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B. I. KOPYTKO AND R. V. SHEVCHUK

ON PASTING TOGETHER TWO INHOMOGENEOUS DIFFUSION
PROCESSES ON A LINE WITH THE GENERAL

FELLER–WENTZELL CONJUGATION CONDITION

By the method of classical potential theory, we obtain an integral representation for
the two-parameter semigroup of operators that describes the inhomogeneous Feller
process on a line being a result of pasting together two diffusion processes with the
general Feller–Wentzell conjugation condition.

1. Introduction

Let Di = {x ∈ R : (−1)ix > 0}, i = 1, 2, be the two domains on the line R with the
common boundary S = {0} and the closures Di = Di

⋃{0}, and let T > 0 be fixed. If
Γ is Di or R, then we denote by Cb(Γ) the Banach space of all real-valued bounded and
continuous on Γ functions ϕ with the norm

‖ϕ‖ = sup
x∈Γ
|ϕ(x)|,

and by C2(Γ) the set of all functions ϕ that are bounded and uniformly continuous on Γ
together with their first- and second-order derivatives. Let ϕi be the restriction of any
function ϕ ∈ Cb(R) to Di.

Assume that an inhomogeneous diffusion process is given in Di, i = 1, 2, and it is
generated by a second-order differential operator A(i)

s , s ∈ [0, T ], that acts on C2(Di):

A(i)
s ϕi(x) =

1
2
bi(s, x)

d2ϕi(x)
dx2

+ ai(s, x)
dϕi(x)
dx

, i = 1, 2,(1)

where bi(s, x) and ai(s, x) are real-valued continuous bounded functions in the domain
(s, x) ∈ [0, T ]×Di, and bi(s, x) ≥ 0.

We denote by C2,0(R) the subset of Cb(R) consisting of all functions ϕ(x) such that
ϕi ∈ C2(Di) for i = 1, 2, A(1)

s ϕ1(0) = A
(2)
s ϕ2(0), and define the operator As, acting on

C2,0(R) as follows:

Asϕ(x) = A(i)
s ϕi(x), x ∈ Di, i = 1, 2.(2)

Assume also that the conjugation operator of Feller-Wentzell’s type is given which acts
on the function ϕ ∈ C2,0(R) by the formula

Lsϕ(0) = r(s)Asϕ(0) + q1(s)ϕ′(0−)− q2(s)ϕ′(0+) + γ(s)ϕ(0)+

+
∫
D1∪D2

[ϕ(0)− ϕ(y)]μ(s, dy) = 0, s ∈ [0, T ],(3)

where the coefficients r, q1, q2, γ and the measure μ satisfy the following conditions:
1.1. The functions r(s), q1(s), q2(s), γ(s) are nonnegative and continuous on [0, T ].
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1.2. For a fixed s, μ(s, ·) is a nonnegative measure on D1∪D2 such that for any δ > 0
and for all functions f ∈ Cb(R) the integrals

F
(i)
f (s) =

∫
Di,δ

yf(y)μ(s, dy), G
(i)
f (s) =

∫
Di\Di,δ

f(y)μ(s, dy)

are continuous on [0, T ] as functions of s, where Di,δ = {x ∈ Di : |x| < δ},
i = 1, 2.

1.3. r(s) + q1(s) + q2(s) + γ(s) + μ(s,D1 ∪D2) > 0 for all s ∈ [0, T ].

It is known (see [1]) that the operator Ls determines the most general condition of
conjugation, which is of the form

Lsϕ(0) = 0, s ∈ [0, T ],(4)

and which restricts the differential operator As in (2) to an infinitesimal generator of
a Feller semigroup in the space of bounded continuous functions. Thus, the condition
(4) is the general Feller-Wentzell conjugation condition by which one can describe all
the possible types of behavior of a diffusing particle at the time when it reaches the
point zero. These types of behavior are as follows: the sticking (viscosity) (r > 0, q1 ≡
q2 ≡ γ ≡ μ ≡ 0), the partial reflection (q1 + q2 > 0, r ≡ γ ≡ μ ≡ 0), the absorption
(γ > 0, r ≡ q1 ≡ q2 ≡ μ ≡ 0), the jump (μ > 0, r ≡ q1 ≡ q2 ≡ γ ≡ 0) as well as their
combinations (the linear combinations of the corresponding boundary conditions).

Note that the result obtained in the paper [1] concerns the special case, where the
diffusion processes given in the domains Di, i = 1, 2, are homogeneous, i.e., the diffusion
coefficients bi(s, x) and ai(s, x), i = 1, 2, in (1) as well as the coefficients r, q1, q2, γ
and the measure μ in (3) do not depend on the variable s. However, the scheme of
establishing of the conjugation condition of the form (4) introduced there, extends with
obvious changes to an inhomogeneous case. Recall that the question about the most
general boundary condition restricting an elliptic second-order differential operator with
the coefficients defined in a bounded domain in Rn to an infinitesimal generator of a
one-parameter Feller semigroup, has been studied for the first time in one-dimensional
case and it has been completely solved in works of W. Feller ([2]) and A.D. Wentzell ([3]).
Besides, in [3], by the methods of functional analysis the assertion on the existence of the
operator semigroup corresponding to the given boundary conditions has been proved.
Such assertions will be established in the present paper.

Thus, our problem is to clarify the question about the existence of a two-parameter
semigroup of operators Tst, 0 ≤ s < t ≤ T, describing the sufficiently general classes
of the inhomogeneous Feller processes in R such that in the domains D1 and D2 they
coincide with the given diffusion processes generated by the operators A(1)

s and A
(2)
s ,

respectively, and their behavior at the point zero is determined by the corresponding
to these classes versions of the general Feller-Wentzell conjugation condition (4). This
problem is also often called a problem of pasting together two diffusion processes on a line
or a problem of constructing of the mathematical model for the diffusion phenomenon
on a line with a membrane located at a fixed point that separates different (by their
diffusion characteristics) mediums (see [4], [5]).

