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ANDRII B. ILIENKO AND JOSEF G. STEINEBACH

STOCHASTICALLY LIPSCHITZIAN FUNCTIONS AND LIMIT
THEOREMS FOR FUNCTIONALS OF SHOT NOISE PROCESSES

Let θ be a short memory shot noise process. For wide classes of “stochastically Lip-
schitzian” (SL) and “stochastically locally Lipschitzian” (SLL) non-linear functions
K : � → �, we prove asymptotic normality of the normalized integrals ΘK(T ) =
� T
0 K(θ(t)) dt as T → ∞. We also consider various examples of SL and SLL func-

tions.

1. Introduction

Let (ζ(s), s ∈ R) be a Lévy process. It is well-known that ζ can be represented in
the following form: ζ(s) = ξ(s) + σw(s), s ∈ R, where ξ is a Lévy process without
Gaussian component, σ ≥ 0, and w is a Wiener process suitably extended to R (see,
e.g., Kallenberg (2002), p. 290, Corollary 15.7). Let Π be the spectral measure of ξ, and
Πk =

∫
R
xk Π(dx), Πk =

∫
R
|x|k Π(dx), k ≥ 1, be the corresponding spectral and absolute

spectral moments. In what follows, we will suppose that Πk <∞, k = 1, 2, and that the
process ξ (and so ζ) is centered. Further, let (g(t), t ∈ R) be a non-random real function
with

∫
R
g2(t) dt <∞. Then the following Wiener-type integral is well-defined:

(1) θ(t) =
∫

R

g(t− s) dζ(s), t ∈ R.

This defines the shot noise process with the response function g and the driving Lévy
process ζ. The process θ is strictly stationary and mean-square continuous. More details
on the shot noise processes of this form can be found in Chapter 5 of Buldygin and
Kozachenko (2000).

This paper focuses on limit theorems for non-linear functionals of shot noise processes.
More precisely, we consider the integrated process of the form

(2) ΘK(T ) =
∫ T

0

K(θ(t)) dt, T > 0,

where K : R→ R is a non-random continuous function, and the integral is interpreted as
a mean-square Riemann one. We establish two

√
T -CLT’s for stochastically Lipschitzian

and stochastically locally Lipschitzian K’s, respectively. It should be noted that the
integrals defined in (2) play a role in parameter estimation of shot noise processes, being
connected with many useful statistics (as, e.g., moment estimators).

In Bulinskii and Molchanov (1991) as well as Giraitis et al. (1993), similar problems
were studied for related shot noise processes and fields with random frequencies and
compound Poisson driving measures. In these papers, the authors considered two classes
of K’s: polynomials and exponential functions; the latter was necessary for applications
to Burgers’ equation with shot noise initial conditions. The first paper deals with short
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memory shot noise processes and fields, whereas the second one focuses on the case of
long range dependence.

In our setting, the process θ exhibits short memory if g ∈ L1(R), and long memory
otherwise. In some sense, the discrete analogues of short memory shot noise processes
are two-sided (non-causal) linear sequences with summable weights, i.e.

(3) Xn =
∑
i∈Z

an−iεi, n ∈ Z,

where (εi, i ∈ Z) is an i.i.d. sequence of innovations with Eε0 = 0, Eε20 < ∞, and∑
i∈Z
|ai| < ∞. There exists an extensive literature on limit theorems for functionals

of linear sequences (one- or two-sided, with summable or non-summable weights, with
Gaussian or generally distributed innovations; see, e.g., Giraitis (1985), Giraitis and Sur-
gailis (1989), Ho and Hsing (1997), and references therein). In their recent paper, Cheng
and Ho (2005) considered a CLT for a wide class of non-linear continuous functionals in
the above setting (3). Their theorem was then used to derive an analogous result for some
discontinuous K’s (e.g., for indicator functions). The authors used the �-approximation
method proposed by Ho and Hsing (1997) for one-sided linear sequences. We use a more
direct approach, which allows (at the expense of some additional requirements on the
response function g) to extend the class of admissible continuous functionals further and
to weaken the moment assumptions.

2. Main results

First we recall the definition of Lipschitzian function. We give it in a slightly unusual
form to make the further definitions more natural.

Definition 0. A continuous function K : R → R is called (globally) Lipschitzian if
there is L > 0 such that

(4)
(
K(x1 + x2)−K(x1)

)2 ≤ L · x2
2

for each (x1, x2) ∈ R
2.

