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A. POGORUI

THE DISTRIBUTION OF RANDOM MOTION

IN SEMI-MARKOV MEDIA

This paper deals with the random motion with finite speed along uniformly dis-
tributed directions, where the direction alternations occur according to renewal epochs
of a general distribution. We derive a renewal equation for the characteristic function
of a transition density of multidimensional motion. By using the renewal equation,
we study the behavior of the transition density near the sphere of its singularity in
two- and three-dimensional cases. For (n− 1)-Erlang distributed steps of the motion
in an n-dimensional space (n ≥ 2), we have obtained the characteristic function as
a solution of the renewal equation. As an example, we have derived the distribution
for the three-dimensional random motion.

1. Introduction

Most of the papers on the random motion with uniformly distributed directions in
a multidimensional space are devoted to the analysis of models, in which motions are
driven by a homogeneous Poisson process, so their processes are Markovian [1], [2], and so
on. Papers [3]-[6] considered a non-Markovian generalization of one-dimensional random
evolutions of the telegrapher’s random process, where the motion is driven by an alter-
nating semi-Markov process with Erlang distributed interrenewal times. Random flights
in Rn withK-Erlang distributed displacements and uniformly distributed directions have
been studied in [7]. A planar random motion performed by a particle, which changes its
direction at even-valued Poisson events is studied in [8]. Papers [9] and [10] analyzed a
random walk with steps of uniform orientation and Dirichlet-distributed lengths. The
transition densities which have simple analytical forms for two- and four-dimensional
Markovian random motions were derived in [1] and [2].

In the present work, we consider multidimensional random motions with uniformly
distributed directions with general distributed steps, by extending some results of [1],
[2], and [7].

Let us consider the renewal process ν (t) = max {m ≥ 0 : τm ≤ t} , t ≥ 0, where
τm =

∑m
k=0 θk, τ0 = 0, and θk ≥ 0, k = 1, 2, . . . , are i.i.d. with a distribution function

G(t) and the probability density function (pdf) g (t) = d
dtG (t) .

We assume that a particle starting from the coordinate origin (0, 0, . . . , 0) of the space
Rn at time t = 0 continues its motion with a constant velocity v > 0 along the direction of
−→η (n)

0 , where n ≥ 2, −→η (n)
0 = (x1, x2, · · · , xn) is a random n-dimensional vector uniformly

distributed on the unit sphere Ωn−1
1 =

{
(x1, x2, · · · , xn) : x21 + x22 + · · ·+ x2n = 1

}
.

At the instant τ1, the particle changes its direction to −→η (n)
1 , where −→η (n)

1 and −→η (n)
0

are independent and identically distributed on Ωn−1
1 , and continues its motion with a

velocity v along the direction of −→η (n)
1 . Then at the instant τ2, the particle changes its

direction to −→η (n)
2 , where −→η (n)

2 is also uniformly distributed on Ωn−1
1 and independent of
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−→η (n)
0 , −→η (n)

1 , and continues its motion with a velocity v along the direction of −→η (n)
2 , and

so on.
By −→x (n)

(t) , t ≥ 0, we denote the particle position at the time t. We have

(1) −→x (n)
(t) = v

ν(t)∑
j=1

−→η (n)
j−1 (τj − τj−1) + v−→η (n)

ν(t)

(
t− τν(t)

)
.

Here and in the sequel, we assume that
∑0

j=1 = 0.
Basically, this equation determines the random evolution in a semi-Markov medium

ν (t) . It is easily seen that ν (t) is the number of velocity alternations occurred in the
interval (0, t) .

The probabilistic properties of a random vector −→x (n)
(t) are completely determined

by those of its projection x(n) (t) = v
∑ν(t)

j=1 η
(n)
j−1 (τj − τj−1) + vη

(n)
ν(t)

(
t− τξ(t)

)
on a fixed

line, where η
(n)
j is the projection of −→η (n)

j on the line.