The investigation of the problem formulated above is performed by the analytical
methods. Such an approach (see [4]-[8]) allows to determine the required operator family
by means of the solution of the corresponding problem of conjugation for a linear par-
abolic equation of the second order with variable coefficients, discontinuous at the zero
point. This problem is to find out a function u(s, x, t) = Tstϕ(x) satisfying the following
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conditions:
∂u(s, x, t)

∂s
+A(i)

s u(s, x, t) = 0, 0 ≤ s < t ≤ T, x ∈ Di, i = 1, 2,(5)

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ R,(6)

u(s, 0−, t) = u(s, 0+, t), 0 ≤ s < t ≤ T,(7)

Lsu(s, 0, t) = 0, 0 ≤ s < t ≤ T,(8)

where ϕ ∈ Cb(R) is a given function. As we see, the condition (7) in the problem (5)-
(8) is the consequence of the Feller property of the required semigroup Tst, and the
equality (8) corresponds to the general Feller-Wentzell conjugation condition (3), (4). In
comparison with classical cases, the peculiarity of the conjugation condition (8) is that
it is nonlocal, furthermore, the measure μ in the integral term of (3) can be infinite.
From this point of view the parabolic problem of conjugation (5)-(8) formulated in such
a manner is considered presumably for the first time. In addition, as far as the condition
(8) is concerned, the only two cases are studied. In the first case the coefficients of the
operator Ls are assumed to satisfy the conditions 1.1, 1.2 and 3.1, and in the second one
they are assumed to satisfy the conditions 1.1, 1.2 and 4.1, 4.2. One more case, when
the condition 1.3 holds while r(s) = q1(s) = q2(s) ≡ 0, s ∈ [0, T ], will be considered
separately and published in another paper.

A classical solvability of the problem (5)-(8) is established by the boundary integral
equations method with the use of the ordinary parabolic simple-layer potentials that
are constructed using the fundamental solutions of the uniformly parabolic operators.
Application of this method permits us not only to prove the existence of the solution of the
problem (5)-(8), but also to obtain its integral representation. The integral representation
of the semigroup Tst, will be used in the present paper to construct the required processes
and to establish some of their important additional properties. It is necessary to observe
that we derived a nontrivial generalization of the corresponding results obtained earlier
in [7], [8], where a similar problem was analyzed for the case of homogeneous diffusion
processes. Furthermore, the condition of conjugation (4) considered there, had no term
corresponding to the termination of the process at zero. We should also mention the
works [9]-[11], where the problem of constructing of mathematical models for diffusion
processes in mediums with membranes was studied by the methods of stochastic analysis.

2. Auxiliary propositions

Consider the Kolmogorov backward equations (5) (i = 1, 2). Assume that their coef-
ficients ai(s, x) and bi(s, x) are defined on [0, T ]×R and satisfy the following conditions:

2.1. There exist the constants b and B such that 0 < b ≤ bi(s, x) ≤ B for all (s, x) ∈
[0, T ]× R.

2.2. The functions ai(s, x) are bounded on [0, T ]× R.
2.3. For all s, s′ ∈ [0, T ], x, x′ ∈ R the next inequalities hold:

|bi(s, x)− bi(s′, x′)| ≤ c
(|s− s′|α2 + |x− x′|α) ,

|ai(s, x)− ai(s′, x′)| ≤ c
(|s− s′|α2 + |x− x′|α) ,

where c and α are the positive constants, 0 < α < 1.
From the conditions 2.1-2.3 it follows the existence of the fundamental solutions of

equations (5) in the domain [0, T ] × R, i.e., the existence of the functions Gi(s, x, t, y)
defined for 0 ≤ s < t ≤ T, x, y ∈ R such that:

a) they are continuous in the aggregate of the variables;
b) for fixed t ∈ (0, T ], y ∈ R they satisfy equations (5);
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c) for any function ϕ(x), bounded continuous on R and for any t ∈ (0, T ], x ∈ R

lim
s↑t

∫
R

Gi(s, x, t, y)ϕ(y)dy = ϕ(x).

Furthermore, in the domain 0 ≤ s < t ≤ T, x, y ∈ R the following estimations for
permissible derivatives of the functions Gi(s, x, t, y) hold:

|Dr
sD

p
xGi(s, x, t, y)| ≤ c(t− s)− 1+2r+p

2 exp
{
−h (y − x)2

t− s
}
,(9)

where r and p are the nonnegative integers such that 2r + p ≤ 2; Dr
s is the partial

derivative with respect to s of order r; Dp
x is the partial derivative with respect to x

of order p; c, h are positive constants1. Recall also that Gi(s, x, t, y), i = 1, 2, are
represented as

Gi(s, x, t, y) = Zi0(s, y − x, t, y) + Zi1(s, x, t, y),(10)

where

Zi0(s, x, t, y) = [2πbi(t, y)(t− s)]−
1
2 exp

{
− x2

2bi(t, y)(t− s)
}
,(11)

and the functions Zi1(s, x, t, y) satisfy the inequalities

|Dr
sD

p
xZi1(s, x, t, y)| ≤ c(t− s)− 1+2r+p−α

2 exp
{
−h (y − x)2

t− s
}
,(12)

where 0 ≤ s < t ≤ T, x, y ∈ R, 2r + p ≤ 2, α is the constant from 2.3.
We mention the following relations ([4, p. 53]), valid for 0 ≤ s < t ≤ T, i = 1, 2:∫

R

(y − x)Gi(s, x, t, y)dy =
∫ t

s

dτ

∫
R

Gi(s, x, τ, z)ai(τ, z)dz,(13) ∫
R

(y − x)2Gi(s, x, t, y)dy =
∫ t

s

dτ

∫
R

Gi(s, x, τ, z)bi(τ, z)dz+

+ 2
∫ t

s

dτ

∫
R

Gi(s, x, τ, z)ai(τ, z)(z − x)dz.(14)

Given the fundamental solution Gi, we can determine a parabolic potentials that will
be used to solve the problem (5)-(8): the Poisson potential

ui0(s, x, t) =
∫

R

Gi(s, x, t, y)ϕ(y)dy, 0 ≤ s < t ≤ T, x ∈ R,

and the simple-layer potential

ui1(s, x, t) =
∫ t

s

Gi(s, x, τ, 0)Vi(τ, t, ϕ)dτ, 0 ≤ s < t ≤ T, x ∈ R,(15)

where ϕ is the function from (6), and Vi(s, t, ϕ), i = 1, 2, are some functions, continuous
in 0 ≤ s ≤ t ≤ T . We mention the following properties of potentials ui0 and ui1 (see,
e.g., [4], [6], [12]):

a) the functions ui0, ui1, i = 1, 2, are continuous in 0 ≤ s < t ≤ T, x ∈ R,
bounded with respect to x, satisfy the equations (5) in the domains (s, x) ∈
[0, t)× R, (s, x) ∈ [0, t)× (D1 ∪D2) respectively, and the initial conditions

lim
s↑t

ui0(s, x, t) = ϕ(x), lim
s↑t

ui1(s, x, t) = 0, x ∈ R;