Now, in a similar manner, we introduce the classes of stochastically Lipschitzian and
stochastically locally Lipschitzian functions, which play an important role in what follows.
Let L2(Ω,R2) as usual denote the space of all two-dimensional random vectors �ξ = (ξ1, ξ2)
on the given probability space with Eξ2i <∞, i = 1, 2.

Definition 1. Let M⊂ L2(Ω,R2). We shall say that a continuous function K : R→
R is stochastically Lipschitzian w.r.t. M if there is L > 0 such that

(5) E
(
K(ξ1 + ξ2)−K(ξ1)

)2 ≤ L ·Eξ22
for each �ξ ∈M.

Definition 2. Let M⊂ L2(Ω,R2). We shall say that a continuous function K : R→
R is stochastically locally Lipschitzian w.r.t. M if there are ε > 0, L > 0 such that

(6) E
(
(K(ξ1 + ξ2)−K(ξ1)) · �{|ξ2|≤ε}

)2 ≤ L · Eξ22
for each �ξ ∈M. Here �A denotes the indicator function of the event A.

We shall write K ∈ SL(M) or K ∈ SLL(M) if the function K is stochastically
Lipschitzian or stochastically locally Lipschitzian w.r.t. M, respectively.

Let B(R) as usual denote the Borel σ-algebra on R.

Definition 3. Let θ be a shot noise process as in (1), and

Mθ =
{
�ξ ∈ L2(Ω,R2) : ξi =

∫
Ai

g(−s) dζ(s), i = 1, 2;A1, A2 ∈ B(R), A1 ∩A2 = ∅
}
.



LIMIT THEOREMS FOR FUNCTIONALS OF SHOT NOISE PROCESSES 27

We shall say that a function K : R → R is stochastically Lipschitzian or stochastically
locally Lipschitzian w.r.t. the shot noise process θ (and write K ∈ SLθ or K ∈ SLLθ )
if K ∈ SL(Mθ) or K ∈ SLL(Mθ), respectively.

Remark 1. Note that �ξ ∈Mθ implies that ξ1 and ξ2 are independent.

It should be noted that the condition K ∈ SLθ may be regarded as a particular case of
the more general condition (7) in Cheng and Ho (2005). Theorem 3 below shows that the
condition K ∈ SLθ alone ensures the central limit theorem for a wide range of response
functions g.

It is clear from (5) that the class SLθ is closed under linear combinations and includes
all Lipschitzian (in the usual sense) functions on R. The next statements show that SLθ
may actually include a lot of non-Lipschitzian functions.

Theorem 1. Suppose that g ∈ L2(R) ∩ L∞(R). Let m be a positive integer, Ki,
i = 1, . . . ,m, be Lipschitzian (in the usual sense) functions on R, K =

∏m
i=1Ki, and

Π2m <∞. Then K ∈ SLθ.
Theorem 2. Let the following conditions hold:

i) g ∈ L2(R) ∩ L∞(R);
ii) the m-th derivative K(m) exists on R and is Lipschitzian (in the usual sense) for

some non-negative integer m;

iii) supA∈B(R) E
(
K(i)

(∫
A g(−s) dζ(s)

))2

<∞ for all i = 1, . . . ,m;

iv) Π2m+2 <∞.

Then K ∈ SLθ.
Remark 2. Condition ii) is clearly satisfied if K(m+1) exists and is bounded on R.

Example 1. Let g ∈ L2(R) ∩ L∞(R). Consider a generalized polynomial P =
(P (x), x ∈ R) of the following form:

(7) P (x) = b0 +
n∑
i=1

b+i x
αi�[0,∞)(x) +

n∑
i=1

b−i (−x)αi�(−∞,0)(x),

with n ∈ N, b0, b+i , b
−
i ∈ R, αi ∈ [1,m], i = 1, . . . , n, and m ∈ N. Suppose also that

Π2m <∞. Then P ∈ SLθ.
Indeed, the term f+

α (x) = xα�[0,∞)(x), x ∈ R, α ∈ [1,m], may be written as follows:

f+
α (x) =

(
xα�[1,∞)(x) + �(−∞,1)(x)

)
+
(
xα�[0,1)(x)− �(−∞,1)(x)

)
=
(
x�[1,∞)(x) + �(−∞,1)(x)