Indeed, let us consider the distribution function Fx (y) = P
(
x(n) (t) ≤ y

)
. Then the

characteristic function H (t) of −→x (n)
(t) is given by

H (t) = Eexp
{
i
(−→α ,−→x (n)

(t)
)}

= E exp
{
i ‖−→α ‖

(−→e ,−→x (n)
(t)

)}
= E exp

{
i ‖−→α ‖x(n) (t)

}
=

∫ ∞

0

exp {i ‖−→α ‖ y} dFx (y) ,

where ‖−→α ‖ =
√
α2
1 + α2

2 + · · ·+ α2
n,

−→e =
−→α

‖−→α‖ .
By fη(n) (x) , we denote the pdf of the projection η

(n)
j of the vector −→η (n)

j onto a fixed

line. In [5], we proved that

(2) fη(n) (x) =

{
Γ(n

2 )√
πΓ(n−1

2 )

(
1− x2

)(n−3)/2
, x ∈ [−1, 1] ;

0, x /∈ [−1, 1] .

By ϕη(n) (t) = Ee−itη(n)

=
∫∞
−∞ e−itx fη(n) (x)dx, we denote the characteristic function

of η
(n)
j . We note that the function ϕ (t) = ϕη(n) (αtv) , where α = ‖−→α ‖ , is also used in

[2], where it was obtained by different methods. It is well known [2], [5] that

ϕ (t) = 2
n−2
2 Γ

(n
2

) Jn−2
2

(αtv)

(αtv)
n−2
2

.

It is easily seen that ϕ (t) = ϕη(n) (αtv) = Ee
−itv

(−→α ,−→η (n)
j

)
=
∫∞
−∞ e−iαtvx fη(n) (x)dx.

2. Renewal Equation for the Characteristic Function

The characteristic function of a random motion −→x (n)
(t) is given by

H (t) = exp
{
i
(−→α ,−→x (n)

(t)
)}

.

Theorem 2.1. The characteristic function H (t) , t ≥ 0, is a solution of the Volterra
integral equation

(3) H (t) = (1−G (t))ϕ (t) +

∫ t

0

g (u)ϕ (u)H (t− u) du.
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Proof. It follows from Eq. (1) that

H (t) = Eexp
{
i
(−→α ,−→x (n)

(t)
)}

= Eexp

⎧⎨⎩i
⎛⎝−→α , v

ξ(t)∑
j=1

−→η (n)
j−1θj + v−→η (n)

ξ(t)

(
t− τξ(t)

)⎞⎠⎫⎬⎭
= Eexp

[
I[τ1>t]e

itv
(−→α ,−→η (n)

0

)]
+

∫ t

0

E

(
I[τ1∈du]e

iuv
(−→α ,−→η (n)

0

))
H(t− u)

= (1−G (t))Ee
itv

(−→α ,−→η (n)
0

)
+

∫ t

0

g (u)Ee
iuv

(−→α ,−→η (n)
0

)
H (t− u) du.

To complete the proof, we observe that ϕ (t) = Ee
iv
(−→α ,−→η (n)

0

)
.

It is worth noting that this theorem was proved in [7] for the Erlang case.

Passing to the Laplace transform Ĥ (s) = L (H (t)) =
∫∞
0
H (t) e−stdt in Eq.(3), we

get

(4) Ĥ (s) =

∫∞
0 (1−G (t))ϕ (t) e−stdt

1− ∫∞
0
g (t)ϕ (t) e−stdt

.

By fn (t,
−→x ) , we denote the pdf of particles position at the time t. It is easily seen

that fn (t,
−→x ) = F−1 (H (t)) .

Our purpose is to study fn (t,
−→x ) .

We now introduce the function

Hn−2 (t) = e−λt
∞∑
j=0

(λt)n−2+(n−1)j

(n− 2 + (n− 1) j)!