1We will subsequently denote various positive constants by the same symbol c (or h).
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b) for the potential ui0, i = 1, 2, the following estimations are valid:

|Dr
sD

p
xui0(s, x, t)| ≤ c‖ϕ‖(t− s)− 2r+p

2 ,(16)

where 0 ≤ s < t ≤ T, x, y ∈ R, 2r + p ≤ 2;
c) the potential ui1, i = 1, 2, satisfies the relation

∂ui1(s, 0∓, t)
∂x

= ±Vi(s, t, ϕ)
bi(s, 0)

+
∫ t

s

∂Zi1(s, 0, τ, 0)
∂x

Vi(τ, t, ϕ)dτ,(17)

that is often called the formula on the jump of the conormal derivative of a
simple-layer potential.

Note that the aforementioned properties of the simple-layer potential will be used, obvi-
ously, under somewhat more general assumptions on the functions Vi, i = 1, 2, in (15).

We will also use the next lemma.

Lemma 1. Let Qf (s), s ∈ [0, T ] be a family of linear functionals defined on Cb(R) such
that for all f ∈ Cb(R) the functions Qf (s) are Hölder continuous with the same exponent
β ∈ (0, 1) on a closed interval [0, T ]. Then for every M > 0 there exist a common
constant c > 0 such that for all the functions f ∈ Cb(R), bounded by M and for all
s, s′ ∈ [0, T ] the inequality

|Qf (s)−Qf (s′)| ≤ c|s− s′|β
holds.

Proof. For every f ∈ Cb(R) we consider the Hölder coefficient cf of the functionQf (s), s ∈
[0, T ]. Taking into account the linearity of the functionals Qf(s) it is easy to establish
that cf , as a functional on Cb(Γ), satisfies the following conditions:

a) cf1+f2 ≤ cf1 + cf2 , for all f1, f2 ∈ Cb(Γ);
b) cλf = |λ| · cf , for an arbitrary λ ∈ R.

Hence the functional cf is a seminorm. But this implies the assertion of the lemma. �

3. Processes with reflections, absorption and jumps

In this section we consider the problem (5)-(8) in the case of the coefficients of Ls, s ∈
[0, T ], satisfying the condition

3.1. r(s) = 0, q1(s) + q2(s) > 0 for all s ∈ [0, T ].

Theorem 1. Assume that the coefficients of the operators A(i)
s , i=1,2, as well as the

functions r, q1, q2, γ and the measure μ satisfy conditions 2.1-2.3 and 1.1, 1.2, 3.1.
Then for every function ϕ ∈ Cb(R) the problem (5)-(8) has a unique solution

u(s, x, t) ∈ C1,2([0, t)×D1 ∪D2) ∩ C([0, t]× R).(18)

Furthermore,

|u(s, x, t)| ≤ c‖ϕ‖, 0 ≤ s < t ≤ T,(19)

and this solution is represented as follows

u(s, x, t) = ui0(s, x, t) + ui1(s, x, t), x ∈ Di, 0 ≤ s < t ≤ T,(20)

where a pair of functions (V1, V2) is a solution of some system of Volterra integral
equations of the second kind.

Proof. We find a solution of the problem (5)-(8) of the form (20) with the unknown
functions Vi, i = 1, 2, that will be determined from the conjugation conditions (7), (8).
If we substitute the expression (20) for u(s, x, t) into (7), (8) and use therewith the
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formula on the jump for a simple-layer potential (17), we obtain the following system of
integral equations for Vi

2∑
i=1

∫ t

s

(−1)iGi(s, 0, τ, 0)Vi(τ, t, ϕ)dτ = Υ(s, t, ϕ),

2∑
i=1

(
qi(s)
bi(s, 0)

Vi(s, t, ϕ)−
∫ t

s

Ki(s, τ)Vi(τ, t, ϕ)dτ
)

= Ψ(s, t, ϕ),(21)

where

Υ(s, t, ϕ) = u10(s, 0, t)− u20(s, 0, t)

Ψ(s, t, ϕ) =
2∑
i=1

(
(−1)iqi(s)

∂ui0(s, 0, t)
∂x

− γ(s)
2
ui0(s, 0, t)−

−
∫
Di

[ui0(s, 0, t)− ui0(s, y, t)]μ(s, dy)
)
,

Ki(s, τ) = (−1)iqi(s)
∂Zi1(s, 0, τ, 0)

∂x
− γ(s)

2
Gi(s, 0, τ, 0)−

−
∫
Di

[Gi(s, 0, τ, 0)−Gi(s, y, τ, 0)]μ(s, dy).

The two equations in (21) are the Volterra integral equations of the first and second
kinds, respectively. By the Holmgren’s method, we reduce the first one to an equivalent
Volterra integral equation of the second kind. To this end, we define the operator

E(s, t)Υ =

√
2
π

d

ds

∫ t

s

(ρ− s)− 1
2 Υ(ρ, t, ϕ)dρ, 0 ≤ s < t ≤ T,(22)

and apply it to the both sides of this equation. After some straightforward simplifications,
we obtain

2∑
i=1

∫ t

s

(−1)iK̃i(s, τ)Vi(τ, t, ϕ)dτ + (−1)i−1 Vi(s, t, ϕ)√
bi(s, 0)

= Φ(s, t, ϕ),(23)

where

K̃i(s, τ) =

√
2
π

d

ds

∫ τ

s

(ρ− s)− 1
2Zi1(ρ, 0, τ, 0)dρ =

=
1√
2π

∫ τ

s

(ρ− s)− 3
2 (Zi1(ρ, 0, τ, 0)− Zi1(s, 0, τ, 0))dρ−

√
2
π
Zi1(s, 0, τ, 0)(τ − s)− 1

2 ,

Φ(s, t, ϕ) =
1√
2π

∫ t

s

(ρ− s)− 3
2 (Υ(ρ, t, ϕ)−Υ(s, t, ϕ)) dρ−

√
2
π

Υ(s, t, ϕ)(t− s)− 1
2 .