)
α�(
x{α}�[1,∞)(x) + �(−∞,1)(x)

)
+
(
xα�[0,1)(x) − �(−∞,1)(x)

)
= p


α�
1 (x)p{α}(x) + qα(x), x ∈ R,

where �·� and {·} stand for the floor function and the fractional part of α, respectively,
pβ(x) = xβ�[1,∞)(x)+�(−∞,1)(x), x ∈ R, β ∈ [0, 1], and qβ(x) = xβ�[0,1)(x)−�(−∞,1)(x),
x ∈ R, β ∈ [1,∞). It is straightforward to check that the functions pβ and qβ are
Lipschitzian on R in the usual sense for the above values of β. Hence, by Theorem
1, f+

α ∈ SLθ. The functions f−
α (x) = (−x)α�(−∞,0)(x), x ∈ R, α ∈ [1,m], may be

considered in a similar way. Since SLθ is closed under linear combinations, the result
follows.

The notion of stochastic local Lipschitzianity can be made clear by the following general
example.



28 ANDRII B. ILIENKO AND JOSEF G. STEINEBACH

Example 2. Let K be a differentiable function on R, and

Qε(x) = sup
|δ|≤ε

|K ′(x + δ)|, x ∈ R,(8)

L = sup
A∈B(R)

EQ2
ε

(∫
A

g(−s) dζ(s)
)
<∞ for some ε > 0.(9)

In the notations of Definition 3, by the mean value theorem,

E
(
(K(ξ1 + ξ2)−K(ξ1)) · �{|ξ2|≤ε}

)2 ≤ E(Q2
ε(ξ1) · ξ22) ≤ L · Eξ22 ,

i.e. K ∈ SLLθ. Here we used the independence of ξ1 and ξ2.

We may now weaken the assumptions on the response function g in Example 1.

Example 3. Consider again the generalized polynomial P given by (7). Let all
assumptions of Example 1 hold except g ∈ L∞(R). We suppose instead that g ∈ L2(R)∩
L2m(R). Then P ∈ SLLθ.

Indeed, as in Example 1, it is sufficient to consider only the function f+
α (x) =

xα�[0,∞)(x), x ∈ R, α ∈ [1,m]. The function f+
1 is Lipschitzian on R, so f+

1 ∈ SLLθ.
If α > 1, then f+

α is differentiable on R. Moreover, Q2
1(x) = α2(x + 1)2α−2

�[−1,∞)(x) ≤
m2(x + 1)2m−2, x ∈ R, where Qε is defined by (8) with f+

α in place of K. Hence, (9)
follows from Lemma 3 below with K(x) = x + 1, x ∈ R. Thus P ∈ SLLθ in view of
Example 2.

Next we state two central limit theorems for K ∈ SLθ and K ∈ SLLθ.
Theorem 3. Let θ be a shot noise process as in (1), and K ∈ SLθ. Suppose that the

following conditions hold:

i)
∫∞
0

(∫∞
s
g2(t) dt

)1/2
ds <∞;

ii)
∫ 0

−∞
(∫ s

−∞ g2(t) dt
)1/2

ds <∞.

Then

(10) T−1/2
(
ΘK(T )− T ·EK(θ(0))

) d−−−−→
T→∞

N (0, σ2),

with

(11) σ2 = lim
T→∞

T−1 Var(ΘK(T )) <∞,

where d−→ denotes convergence in distribution.

Remark 3. Note that conditions i) and ii) hold if

(12) g(s) = o(|s|− 3
2−δ), s→ ±∞, for some δ > 0.

Theorem 4. Let θ be a shot noise process as in (1), and K ∈ SLLθ. Suppose that
condition (12) holds, and

i) Π4 <∞;
ii) supA∈B(R) EK

8/3
(∫
A
g(−s) dζ(s)) <∞.

Then (10) and (11) follow.
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3. Notations and preliminary lemmas

In this section, we introduce some notations and prove a few auxiliary results. Together
with the process θ, let us consider, for A ∈ B(R), the processes θA =

(∫
R
g(t−s)�(−A)(t−

s) dζ(s), t ∈ R
)
. In particular, for Δ(a) = [−a, a], a > 0, we have

(13) θΔ(a)(t) =
∫ t+a

t−a
g(t− s) dζ(s), t ∈ R.

