(s))f ′(x(s))dwf (s).

By Itô formula, (29) yields

(34) f(ηk(x(t))) = f(ηk(x0)) +
∫ t

0

a(x(s))η′k(x(s))f
′(ηk(x(s)))ds

+
1
2

∫ t

0

σ2(x(s))η′′k (x(s))f ′(ηk(x(s)))ds

+
∫ t

0

σ(x(s))η′k(x(s))f
′(ηk(x(s)))dwk(s) +

1
2

∫ t

0

σ2(x(s))(η′k(x(s)))
2f ′′(ηk(x(s)))ds.

The second integral in the right-hand side of (34) is equal to 0 because η′′k (x) = 0 on
(1/k,+∞). Taking into account that η′k(x) = x′ = 1 on (1/k,+∞), and f(ηk(x)) = f(x)
on (1/k,+∞), we arrive at the equation

(35) f(ηk(x(t))) = f(ηk(x0)) +
∫ t

0

a(x(s))f ′(x(s))ds +
∫ t

0

σ(x(s))f ′(x(s))dwk(s)

+
1
2

∫ t

0

σ2(x(s))f ′′(x(s))ds.

Note that∫ t

0

σ(x(s))f ′(x(s))dwk(s) =
∫ t

0

σ(x(s))f ′(x(s))�{σ(x(s))f ′(x(s)) �=0}dwk(s).
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Applying Lemma 5 to equations (33) and (35) we have∫ t

0

�(1/k,+∞)(x(s))�{σ(x(s))f ′(x(s)) �=0}dwf (s)

=
∫ t

0

�(1/k,+∞)(x(s))�{σ(x(s))f ′(x(s)) �=0}dwk(s)

=
∫ t

0

�(1/k,+∞)(x(s))�{σ(x(s))f ′(x(s)) �=0}dw̃(s).

So for each f ∈ C2
c ([0,+∞)) the equality

f(x(t)) = f(x0) +
∫ t

0

(
a(x(s))f ′(x(s)) +

1
2
σ2(x(s))f ′′(x(s))

)
ds

+
∫ t

0

σ(x(s))f ′(x(s))dw̃(s)

is justified, and the pair (x(t), w̃(t))t≥0 is a weak solution to equation (5). �
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