Next, writing the equation (23) instead of the first equation in (21) we find that the
system (21) can be replaced by an equivalent system of Volterra integral equations of the
second kind:

Vi(s, t, ϕ) =
2∑
j=1

∫ t

s

Kij(s, τ)Vj(τ, t, ϕ)dτ + Ψi(s, t, ϕ), i = 1, 2,(24)
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where

Kij(s, τ) = di(s)

(
Kj(s, τ) + (−1)i+j

q3−i(s)√
b3−i(s, 0)

K̃j(s, τ)

)
,

Ψi(s, t, ϕ) = di(s)

(
Ψ(s, t, ϕ) + (−1)i−1 q3−i(s)√

b3−i(s, 0)
Φ(s, t, ϕ)

)
,

di(s) =
bi(s, 0)

√
b3−i(s, 0)

q1
√
b2(s, 0) + q2

√
b1(s, 0)

.

Let us show that there exists a solution of the system of equations (24) and it can be
obtained by the method of successive approximations

Vi(s, t, ϕ) =
∞∑
k=0

V
(k)
i (s, t, ϕ), 0 ≤ s < t ≤ T, i = 1, 2,(25)

where

V
(0)
i (s, t, ϕ) = Ψi(s, t, ϕ),

V
(k)
i (s, t, ϕ) =

2∑
j=1

∫ t

s

Kij(s, τ)V
(k−1)
j (τ, t, ϕ)dτ, k = 1, 2, . . . .

For this purpose, we have first to estimate the functions Ψi and the kernels Kij in (24).
The estimation for Ψi can be easily established by using the inequalities (16). Con-

sider, for example, the integral (this is the last term of the formula for the function
Ψ):

Ii(s, t, ϕ) =
∫
Di

[ui0(s, 0, t)− ui0(s, y, t)]μ(s, dy) =

=
∫
Di,1

[ui0(s, 0, t)− ui0(s, y, t)]μ(s, dy) +
∫
Di\Di,1

[ui0(s, 0, t)− ui0(s, y, t)]μ(s, dy).

(26)

We denote by Ii1 and Ii2 the first and second terms in the expression (26), respectively. In
order to estimate Ii1, first, we apply the Lagrange formula to the integrand ui0(s, 0, t)−
ui0(s, y, t)

ui0(s, 0, t)− ui0(s, y, t) =
∂ui0(s, x, t)

∂x

∣∣∣∣
x=θy

· y,

where θ is some real number from the interval (0, 1). Then, using the inequality (16)
when r = 0 and p = 1, we find that

|Ii1(s, t, ϕ)| ≤ c‖ϕ‖(t− s)− 1
2 .

It is clear that the same estimation is also valid for the integral Ii2. Estimating all the
rest terms in the expression for Ψi, we conclude that

|Ψi(s, t, ϕ)| ≤ c‖ϕ‖(t− s)− 1
2 .(27)

We proceed to estimate the kernels Kij(s, τ), i = 1, 2, j = 1, 2, in (24). For this
purpose, in the expression for Kj we take the component

Nj,δ(s, τ) =
∫
Dj,δ

[
Zj0(s, 0, τ, 0)− Zj0(s, y, τ, 0)

]
μ(s, dy)(28)

(here δ is an arbitrary positive number) and write Kij in the form

Kij(s, τ) = K
(1)
ij (s, τ) +K

(2)
ij (s, τ), 0 ≤ s < τ < t ≤ T,(29)
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where

K
(1)
ij (s, τ) = di(s)Nj,δ(s, τ),

K
(2)
ij (s, τ) = di(s)

(
(−1)jqj(s)

∂Zj1(s, 0, τ, 0)
∂x

− γ(s)
2
Gj(s, 0, τ, 0)−

∫
Dj,δ

[
Zj1(s, 0, τ, 0)−

− Zj1(s, y, τ, 0)
]
μ(s, dy)−

∫
Dj\Dj,δ

[
Gj(s, 0, τ, 0)−Gj(s, y, τ, 0)

]
μ(s, dy)+

+ (−1)i+j
q3−i(s)√
b3−i(s, 0)

K̃j(s, τ)
)
.

By the inequalities (9), (12), we estimate each of the five terms on the right hand side
of the expression for K(2)

ij . Especially, for the difference Zj1(s, 0, τ, 0)− Zj1(s, y, τ, 0) we
additionally use the finite-increments formula with respect to the variable y. We obtain∣∣∣K(2)

ij (s, τ)
∣∣∣ ≤ c(δ)(τ − s)−1+ α

2 ,(30)

where c(δ) is some positive constant, depending on δ.
Proceeding by the same considerations, using the inequalities (9) and the Lagrange

formula for the difference Zj0(s, 0, τ, 0)−Zj0(s, y, τ, 0), we can also estimate the function
K

(1)
ij (s, τ). However, on the right hand side of the estimation for |Kij(s, τ)|, in contrast

to (30), the factor (τ − s)−1 appears. This means that the function K
(1)
ij (s, τ), and

thus, the function Kij(s, τ) has non-integrable singularity. Nevertheless, we show that
to the system of integral equations (24) the method of successive approximations can be
applied. Indeed, using the representation (29) as well as the inequalities (27) and (30) by
mathematical induction method, we prove that for the terms of series (25) the following
inequality is valid (0 ≤ s < t ≤ T ):∣∣∣V (k)

i (s, t, ϕ)
∣∣∣ ≤ c‖ϕ‖(t− s)− 1

2

k∑
n=0

Cnk · a(k−n)M(δ)n, k = 0, 1, 2,(31)

where

a(n) =

(
2c(δ)T

α
2 Γ
(
α
2

))n · Γ ( 1
2

)
Γ
(

1+nα
2

) , n = 0, 1, 2, . . . , k,

M(δ) =
B

b
max
s∈[0,T ]

μ (s,D1,δ ∪D2,δ) ↓ 0, as δ ↓ 0.

Let us fix δ = δ0 such that M(δ0) < 1. Then, in view of (31), we have (i = 1, 2)

∞∑
k=0

∣∣∣V (k)
i (s, t, ϕ)

∣∣∣ ≤ c‖ϕ‖(t− s)− 1
2

∞∑
k=0

k∑
n=0

Cnk a
(k−n)M(δ0)n =

= c‖ϕ‖(t− s)− 1
2

∞∑
k=0

a(k)
∞∑
n=0

Cnk+nM(δ0)n = c‖ϕ‖(t− s)− 1
2

∞∑
k=0

a(k)

(1−M(δ0))k+1
=

= c‖ϕ‖(t− s)− 1
2

∞∑
k=0

(
c(δ0)

1−M(δ0)T
α
2 Γ
(
α
2

))k
Γ
(

1+kα
2

) · Γ(1
2 )

1−M(δ0)
.