Note that, in the notations of Definition 3,

(14) θAi(0) =
∫
Ai

g(−s) dζ(s) = ξi, i = 1, 2.

Further, let κl = κl(θ(·)) denote the l-th semi-invariant of θ(·), which does not depend on
the time parameter by virtue of the strict stationarity. Analogously, put κA,l = κl(θA(·)).
Finally, we introduce the standard norms in Lp(R), p ∈ [1,∞), and in L∞(R) by setting
‖g‖p = (

∫
R
|g(s)|p ds)1/p, ‖g‖∞ = ess sups∈R |g(s)|.

Lemma 1. Assume that Π1,Π2k <∞ and g ∈ L2(R)∩L2k(R) for some k ≥ 1. Then
the semi-invariants κl exist for all l = 2, . . . , 2k, and κl = (Πl + δl,2σ

2)‖g‖ll for these l,
where δij denotes Kronecker’s delta.

Proof. It is an immediate consequence of Lemma 2.2 in Buldygin and Kozachenko
(2000), p.152. �

Lemma 2. Assume that Π1,Π2k <∞ for some k ≥ 1, and g ∈ L2(R)∩L∞(R). Then
there is a positive constant Dk such that Eθ2kA (·) ≤ DkEθ2A(·) for each A ∈ B(R).

Proof. It is straightforward from Lemma 1, applied to the process θA, that

|κl,A| ≤ (Πl + δl,2σ
2)‖g‖ll ≤

Πl + δl,2σ
2

Π2 + σ2
· ‖g‖l−2

∞ κ2,A, l = 2, . . . , 2k.

Hence, by the Leonov-Shiryaev formula (see, e.g., Shiryaev (1995), p. 290, Theorem 6),

(15) Eθ2kA (·) =
∑

l1+···+lq=2k

1
q!

(2k)!
l1! · . . . · lq!

q∏
p=1

κlp,A ≤ P (κ2,A),

where P is a polynomial of degree k with zero constant term and non-negative coefficients,
which do not depend on A. (Here we used that κ1,A = EθA(·) = 0.) By Lemma 1, we
have for m = 1, . . . , k, A ∈ B(R):

(16) κm2,A ≤ (Π2 + σ2)m−1‖g‖2m−2
2 κ2,A = (Π2 + σ2)m−1‖g‖2m−2

2 Eθ2A(·).
A combination of (15) and (16) completes the proof. �

Lemma 3. Assume Π1,Π2k <∞ for some k ≥ 1, together with g ∈ L2(R) ∩ L2k(R).
Let K be Lipschitzian (in the usual sense). Then Sk = supA∈B(R) EK

2k(θA(·)) <∞.

Proof. Let L be the Lipschitz constant of K. Then

(17) EK2k(θA(0)) ≤ 22k−1E
(
K(θA(0))−K(0)

)2k + 22k−1K2k(0) ≤
22k−1Lk Eθ2kA (0) + 22k−1K2k(0).

Lemma 1 (applied to θA) and the Leonov-Shiryaev formula show that the semi-invariants
κA,l, l = 2, . . . , 2k, and the moments Eθ2kA (·) are uniformly bounded in A. Thus, in view
of (17), the proof is complete. �

Remark 4. Clearly, (0, θA(0))T =
(
0,
∫
A g(−s) dζ(s)

)T ∈ Mθ. Therefore, the proof
(and the Lemma) remains true if K is only stochastically Lipschitzian w.r.t. θ and k = 1.
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Lemma 4. Let θ be a shot noise process as in (1), and K : R → R be a Borel
function. Then the process K(θ) is strictly stationary. If, in addition, K is continuous
and EK2(θ(·)) <∞, then K(θ) is mean-square continuous.

Proof. The strict stationarity of K(θ) follows from that of θ. The mean-square
continuity is a consequence of the following implications:

(18) θ(t)
L2(Ω)−−−−→
t→t0

θ(t0) =⇒ θ(t) Pr.−−−→
t→t0

θ(t0) =⇒

K(θ(t)) Pr.−−−→
t→t0

K(θ(t0)) =⇒ K(θ(t))
L2(Ω)−−−−→
t→t0

K(θ(t0)),

where
L2(Ω)−−−−→ and Pr.−−→ denote convergence in mean square and in probability, respectively.