×
2

n−2+(n−1)j
2 Γ

(
n−2+(n−1)j

2 + 1
)

(vtα)
n−2+(n−1)j

2

Jn−2+(n−1)j
2

(vtα) .

The following theorem generalizes the result of [7] (see Section 3) for any n ≥ 2.

Theorem 2.2. Suppose g (t) = e−λt λn−1tn−2

(n−2)! I{t≥0}, n ≥ 2, i.e. θk is (n− 1)-Erlang

distributed. Then

Hn−2 (t) = e−λt (λt)
n−2

(n− 2)!

2n−2/2Γ ((n− 2)/2 + 1)

(vtα)
(n−2)/2

Jn−2
2

(vtα)(5)

+

∫ t

0

g (u)ϕ (u)Hn−2 (t− u) du.

Proof. In what follows, we use the equation (see [13], Formula 6.581(3))∫ t

0

uμ Jμ (u) (t− u)
ν
Jν (t− u)du =

Γ
(
μ+ 1

2

)
Γ
(
ν + 1

2

)
√
2πΓ (μ+ ν + 1)

tμ+ν+ 1
2Jμ+ν+ 1

2
(t) ,

μ > −1

2
, ν > −1

2
.(6)

It is easily verified that

2ν+μ

√
π

Γ

(
ν + μ+ 1

2

)
Γ

(
ν + μ

2

)
= Γ (ν + μ) .(7)

Let us fix an integer r ≥ 1. Combining Eqs. (6) and (7), for j = 1, 2, . . . , we obtain
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∫ t

0

g (u)ϕ (u)
e−λ(t−u)λr

r!

(2 (t− u))
r
2Γ

(
r
2 + 1

)
(vα)

r
2

J r
2
(v (t− u)α) du

=
e−λt

(√
2λ
)n+r−1

Γ
(
n
2

)
Γ
(
r
2 + 1

)
√
2(αv)

n+r−2
2 (n− 2)!r!

∫ t

0

u
n−2
2 Jn−2

2
(vuα) (t− u)

r
2 J r

2
(v (t− u)α) du

=
e−λt

(√
2λ
)n+r−1

Γ
(
r+1
2

)
Γ
(
r
2 + 1

)
(αv)

n+r−2
2 (n− 2)!r!

Γ
(
n
2

)
Γ
(
n−1
2

)
2
√
πΓ

(
n+r
2

) tn+r−1
2 Jn+r−1

2
(t)

=
e−λt

(√
2λ
)n+r−1√

π

(αv)
n+r−2

2 2r

t
n+r−1

2 Γ
(
n+r−1

2 + 1
)

2nΓ
(
n+r
2

)
Γ
(
n+r−1

2 + 1
)Jn+r−1

2
(t)

=
e−λt

(√
2λ
)n+r−1

(αv)
n+r−2

2

t
n+r−1

2 Γ
(
n+r−1

2 + 1
)

Γ (n+ r)
Jn+r−1

2
(t) .

By putting r = n− 2 + (n− 1) j, we conclude the proof.
Taking Eq. (3) into account, we now solve the equation

H (t) =

n−2∑
i=0

e−λt (λt)
i

i!

2n−2/2Γ ((n− 2)/2 + 1)

(vtα)
(n−2)/2

Jn−2
2

(vtα)

+

∫ t

0

g (u)ϕ (u)H (t− u) du.(8)

By H(k) (t) , k = 0, 1, . . . , n− 2, we denote solutions of the equation

H(k) (t) = e−λtλ
ktk

k!

2n−2/2Γ ((n− 2)/2 + 1)

(vtα)
(n−2)/2

Jn−2
2

(vtα)

+

∫ t

0

g (u)ϕ (u)H(k) (t− u)du.(9)

It is easily seen that H (t) =
∑n−2

k=0 H
(k) (t) is the solution of Eq. (8).