(32)

The estimation (32) ensures the absolute and uniform convergence of series (25) in
0 ≤ s < t ≤ T . This means that the functions Vi(s, t, ϕ), i = 1, 2, do exist. Furthermore,
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they are continuous in s ∈ [0, t) and satisfy the inequality

|Vi(s, t, ϕ)| ≤ c‖ϕ‖(t− s)− 1
2 , 0 ≤ s < t ≤ T.(33)

Inequalities (9) and (33) imply that the function u(s, x, t), defined by the formula (20) is
a solution of the conjugation problem (5)-(8) and it satisfies the estimation (19). Using
the relations (9)-(12) and the estimation (33), we prove also that the constructed solution
belongs to (18).

Thus, in order to complete the proof of the theorem it remains to establish the unique-
ness of the solution of the conjugation problem (5)-(8). For this purpose, it suffices to note
that the constructed function u(s, x, t) in each of two domains 0 ≤ s < t ≤ T, x ∈ D1

and 0 ≤ s < t ≤ T, x ∈ D2 can be treated as a unique solution of the following second
boundary-value parabolic problem:

∂ω(s, x, t)
∂s

+A(i)
s ω(s, x, t) = 0, 0 ≤ s < t ≤ T, x ∈ Di, i = 1, 2,(34)

lim
s↑t

ω(s, x, t) = ϕ(x), x ∈ Di, i = 1, 2,(35)

∂ω

∂x
(s, 0, t) = υi(s, t), 0 ≤ s < t ≤ T, i = 1, 2,(36)

where

υ1(s, t) =
−2

q1(s) + q2(s)

(
q1(s)− q2(s)

2
∂u

∂x
(s, 0−, t)− q2(s)∂u

∂x
(s, 0+, t)+

+ γ(s)u(s, 0, t) +
∫
D1∪D2

(u(s, 0, t)− u(s, y, t))μ(s, dy)
)
,

υ2(s, t) =
2

q1(s) + q2(s)

(
q1(s)

∂u

∂x
(s, 0−, t) +

q1(s)− q2(s)
2

∂u

∂x
(s, 0+, t)+

+ γ(s)u(s, 0, t) +
∫
D1∪D2

(u(s, 0, t)− u(s, y, t))μ(s, dy)
)
.

The proof of Theorem 1 is now complete. �
Consider the two-parameter family of linear operators Tst, 0 ≤ s < t ≤ T , acting on

the function ϕ ∈ Cb(R) by the formula

Tstϕ(x) =
∫

R

Gi(s, x, t, y)ϕ(y)dy +
∫ t

s

Gi(s, x, τ, 0)Vi(τ, t, ϕ)dτ,(37)

where the pair of functions (V1, V2) is the solution of the system of Volterra integral
equations of the second kind (24).

Let us study the properties of the operator family Tst under the assumption that the
conditions of Theorem 1 are satisfied.

First we note that if the sequence ϕn ∈ Cb(R) is such that limn→∞ ϕn(x) = ϕ(x) for all
x ∈ R and, in addition, supn ‖ϕn‖ < ∞, then limn→∞ Vi(s, t, ϕn) = Vi(s, t, ϕ), i = 1, 2,
and thus limn→∞ Tstϕn(x) = Tstϕ(x) for all 0 ≤ s < t ≤ T, x ∈ R. This follows
from the fact that the corresponding limit passages can be performed in the series (25)
representing the function Vi(s, t, ϕ), i = 1, 2, and under the integral sign on the right
hand side of the equality (37) by which the function Tst is defined. This property allows
us to prove the following properties of the operator family Tst, without loss of generality,
under the condition that the function ϕ has a compact support.

Now we prove that the operators Tst, 0 ≤ s < t ≤ T, remain a cone of nonnegative
functions invariant.

Lemma 2. If ϕ ∈ Cb(R) and ϕ(x) ≥ 0 for all x ∈ R, then Tstϕ(x) ≥ 0 for all 0 ≤ s <
t ≤ T, x ∈ R.
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Proof. Let ϕ be any nonnegative function in Cb(R) with a compact support. If ϕ ≡ 0,
then the assertion of the lemma is obvious. Consider now the case where the function ϕ
not everywhere equals zero. Denote by m the minimum of the function Tstϕ(x) in the
domain (s, x) ∈ [0, t]× R and assume that m < 0. By the minimum principle ([13, Ch.
II]), the value m is taken at a point (s0, 0), s0 ∈ (0, t). Then the following inequalities
must hold:

γ(s0)Ts0tϕ(0) ≤ 0,
∫
D1∪D2

(Ts0tϕ(0)− Ts0tϕ(y))μ(s0, dy) ≤ 0.

Furthermore, Theorem 14 in [13, p. 69] implies that

∂Ts0tϕ(0−)
∂x

< 0,
∂Ts0tϕ(0+)

∂x
> 0.

But since q1(s0) + q2(s0) > 0, it is easily seen that in the case of s = s0, the fulfillment
of the conjugation condition (8) is impossible. The contradiction we arrived at indicates
that m ≥ 0. This completes the proof of the lemma. �

By similar considerations to those in proof of Lemma 2, it can be easily established
that the operators Tst are contractive, i.e.,

‖Tst‖ ≤ 1, 0 ≤ s < t ≤ T.

Let us prove that the operator family Tst has a semigroup property, i.e., if 0 ≤ s < τ <
t ≤ T , then Tst = TsτTτt. This property is a consequence of the assertion of uniqueness of
the solution of the problem (5)-(8) which we have already established above. Indeed, to
find u(s, x, t) when lims↑t u(s, x, t) = ϕ(x), the problem (5)-(8) can be solved first in the
time interval [τ, t], and then with the ”initial” function u(τ, x, t) = Tτtϕ(x), we derived,
it can be solved in the time interval [s, τ ]. In other words, Tstϕ(x) = Tsτ (Tτtϕ)(x), ϕ ∈
Cb(R), i.e., Tst = TsτTτt.

The properties of the operator family Tst, proved above, imply the next theorem (see
[6, p.79, Theorem 2.1]).