The first implication in (18) is clear, the second one follows from the continuity of K
(see, e.g., Kallenberg (2002), p. 64, Lemma 4.3), and the third one is a consequence of
the uniform integrability of K2(θ), which in turn follows from the strict stationarity of
K(θ). �

The second assertion of Lemma 4 shows that the integrals in (2) are well-defined as
mean-square Riemann ones.

Lemma 5. Let the conditions of Theorem 3 or Theorem 4 hold. Then

i) P1(a) = a ·E(K(θ(0))−K(θΔ(a)(0))
)2 → 0 as a→∞;

ii) P2(a) =
∫∞
2a

E
∣∣K(θ(0))−K(θΔ(τ/2)(0))

∣∣ dτ <∞ for a > 0 (and thus
lima→∞ P2(a) = 0);

iii) P3(a) =
∫∞
2a E

∣∣K(θΔ(τ/2)(0)) − K(θΔ(a)(0))
∣∣∣∣K(θ(τ)) − K(θΔ(τ/2)(τ))

∣∣ dτ < ∞
for a > 0, and lima→∞ P3(a) = 0.

Proof. We only prove the first assertion, the other ones can be proved in a similar
way. Under the conditions of Theorem 3, by (5) and Lemma 1 applied to the process
θ − θΔ(a),

P1(a) ≤ aLE
(
θ(0)− θΔ(a)(0)

)2 = aL(Π2 + σ2)
∫

ΔC(a)

g2(s) ds,

where ΔC(a) denotes the complement to Δ(a). Hence, the assertion follows from condi-
tions i) and ii) of Theorem 3. At the same time, under the conditions of Theorem 4, we
have by (6)

P1(a) = aE
(
K(θ(0))−K(θΔ(a)(0)) · �{|θ(0)−θΔ(a)(0)|≤ε}

)2
+ aE

(
K(θ(0))−K(θΔ(a)(0)) · �{|θ(0)−θΔ(a)(0)|>ε}

)2
≤ aLE(θ(0)− θΔ(a)(0))2

+ aE
((
K(θ(0))−K(θΔ(a)(0))

)2
�{|θ(0)−θΔ(a)(0)|>ε}

)
= U1(a) + U2(a).

As above, lima→∞ U1(a) = 0. By Hölder’s inequality applied to U2(a), we get

U2(a) ≤
(
E
(
K(θ(0))−K(θΔ(a)(0))

)8/3)3/4 · a(P{|θ(0)− θΔ(a)(0)| > ε})1/4.
By condition ii) of Theorem 4, the first factor is bounded in a. The second one can be
estimated by the Chebyshev inequality and the Leonov-Shiryaev formula:

a
(
P{|θ(0)− θΔ(a)(0)| > ε})1/4 ≤ aε−1

(
E(θ(0)− θΔ(a)(0))4

)1/4
≤ aε−1

(
κ4(θ(0)− θΔ(a)(0)) + 3κ2

2(θ(0)− θΔ(a)(0))
)1/4

.
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Now, by Lemma 1 applied to the process θ − θΔ(a), we have

a
(
P{|θ(0)− θΔ(a)(0)| > ε})1/4

≤aε−1
(
Π4

∫
ΔC(a)

g4(s) ds+ 3(Π2 + σ2)2
(∫

ΔC(a)

g2(s) ds
)2)1/4

.

Thus, condition (12) of Theorem 4 yields the first assertion. �

4. Proofs of the main results

In this section, we give the proofs of Theorems 1, 2, 3 and 4.
Proof of Theorem 1. Let Dk, Li and Sik, i, k = 1, . . . , n, denote the constants from

Lemma 2, the Lipschitz constants of the functions Ki, and the constants from Lemma 3
for the functions Ki, respectively. Set D̄ = maxk=1,...,nDk, L̄ = max{1, L1, . . . , Ln} and
S̄ = maxi,k=1,...,n Sik.

Let Nn denote the set of all proper subsets of {1, . . . , n}, i.e. Nn =
{
N ⊂ {1, . . . , n} :

N �= {1, . . . , n}}, and �ξ = (ξ1, ξ2)T ∈Mθ. It can easily be seen that
n∏
i=1

Ki(ξ1 + ξ2)−
n∏
i=1

Ki(ξ1) =
∑
N∈Nn

∏
i∈N

Ki(ξ1)
∏
i/∈N

(Ki(ξ1 + ξ2)−Ki(ξ1)).