Lemma 2.1. For each k = 0, 1, . . . , n− 2, the following equations hold:

H(k) (t) = e−λtλ
ktk

k!
ϕ (t) + λ

∫ t

0

e−λuλ
kuk

k!
ϕ (u)Hn−2 (t− u) du.

Proof. Denote gk (t) = e−λt λktk

k! . Performing the Laplace transformation Ĥn−2 (s) =∫∞
0 Hn−2 (t) e

−stdt in Eq.(5) and Ĥ(k) (s) =
∫∞
0 H(k) (t) e−stdt in Eq.(9), we get, respec-

tively,

(10) Ĥn−2 (s) =
1/λ

∫∞
0
gk (t)ϕ (t) e−stdt

1 − ∫∞
0 gk (t)ϕ (t) e−stdt

= 1/λ

∞∑
j=1

(∫ ∞

0

gk (t)ϕ (t) e−stdt

)j

and

Ĥ(k) (s) =

∫ ∞

0

gk (t)ϕ (t) e−stdt

+

∫ ∞

0

gk (t)ϕ (t) e−stdt

∞∑
j=1

(∫ ∞

0

gk (t)ϕ (t) e−stdt

)j

.(11)

The inverse Laplace transformation in Eqs. (10) and (11) concludes the proof.
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Let us calculate F−1 (Hn−2 (t)) , where F−1 is the n-dimensional inverse Fourier trans-
form F−1 w.r.t. −→α . Now, we need the following integral (see [12], page 69):∫ ∞

0

Jν+1 (az)Jμ (bz) z
μ−νdz =

(
a2 − b2

)ν−μ
bμ

2ν−μaν+1Γ (ν − μ+ 1)
, ν + 1 > μ > 0.

By reducing the n-dimensional inverse Fourier transformation to the Hankel one, we
obtain, for |x| < vt, j ≥ 1,

F−1

(
Jn−2+(n−1)j

2

(vtα)

(vtα)
n−2+(n−1)j

2

)
=

1

(2π)
n
2

∫ ∞

0

Jn−2+(n−1)j
2

(vtα)

(vtα)
n−2+(n−1)j

2

αn−1
Jn−2

2
(‖−→x ‖α)

(‖−→x ‖α)n−2
2

dα

=

(
v2t2−‖−→x ‖2

2

) (n−1)j
2 −1

(2π)
n
2 (vt)

n−2+(n−1)j
Γ
(

(n−1)j
2

) .
It was obtained in [2] that F−1

(
Jn−2

2
(vtα)

(vtα)
n−2
2

)
=

δ
(
v2t2−‖−→x ‖2

)
(2π)n/2(vt)n−1 .

Then, by using Eq. (6), we have

F−1 (Hn−2 (t)) = e−λt
∞∑
j=0

(
λt
√
2
)n−2+(n−1)j

Γ
(

n−2+(n−1)j
2 + 1

)
(n− 2 + (n− 1) j)!

×F−1

(
Jn−2+(n−1)j

2

(vtα)

(vtα)
n−2+(n−1)j

2

)

=
(λt)n−2e−λtΓ

(
n
2

)
2 (n− 2)π

n
2 (vt)

n−1 δ
(
v2t2 − ‖−→x ‖2

)

+ e−λt
∞∑
j=1

(
λt
√
2
)n−2+(n−1)j

Γ
(

n−2+(n−1)j
2 + 1

)
(n− 2 + (n− 1) j)!

×F−1

(
Jn−2+(n−1)j

2
(vtα)

(vtα)
n−2+(n−1)j

2

)

= e−λt Γ
(
n
2

)
2π

n
2 (vt)

n−1 δ
(
v2t2 − ‖−→x ‖2

)

+ e−λt
∞∑
j=1

(
λt
√
2
)n−2+(n−1)j

Γ
(

n−2+(n−1)j
2 + 1

)
(n− 2 + (n− 1) j)!Γ

(
(n−1)j

2

)
×

(
v2t2 − x2

) (n−1)j
2 −1

(2π)
n
2 (vt)

n−2+(n−1)j

= e−λt Γ
(
n
2

)
2π

n
2 (vt)

n−1 δ
(
v2t2 − ‖−→x ‖2

)

+ e−λt
∞∑
j=1

(λt)n−2+(n−1)j

2Γ
(

(n−1)j
2

)
Γ
(

n−1+(n−1)j
2

) (
v2t2 − x2

) (n−1)j
2 −1

(2π)
n−1
2 (vt)

n−2+(n−1)j
.