Theorem 2. Let the conditions of Theorem 1 hold. Then the semigroup of operators
Tst, 0 ≤ s < t ≤ T , defined by formulas (37), (25) describes the inhomogeneous Feller
process in R, such that in D1 and D2 it coincides with the diffusion processes generated by
A

(1)
s and A(2)

s , respectively, and its behavior on S = {0} is determined by the conjugation
condition (4). If P (s, x, t, dy) is the transition probability of this process, then, for any
function ϕ ∈ Cb(R)

Tstϕ(x) =
∫

R

P (s, x, t, dy)ϕ(y).

The integral representation of the operator family Tst, we derived, allows us to cal-
culate for the corresponding Markov process its diffusion characteristics: the diffusion
coefficient and the drift coefficient. We establish the existence of these coefficients in the
sense of M.I. Portenko ([4]) under the additional assumption that the measure μ in (3)
satisfies the condition

∫
Di

yμ(s, dy) ∈ C([0, T ]),
∫
Di

y2μ(s, dy) ∈ C([0, T ]).(38)
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In order to calculate for the constructed process its diffusion characteristics, we first
define the functions ϕ1(x) = x, ϕ2(x) = x2, x ∈ R. Substituting them into the expres-
sion for Ψi(s, t, ϕ), we get

Ψi(s, t, ϕ1) = di(s)
(
q2(s)− q1(s) +

∫
D1∪D2

yμ(s, dy)+

+ 2

√
2
π

[a2(s, 0)− a1(s, 0)]
(−1)i−1q3−i(s)√

b3−i(s, 0)
(t− s) 1

2

)
+ Ψi(s, t, ϕ1),(39)

Ψi(s, t, ϕ2) = di(s)
(∫

D1∪D2

y2μ(s, dy)+

+ 2

√
2
π

[b2(s, 0)− b1(s, 0)]
(−1)i−1q3−i(s)√

b3−i(s, 0)
(t− s) 1

2

)
+ Ψ̃i(s, t, ϕ2),(40)

where the functions Ψi and Ψ̃i, when 0 ≤ s < t ≤ T, satisfy the inequalities:∣∣Ψi(s, t, ϕ1)
∣∣ ≤ c(t− s) 1+α

2 ,
∣∣Ψ̃i(s, t, ϕ2)

∣∣ ≤ c(t− s) 1+α
2 .

Since the functions Ψi(s, t, ϕk), i = 1, 2, k = 1, 2, have a weaker singularity than the
functions Ψi(s, t, ϕ) when ϕ ∈ Cb(R) (see inequality (27)), we easily find that the func-
tions Vi(s, t, ϕk), defined by formulas (25) are continuous in s ∈ [0, t] and satisfy the
estimation

|Vi(s, t, ϕk)| ≤ c, i = 1, 2, k = 1, 2.
Further, from the representation (37) and the relations (13), (14) it follows that∫

R

(y−x)P (s, x, t, dy) = Tstϕ1(x)− x+ x(1 − Tst1) =
∫ t

s

dτ

∫
R

Gi(s, x, τ, z)ai(τ, z)dz+

+
∫ t

s

Gi(s, x, τ, 0)Vi(τ, t, ϕ1)dτ − x
∫ t

s

Gi(s, x, τ, 0)Vi(τ, t, 1)dτ,(41)∫
R

(y−x)2P (s, x, t, dy) = Tstϕ2(x)− x2Tst1− 2x
∫

R

(y − x)P (s, x, t, dy) =

=
∫ t

s

dτ

∫
R

Gi(s, x, τ, z)bi(τ, z)dz + 2
∫ t

s

dτ

∫
R

Gi(s, x, τ, z)ai(τ, z)(z − x)dz+

+
∫ t

s

Gi(s, x, τ, 0)Vi(τ, t, ϕ2)dτ − 2x
∫ t

s

Gi(s, x, τ, 0)Vi(τ, t, ϕ1)dτ+

+ x2

∫ t

s

Gi(s, x, τ, 0)Vi(τ, t, 1)dτ.(42)

Using the equalities (39)-(42), after the direct calculations we find that for any function
ϕ ∈ Cb(R) with compact support the following relations are fulfilled:

lim
t↓s

∫
R

ϕ(x)
(

1
t− s

∫
R

(y − x)P (s, x, t, dy)
)
dx =

∫
R

a(s, x)ϕ(x)dx + a0(s)ϕ(0),(43)

lim
t↓s

∫
R

ϕ(x)
(

1
t− s

∫
R

(y − x)2P (s, x, t, dy)
)
dx =

∫
R

b(s, x)ϕ(x)dx + b0(s)ϕ(0),(44)

where

a(s, x) =

{
ai(s, x), s ∈ [0, T ], x ∈ Di, i = 1, 2,∑2

i=1 li(s)ai(s, 0), s ∈ [0, T ], x = 0,

b(s, x) =

{
bi(s, x), s ∈ [0, T ], x ∈ Di, i = 1, 2,∑2

i=1 li(s)bi(s, 0), s ∈ [0, T ], x = 0,
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li(s) =
qi(s)

√
b3−i(s, 0)

q1
√
b2(s, 0) + q2

√
b1(s, 0)

, i = 1, 2, l1(s) + l2(s) = 1,

a0(s) =
1
2

(d1(s) + d2(s)) (q2(s)− q1(s) +m1(s)) , b0(s) =
1
2

(d1(s) + d2(s))m2(s),

m1(s) =
∫
D1∪D2

yμ(s, dy)), m2(s) =
∫
D1∪D2

y2μ(s, dy)), s ∈ [0, T ].

Relations (43), (44) means that for the constructed process with the transition probability
P (s, x, t, dy) there exist, in generalized sense, the diffusion coefficient b(s, x) + b0(s)δ(x)
and the drift coefficient a(s, x) + a0(s)δ(x), where δ(x) is the Dirac δ-function. This
completes the proof of the following theorem.

Theorem 3. Assume that the conditions of Theorem 1 as well as the condition (38) are
satisfied. Then the inhomogeneous Feller process generated by the semigroup of operators
Tst, 0 ≤ s < t ≤ T, defined by formulas (37), (25) is a generalized diffusion process with
its transition probability satisfying the relations (43), (44).