Hence, by the Lipschitzianity of Ki,

E
( n∏
i=1

Ki(ξ1 + ξ2)−
n∏
i=1

Ki(ξ1)
)2

≤ (2n − 1)
∑
N∈Nn

E
(∏
i∈N

K2
i (ξ1)

∏
i/∈N

(Ki(ξ1 + ξ2)−Ki(ξ1))2
)

≤ (2n − 1)
∑
N∈Nn

(∏
i/∈N

L2
i

)
E
(∏
i∈N

K2
i (ξ1)

)
E
(∏
i/∈N

ξ22

)
.

Let cardN denote the cardinality of the set N . By the inequality∏
i∈N

K2
i (ξ1) ≤ (cardN)−1

∑
i∈N

K2 cardN
i (ξ1),

we have

E
( n∏
i=1

Ki(ξ1 + ξ2)−
n∏
i=1

Ki(ξ1)
)2

≤ (2n − 1)
∑
N∈Nn

(cardN)−1L̄2n−2 cardN
(∑
i∈N

EK2 cardN
i (ξ1)

)
Eξ2n−2 cardN

2 .

Thus, by (14), Lemma 2 and Lemma 3, we finally obtain

E
( n∏
i=1

Ki(ξ1 + ξ2)−
n∏
i=1

Ki(ξ1)
)2

≤ (2n − 1)
∑
N∈Nn

L̄2nS̄D̄Eξ22 = (2n − 1)2L̄2nS̄D̄Eξ22 ,

which completes the proof. �
Proof of Theorem 2. By Taylor’s formula,

K(ξ1 + ξ2)−K(ξ1) =
m∑
i=1

K(i)(ξ1)
i!

ξi2 +
(K(m)(η) −K(m)(ξ1)

m!
ξm2

)
,

where |η − ξ1| ≤ |ξ2|. Hence, denoting by L the Lipschitz constant of K, we have

E
(
K(ξ1 + ξ2)−K(ξ1)

)2 ≤ (m+ 1)
m∑
i=1

E(K(i)(ξ1))2

(i!)2
Eξ2i2 +

L(m+ 1)
(m!)2

Eξ2m+2
2 .
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Thus, by (14) and Lemma 2,

E
(
K(ξ1 + ξ2)−K(ξ1)

)2 ≤ (m+ 1)
( m∑
i=1

DiE(K(i)(ξ1))2

(i!)2
+
LDm+1

(m!)2
)
Eξ22 .

Condition iii) of the Theorem shows that the coefficient of Eξ22 on the right-hand side is
bounded in �ξ ∈M (or — equivalently — in A ∈ B(R)). So, K ∈ SLθ. �

Proof of Theorems 3, 4. Let m = EK(θ(·)), ma = EK(θΔ(a)(·)). The random
variable on the left-hand side of (10) is equal to

T−1/2(ΘK(T )− Tm) = T−1/2

∫ T

0

(K(θΔ(a)(t))−ma) dt

+T−1/2

∫ T

0

(K(θ(t)) −K(θΔ(a)(t))−m+ma) dt = I1(a, T ) + I2(a, T ).

(19)

Let �·� and �·� denote the floor and ceiling function, respectively. The first summand
may be further rewritten as follows:

I1(a, T ) =T−1/2


T�∑
k=1

∫ k

k−1

(K(θΔ(a)(t))−ma) dt+ T−1/2

∫ T


T�
(K(θΔ(a)(t))−ma) dt

=T−1/2


T�∑
k=1

Jk(a) + T−1/2J(a, T ).

Denote by F(t1,t2] the σ-algebra generated by {ζ(t), t1 < t ≤ t2}. By (13), it is easily seen
that θΔa(t) are F(t−a,t+a]-measurable, and so Jk(a) are F(k−1−a,k+a]-measurable. Hence,
(Jk(a), k ∈ N) is a �2a + 1�-dependent strictly stationary random sequence. Moreover,
EJ2(a, T ) is bounded in T ∈ (0,∞). Thus, by Diananda (1953), I1(a, T ) d−→ N (0, σ2

a) as
T →∞ with σ2

a = limT→∞ T−1 Var
∫ T
0
K(θΔ(a)(t)) dt.

So, in order to prove Theorems 3 and 4 it is enough to show that

(20) lim
a→∞ lim sup

T→∞
EI2

2 (a, T ) = 0.