By using Lemma 2.1, we can calculate H(k) (t) , k = 0, 1, . . . , n− 2.
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Then, passing to the inverse Fourier transformation, we obtain

f (t,−→x ) =
n−2∑
k=0

F−1
(
H(k) (t)

)
.

Example 2.1. Let us consider the three-dimensional case and 2-Erlang distributed g (t) ,
i.e. n = 3 and g (t) = λ2te−λt, λ > 0. In this case, we obtain

F−1
(
H(1) (t)

)
=

e−λt

4πv2t
δ
(
v2t2 − ‖−→x ‖2

)
+ e−λt

∞∑
j=1

(λt)
1+2j

Γ (2 + 2j)

√
8Γ

(
1+2j
2 + 1

)
Γ (j) (vt)

2j+1

(
v2t2 − ‖−→x ‖2

)j−1

.

For the second term, we get
∞∑
j=1

(λt)2j+1

Γ (2 + 2j)

√
8Γ

(
1+2j
2 + 1

)
Γ (j) (vt)

2j+1

(
v2t2 − ‖−→x ‖2

)j−1

=

∞∑
j=1

λ2j+1
√
2π

2jΓ (j) Γ (j + 1) v2j+1

(
v2t2 − ‖−→x ‖2

)j−1

=

√
π(λ/v)

2√(
v2t2 − ‖−→x ‖2

) ∞∑
m=0

1

Γ (m+ 1)Γ (m+ 2)

⎛⎜⎜⎝
λ
v

√
2
(
v2t2 − ‖−→x ‖2

)
2

⎞⎟⎟⎠
2m+1

=

√
π(λ/v)

2√(
v2t2 − ‖−→x ‖2

)I1
(
λ

v

√
2
(
v2t2 − ‖−→x ‖2

))
,

where I1 is the modified Bessel function of the first kind.
Therefore,

F−1
(
H(1) (t)

)
=

e−λt

4πv2t
δ
(
v2t2 − ‖−→x ‖2

)
+ e−λt

√
π(λ/v)2√(

v2t2 − ‖−→x ‖2
)I1

(
λ

v

√
2
(
v2t2 − ‖−→x ‖2

))
.

It follows from Lemma 2.1 that

H(0) (t) = e−λt sin (vtα)

vtα
+ λ

(
e−λt sin (vtα)

vtα

)
∗H1 (t) .

Passing to the inverse Fourier transformation, we get

F−1 (H0 (t)) =
e−λt

4πv2t2
δ
(
v2t2 − ‖−→x ‖2

)
+

e−λt

16π2v4

∫
‖−→u ‖≤tv

∫ t

0

δ
(
v2s2 − ‖−→u ‖2

)
s2

×
δ
(
v2(t− s)

2 − ‖−→x −−→u ‖2
)

(t− s)
dsd−→u

+
e−λtλ3

4
√
πv2

∫
‖−→u ‖≤tv

I1

(
λ
v

√
2
(
(tv − ‖−→u ‖)2 − ‖−→x −−→u ‖2

))
‖−→u ‖2

√(
(tv − ‖−→u ‖)2 − ‖−→x −−→u ‖2

) d−→u .
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Therefore,

f3 (t,
−→x ) = F−1

(
H(0) (t)

)
+ F−1

(
H(1) (t)

)
=
e−λt + te−λt

4π(vt)
2 δ

(
v2t2 − ‖−→x ‖2

)