4. The general case

The purpose of this section is to investigate the problem (5)-(8) when the conjugation
condition of Feller-Wentzell (8) is general, in sense, that it can include all its five terms.
Furthermore, the common boundary S = {0} of the domains D1 and D2 is ”sticky”.
The existence of the required semigroup is established under the following additional
assumptions:

4.1. The function r(s) is positive for all s ∈ [0, T ] as well as it is Hölder continuous,
with exponent α

2 (α is the constant from 2.3), on [0, T ].
4.2. For all f ∈ Cb(R), δ > 0 the functions F (i)

f (s) and G
(i)
f (s) from 1.2 are Hölder

continuous, with exponent α
2 (α is the constant from 2.3), on [0, T ] (i = 1, 2).

As in previous section we find a solution of the problem (5)-(8) of the form (20) with the
unknown functions Vi to be determined. First we note that in view of relations (5)-(7),
the condition (8) reduces to

u(s, 0, t) = ϕ(0)−
∫ t

s

g(τ, t)dτ,(45)

where

g(τ, t) =
1

r(τ)

(
q1(τ)

∂u(τ, 0−, t)
∂x

− q2(τ)∂u(τ, 0+, t)
∂x

+ γ(τ)u(τ, 0, t)+

+
∫
D1∪D2

[u(τ, 0, t)− u(τ, y, t)]μ(τ, dy)
)
.

Then, substituting instead of function u its expression (20) into both sides of (45), and in-
stead of ∂u(s,0∓,t)

∂x the relation (17), after some straightforward simplifications, we obtain
the system of Volterra integral equations of the first kind

Λi(s, t, ϕ) =
∫ t

s

Gi(s, 0, τ, 0)Vi(τ, t, ϕ)dτ +
2∑
j=1

∫ t

s

Pj(s, τ)Vj(τ, t, ϕ)dτ, i = 1, 2,(46)

where

Pj(s, τ) =
qj(τ)

r(τ)bj(τ, 0)
−
∫ τ

s

Kj(ρ, τ)
r(ρ)

dρ,

Λi(s, t, ϕ) = ϕ(0)− ui0(s, 0, t) +
∫ t

s

Ψ(ρ, t, ϕ)
r(ρ)

dρ,
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and the functions Kj and Ψ are the same as in (21).
Applying the transform (22) to the both sides of each equation of the system (46), we

get an equivalent system of Volterra integral equations of the second kind

Vi(s, t, ϕ) =
2∑
j=1

∫ t

s

Rij(s, τ)Vj(τ, t, ϕ)dτ + Δi(s, t, ϕ), i = 1, 2,(47)

where

Rii(s, τ) =

√
2bi(s, 0)

π

[√
π

2
K̃i(s, τ) − qi(τ)

r(τ)bi(τ, 0)
(τ − s)− 1

2 −
∫ τ

s

(ρ− s)− 1
2
Ki(ρ, τ)
r(ρ)

dρ

]
Rij(s, τ) = −

√
2bi(s, 0)

π

[
qj(τ)

r(τ)bj(τ, 0)
(τ − s)− 1

2 +
∫ τ

s

(ρ− s)− 1
2
Kj(ρ, τ)
r(ρ)

dρ

]
, i �= j,

Δi(s, t, ϕ) =

√
2bi(s, 0)

π

[
1
2

∫ t

s

(ρ− s)− 3
2 (ui0(ρ, 0, t)− ui0(s, 0, t)) dρ−

− [ui0(s, 0, t)− ϕ(0)] (t− s)− 1
2 +
∫ t

s

(ρ− s)− 1
2
Ψ(ρ, t, ϕ)
r(ρ)

dρ

]
,

and the functions K̃i, i = 1, 2, are the same as in (23).
We now show that the functions Δi and the kernels Rij in (47) satisfy the inequalities

|Δi(s, t, ϕ)| ≤ c‖ϕ‖(t− s)− 1
2 ,(48)

|Rij(s, τ)| ≤ c(τ − s)−1+ α
2 .(49)

To prove (48) it suffices to note that the first term as well as the function Ψ on the right
hand side of the expression for Δi are the parts of the formula for Ψi in (24).

In order to establish the estimation (49), first, we consider the integral term that is a
part of the expression for Rij , more precisely, we consider its component

Lj(s, τ) =
∫ τ

s

(ρ− s)− 1
2
Nj,δ(ρ, τ)
r(ρ)

dρ,

that has a stronger singularity than the other components of this integral. Here the
function Nj,δ is the part of the formula for Kj and it is determined by (28).

We write the integral Lj in the form

Lj(s, τ) = L
(1)
j (s, τ) + L

(2)
j (s, τ),(50)

where

L
(1)
j (s, τ) =

1
r(τ)

∫ τ

s

(ρ− s)− 1
2 dρ

∫
Dj,δ

[Zj0(ρ, 0, τ, 0)− Zj0(ρ, y, τ, 0)]μ(τ, dy),

L
(2)
j (s, τ) =

∫ τ

s

(ρ− s)− 1
2 dρ

∫
Dj,δ

[Zj0(ρ, 0, τ, 0)− Zj0(ρ, y, τ, 0)]
(
μ(ρ, dy)
r(ρ)

− μ(τ, dy)
r(τ)

)
.

Using the equality

Zj0(ρ, 0, τ, 0)− Zj0(ρ, y, τ, 0) =
∫ 1

0

[2πbj(τ, 0)(τ − ρ)]− 1
2
∂

∂θ
e

−y2θ
2bj (τ,0)·(τ−ρ) dθ,
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we can estimate L(1)
j (s, τ):∣∣∣L(1)

j (s, τ)
∣∣∣ ≤ 1√

2πb

∣∣∣∣∣
∫ τ

s

(ρ− s)− 1
2 (τ − ρ)− 1

2 dρ

∫
Dj,δ

μ(τ, dy)
∫ 1

0

∂

∂θ
e

−y2θ
2b·(τ−ρ) dθ

∣∣∣∣∣ =
=

1
2b
√

2πb

∣∣∣∣∣
∫ τ

s

(ρ− s)− 1
2 (τ − ρ)− 3

2 dρ

∫
Dj,δ

yμ(τ, dy)
∫ 1

0

ye
−y2θ

2b·(τ−ρ) dθ

∣∣∣∣∣ =
=

1
2b
√

2πb

∣∣∣∣∣
∫
Dj,δ

yμ(τ, dy)
∫ 1

0

ye
−y2θ

2b·(τ−s) dθ

∫ τ

s

(ρ− s)− 1
2 (τ − ρ)− 3

2 e
−y2θ

2b·(τ−s)
ρ−s
τ−ρ dρ

∣∣∣∣∣ =

=
1

2b
√

2πb(τ − s)

∣∣∣∣∣
∫
Dj,δ

yμ(τ, dy)
∫ 1

0

ye
−y2θ

2b·(τ−s) dθ

∫ ∞

0

z−
1
2 e

−y2θ
2b·(τ−s) ·zdz

∣∣∣∣∣ ≤ c(τ − s)− 1
2 .