Let Ca = (Ca(τ), τ ∈ R) be the correlation function of the centered stationary process
K(θ)−K(θΔ(a))−m+ma, i.e.

Ca(τ) = E
(
K(θ(0))−K(θΔ(a)(0))−m+ma

)(
K(θ(τ)) −K(θΔ(a)(τ)) −m+ma

)
.

For T > 2a, the term EI2
2 (a, T ) may be written in the following form:

EI2
2 (a, T ) = T−1

∫ T

0

∫ T

0

Ca(t− s) ds dt = 2T−1

∫ T

0

∫ T

s

Ca(t− s) ds dt

= 2T−1

∫ T−2a

0

∫ 2a

0

Ca(τ) ds dτ + 2T−1

∫ T−2a

0

∫ T−s

2a

Ca(τ) ds dτ

+ 2T−1

∫ T

T−2a

∫ T−s

0

Ca(τ) ds dτ = R1(a, T ) +R2(a, T ) +R3(a, T ).

Clearly, |R1(a, T )| ≤ 4aCa(0) ≤ 4aE
(
K(θ(0))−K(θΔ(a)(0))

)2.
Hence, lima→∞ lim supT→∞R1(a, T ) = 0 by the first assertion of Lemma 5. It is

also easy to see that |R3(a, T )| ≤ 8a2T−1Ca(0) −−−−→
T→∞

0. Moreover, |R2(a, T )| =

2T−1
∣∣∫ T

2a
(T − τ)Ca(τ) dτ

∣∣ ≤ 2
∫ T
2a
|Ca(τ)| dτ . Hence, in order to prove (20) we only

need to show that Ca ∈ L1(R+), and

(21) lim
a→∞

∫ ∞

2a

|Ca(τ)| dτ = 0.



LIMIT THEOREMS FOR FUNCTIONALS OF SHOT NOISE PROCESSES 33

For τ ≥ 2a, we may write Ca(τ) in the following form:

Ca(τ) = E
(
K(θΔ(τ/2)(0))−K(θΔ(a)(0))−mτ/2 +ma

)(
K(θΔ(τ/2)(τ)) −K(θΔ(a)(τ)) −mτ/2 +ma

)
+E
(
K(θΔ(τ/2)(0))−K(θΔ(a)(0))−mτ/2 +ma

)(
K(θ(τ)) −K(θΔ(τ/2)(τ)) −m+mτ/2

)
+E
(
K(θ(0))−K(θΔ(τ/2)(0))−m+mτ/2

)(
K(θΔ(τ/2)(τ)) −K(θΔ(a)(τ)) −mτ/2 +ma

)
+E
(
K(θ(0))−K(θΔ(τ/2)(0))−m+mτ/2

)(
K(θ(τ)) −K(θΔ(τ/2)(τ)) −m+mτ/2

)
= V1(a, τ) + V2(a, τ) + V3(a, τ) + V4(τ).

Consider Vi, i = 1, . . . , 4, in more detail. The two factors in V1 are easily seen to be
centered and measurable w.r.t. the σ-algebras F(−τ/2, τ/2] and F(τ/2, 3τ/2], respectively.
So, they are independent, and V1(a, τ) = 0 for all a > 0 and τ ≥ 2a.

Now we prove that

(22) lim
a→∞

∫ ∞

2a

|V2(a, τ)| dτ = 0.

Clearly,

|V2(a, τ)| ≤ E
∣∣K(θΔ(τ/2)(0))−K(θΔ(a)(0))

∣∣ ·E∣∣K(θ(τ)) −K(θΔ(τ/2)(τ))
∣∣

+E
∣∣K(θΔ(τ/2)(0))−K(θΔ(a)(0))

∣∣∣∣K(θ(τ)) −K(θΔ(τ/2)(τ))
∣∣ = V ′

2(a, τ) + V ′′
2 (a, τ).

Under the conditions of Theorem 3 (Theorem 4), the first factor in V ′
2 (a, τ) is uniformly

bounded in τ ≥ 2a by the Lyapunov inequality and Remark 4 (respectively condition ii)
of Theorem 4). Hence, (22) holds with V ′

2 (a, τ) and V ′′
2 (a, τ) in place of V2(a, τ) in view

of assertions ii) and iii) of Lemma 5, respectively.
The terms V3(a, τ) and V4(τ) can be treated in a similar way. This proves (21), which

completes the proof of Theorems 3 and 4. �
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