+
e−λt

16π2v4

∫
‖−→u ‖≤tv

∫ t

0

δ
(
v2s2 − ‖−→u ‖2

)
s2

δ
(
v2(t− s)

2 − ‖−→x −−→u ‖2
)

(t− s)
dsd−→u

+
e−λtλ3

4
√
πv2

∫
‖−→u ‖≤tv

I1

(
λ
v

√
2
(
(tv − ‖−→u ‖)2 − ‖−→x −−→u ‖2

))
‖−→u ‖2

√(
(tv − ‖−→u ‖)2 − ‖−→x − −→u ‖2

) d−→u

+ e−λt

√
π(λ/v)

2√(
v2t2 − ‖−→x ‖2

)I1
(
λ

v

√
2
(
v2t2 − ‖−→x ‖2

))
.

As we showed in [7], f3 (t,
−→x ) ↑ ∞ as ‖−→x ‖ ↑ vt.

Lemma 2.2. Suppose that g (t) > 0 for any t ≥ 0. Then, for n = 2, 3,

fn (t,
−→x ) ↑ ∞ as ‖−→x ‖ ↑ vt.

Proof. Since fn (t,
−→x ) = F−1 (H (t)) , where F−1 is the inverse n-dimensional Fourier

transform of H (t) w.r.t. −→α . It follows from Eqs. (3) that

fn (t,
−→x ) = F−1 (H (t)) = (1−G (t))

Γ
(
n
2

)
δ
(
v2t2 − ‖−→x ‖2

)
2π

n
2 (vt)

n−1

+

(
Γ
(
n
2

))2
4πn

∫ t

0

∫
‖−→u ‖≤vt

(1−G (t− s)) δ
(
v2(t− s)

2 − ‖−→x −−→u ‖2
)

(v (t− s))n−1

×
g (s) δ

(
v2s2 − ‖−→u ‖2

)
(vs)

n−1 dsd−→u + . . .

For n = 3, we have ϕ (t) =
sin(vt‖−→α‖)

vt‖−→α‖ . It is well known that

L
(
sin(vt ‖−→α ‖)
vt ‖−→α ‖

)
=

1

v ‖−→α ‖arctg
(
v ‖−→α ‖
s

)
.

By using the result in [2], we obtain(
Γ
(
3
2

))2
4π3

∫ t

0

∫
‖−→u ‖≤vt

δ
(
v2(t− s)2 − ‖−→x −−→u ‖2

)
(v (t− s))

2

δ
(
v2s2 − ‖−→u ‖2

)
(vs)

2 dsd−→u

= F−1

(
1

v2‖−→α ‖2
L−1

[(
arctg

(
v ‖−→α ‖
s

))2
])

=
1

4πv2t ‖−→x ‖ ln
(
vt+ ‖−→x ‖
vt− ‖−→x ‖

)
.

Since, for every t ≥ 0, g (t) > 0, it is easy to verify that

Ct = inf
0≤s≤t

(1−G (s)) g (s) > 0 ,

and we have
Ct

4πv2t2 ‖−→x ‖ ln
(
vt+ ‖−→x ‖
vt− ‖−→x ‖

)
≤ f3 (t,

−→x ) .

Therefore, f3 (t,
−→x ) ↑ ∞ as ‖−→x ‖ ↑ vt.
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For n = 2 (i.e., −→u , −→x ∈ R2), we have [2], [7]:

2

4π2

∫ t

0

∫
‖−→u ‖≤vt

δ
(
v2(t− s)

2 − ‖−→x −−→u ‖2
)

(v (t− s))2

×
δ
(
v2s2 − ‖−→u ‖2

)
(vs)

2 dsd−→u =

(
v2s2 − ‖−→u ‖2

)− 1
2

4πvt
.

In the same way as for n = 3, we can show that f2 (t,
−→x ) ↑ ∞ as ‖−→x ‖ ↑ vt.
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