(51)

Consider the integral L(2)
j (s, τ). Applying the Lagrange formula to the difference

Zj0(ρ, 0, τ, 0)− Zj0(ρ, y, τ, 0), we get

L
(2)
j (s, τ) =

∫ τ

s

(ρ− s)− 1
2 dρ

∫
Dj,δ

y
∂Zj0(ρ, x, τ, 0)

∂x

∣∣∣∣
x=θy

(
μ(τ, dy)
r(τ)

− μ(ρ, dy)
r(ρ)

)
=

=
∫ τ

s

(ρ− s)− 1
2 (τ − ρ)−1dρ

∫
Dj,δ

y(τ − ρ)∂Zj0(ρ, x, τ, 0)
∂x

∣∣∣∣
x=θy

(
μ(τ, dy)
r(τ)

− μ(ρ, dy)
r(ρ)

)
,

where θ is some positive number from the interval (0, 1).
Note that f (j)

τρ (y) = (τ − ρ)∂Zj0(ρ,x,τ,0)
∂x

∣∣
x=θy

, j = 1, 2, as functions of y, belong to
Cb(R) for all 0 ≤ s < ρ < τ < t ≤ T, and they are bounded by some common constant
(see (11) when r = 0, p = 1). Hence, by Lemma 1,∫

Dj,δ

yf (j)
τρ (y)

(
μ(τ, dy)
r(τ)

− μ(ρ, dy)
r(ρ)

)
≤ c(τ − ρ)α

2 ,

and hence ∣∣∣L(2)
j (s, τ)

∣∣∣ ≤ c(τ − s)− 1
2+ α

2 , 0 ≤ s < ρ < t ≤ T.(52)

Combining (51) and (52), we find that

|Lj(s, τ)| ≤ c(τ − s)− 1
2 .(53)

It is clear that the inequality (53) is also valid for the integral
∫ τ
s (ρ − s)− 1

2
Kj(ρ,τ)
r(ρ) dρ in

the expression for Rij(s, τ) in (47). Therefore, recalling the estimation∣∣∣K̃j(s, τ)
∣∣∣ ≤ c‖ϕ‖(τ − s)−1+ α

2 ,

we conclude that (49) holds.
From (48) and (49) it follows the existence of the solution of the system of integral

equations (47) which can be obtained by the method of successive approximations. Be-
sides, the functions Vi(s, t, ϕ), i = 1, 2, are continuous in s ∈ [0, t) and for them the
inequality (33) is valid.

Thus we have shown that if the coefficients of the operators A(i)
s in (1) and Ls in

(3) satisfy the conditions 2.1-2.3 and 1.1, 1.2, 4.1, 4.2, respectively, then the solution
of the parabolic problem of conjugation (5)-(8) exists, is represented in the form (20)
and satisfies the inequality (19). The proof of the uniqueness of the constructed solution
u(s, x, t) of the problem (5)-(8) belonging to (18) is a repetition of the proof of the
corresponding assertion in section 3 with obvious changes.
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Proceeding in the same way as in section 3, we prove that the family of operators
Tstϕ(x) = u(s, x, t), ϕ ∈ Cb(R) is the contractive Feller semigroup, which describes the
inhomogeneous Markov process in R, such that in the domains D1 and D2 it coincides
with the diffusion processes generated by A(1)

s and A(2)
s , respectively, and its behavior at

zero is determined by the conjugation condition (4) for which the condition 4.1 certainly
hold. If we further assume that the measure μ, which corresponds to the jump-like exit
from the point zero, satisfies the additional condition (38), then by the direct calculations
we find that for the transition probability of the constructed process (we denote it by
P (s, x, t, dy)) the following relations hold:

lim
t↓s

1
t− s

∫
R

(y − x)P (s, x, t, dy)dx = a(s, x),(54)

lim
t↓s

1
t− s

∫
R

(y − x)2P (s, x, t, dy)dx = b(s, x),(55)

where

a(s, x) =

{
ai(s, x), s ∈ [0, T ], x ∈ Di, i = 1, 2,
q2(s)−q1(s)+m1(s)

r(s) , s ∈ [0, T ], x = 0,

b(s, x) =

{
bi(s, x), s ∈ [0, T ], x ∈ Di, i = 1, 2,
m2(s)
r(s) , s ∈ [0, T ], x = 0

m1(s) =
∫
D1∪D2

yμ(s, dy)), m2(s) =
∫
D1∪D2

y2μ(s, dy), s ∈ [0, T ].

Relations (54), (55) mean that for the constructed process with the transition probabil-
ity P (s, x, t, dy) the Kolmogorov local characteristics exist in an ordinary sense. Further-
more, the drift and diffusion coefficients coincide with the functions a(s, x) and b(s, x),
respectively.

The result, obtained in the present section can be formulated in the form of the
following theorem.

Theorem 4. Assume that the coefficients of the operators A(i)
s , i=1,2 as well as the

functions r, q1, q2, γ and the measure μ satisfy conditions 2.1-2.3 and 1.1, 1.2, 4.1,
4.2. Then the following two assertions are true:

(i) For any function ϕ ∈ Cb(R) the problem (5)-(8) has the unique solution u(s, x, t)
belonging to (18). Furthermore, this solution satisfy the inequality (19) (when
0 ≤ s < t ≤ T, x ∈ R) and it is represented by (20), where the pair of functions
(V1, V2) is the solution of the system of Volterra integral equations of the second
kind (47).

(ii) The semigroup of operators Tstϕ(x) = u(s, x, t) describes the inhomogeneous
Feller process in R, such that in the domains D1 and D2 it coincides with the
diffusion processes generated by A(1)

s and A(2)
s , respectively, and its behavior on

S = {0} is determined by the conjugation condition (4). If, in addition, the
condition (38) holds, then the transition probability of the constructed process
satisfies the relations (54), (54).
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