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GEROLD ALSMEYER AND ANDREA WINKLER

METABASINS — A STATE SPACE AGGREGATION FOR HIGHLY
DISORDERED ENERGY LANDSCAPES

Glass-forming systems, characterized by a highly disordered energy landscape, have
been studied in physics by a simulation-based state space aggregation. Choosing
a path-independent approach within the framework of finite Markov chains, this
article provides an aggregation procedure which, at an appropriate aggregation level,
leads to the definition of certain metastates, called metabasins in Physics (for their
properties see the Introduction). Roughly speaking, this will be the finest aggregation
such that transitions back to an already visited (meta-)state are very unlikely within
a moderate time frame.

INTRODUCTION

Supercooled liquids of glass forming systems are typical examples of high-dimensional
systems with highly disordered energy landscapes and our main concern behind this
work. Simulations have shown that many important characteristics of such a system are
better described by a process on the set of so-called metabasins (MB) than by the more
common process on the set of visited minima of the energy landscape (see [12]). Those
MB are formed in the following way by aggregation of suitable states of the describing
process (X, )n>o0 along a simulated trajectory:

Fixing a reasonable observation time 7', define xo = 0 and then recursively for n > 1
Xn := inf {k > Xn—1 | {Xkseoe, X7} N { X0y, X1} = Q]}.
Then the MB up to v :=sup{n > 0] x, < T} are chosen as
Vo i ={ Xy Xypii-1}, 0<n <o

Simulation studies have shown that local sampling within a MB does not affect typical
parameters of the process like the diffusion coefficient or the time to reach equilibrium.
Dynamical aspects are therefore fully characterized by the MB-valued process. Further-
more, this model reduction by aggregation, as proposed in [12] and [18], offers several
advantages (referred to as Properties 1-5 hereafter):

(1) The probability of a transition from one MB to any other one does not depend
on the state at which this MB is entered.

(2) There are basically no reciprocating jumps between two MB. This is in strong
contrast to the unaggregated process where such jumps occur very often: The
system falls back to a minimum many times before eventually cresting a high
energy barrier and then falling into a new valley, where it will again take many
unsuccessful trials to escape. These reciprocating jumps are not only irrelevant
for the actual motion on the state space but also complicating the estimation of
parameters like the diffusion coefficient or the relaxation time.
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(3) The expected time spent in a MB is proportional to its depth. Thus there is a
strong and explicit relation between dynamics and thermodynamics, not in terms
of the absolute but the relative energy.

(4) The energy barriers between any two MB are approximately of the same height,
that is, there is an energy threshold Fy such that, for a small €, it requires a
crossing of at least Ey — e and at most Fy + ¢ to make a transition from one MB
to another. Such systems with ¢ = 0 are called trap models (see [3]).

(5) The sojourn times and the jump distances between successively visited MB (mea-
sured in Euclidean distance) form sequences of weakly or even uncorrelated
random variables, and are also mutually independent, at least approximately.
Therefore, the aggregated process can be well approximated by a continuous
time random walk, which in turn simplifies its analysis and thus the analysis of
the whole process.

Despite these advantages, the suggested definition of MB has the obvious blemish that
it depends on the realization of the considered process and may thus vary from simulation
to simulation. To provide a mathematically stringent definition of a path-independent
aggregation of the state space, which maintains the above properties and is based on the
well-established notion of metastable states, is therefore our principal concern here with
the main results being Theorem 3.13 and Theorem 3.17. In this endeavor, we will draw
on some of the ideas developed by BOVIER in [4] and by SCOPPOLA in [21], most notably
her definition of metastable states.

Metastability, a phenomenon of ongoing interest for complex physical systems de-
scribed by finite Markov processes on very large state spaces, can be defined and dealt
with in several ways. It has been derived from a renormalization procedure in [20], by
a pathwise approach in [6], and via energy landscapes in [4], the latter being also our
approach hereafter. To characterize a supercooled liquid, i.e. a glass forming system at
low temperature, via its energy landscape was first done by GOLDSTEIN in 1969 [11] and
has by now become a common method. The general task when studying metastability,
as well originally raised in physics ([13], [19] or [18]), is to provide mathematical tools for
an analysis of the property of thermodynamical systems to evolve in state space along a
trajectory of unstable or metastable states with very long sojourn times.

Inspired by simulations of glass forming systems at very low temperatures with the
Metropolis algorithm, we will study (as in [21]) finite Markov chains with exponentially
small transition probabilities which are determined by an energy function and a param-
eter § > 0. This parameter can be understood as the inverse temperature and we are
thus interested in the behavior of the process as 8 — oco. We envisage an energy func-
tion of highly complex order and without the hierarchical ordering that is typical in spin
glass models. A good picture is provided by randomly chosen energies with correlations
between neighbors or by an energy landscape that looks like a real mountain landscape.
We will show that, towards an aggregation outlined above, the metastable states as de-
fined in [21] are quite appropriate because they have an ordering from a kind of “weak”
to a kind of “strong” metastability. Around those states we will define and then study
connected valleys [Definition 1.5] characterized by minimal energy barriers. In the limit
of low temperatures, any such barrier will determine the speed, respectively probability
of a transition between the two valleys it separates. More precisely, in the limit 8 — oo,
the process, when starting in a state =, will almost surely reach a state with lower barrier
earlier than a state with higher barrier [Theorem 2.1]. In the limit of low temperatures,
the bottom (minimum) of an entered valley will therefore almost surely be reached be-
fore that valley is left again [Proposition 3.4]. As a consequence, the probability for a
transition from one valley to another is asymptotically independent of the state where
the valley is entered. This is Property 1 above.
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Furthermore, since valleys as well as metastable states have a hierarchical ordering,
we can build valleys of higher order by a successive merger of valleys of lower order
[Proposition 1.12]. Given an appropriate energy landscape, this procedure can annihilate
(on the macroscopic scale) the accumulation of reciprocating jumps by merging valleys
exhibiting such jumps into a single valley [Subsection 3.2]. Hence, valleys of sufficiently
high order will have Property 2.

Beside the macroscopic process [Section 3|, which describes the transitions between
valleys, one can also analyze the microscopic process [Section 2], that is, the system
behavior when moving within a fixed valley. Here we will give a formula for the exit time
and connect it with its parameters [Theorem 2.8]. This will confirm Property 3.

Having thus established Properties 1-4 [Theorem 3.13], we will finally proceed to a
comparison of our path-independent definition of MB with the path-dependent one given
above. It will be shown [Theorem 3.17] that both coincide with high probability under
some reasonable conditions on the connectivity of valleys which, in essence, ensure the ex-
istence of reasonable path-dependent MB. We will also briefly touch on the phenomenon
of quasi-stationarity [Proposition 2.6] which is a large area [17] but to our best knowledge
less studied in connection with the aggregation of states of large physical systems driven
by energy landscapes.

Let us mention two further publications which, despite having a different thrust, pro-
vide definitions of valleys, called basins of attraction or metastates there, to deal with
related questions. OLIVIERI & ScOPPOLA [16] fully describe the tube of exit from a do-
main in terms of which basins of attraction of increasing order are visited during a stay
in that domain and for how long these basins are visited. In a very recent publication,
BELTRAN & LANDIM [2], by working with transition rates instead of energies, aim at
finding a universal depth (and time scale) for all metastates. However, we rather aim
at the finest aggregation such that transitions back to an already visited metastate are
very unlikely within a time frame used in simulations. This finest aggregation will lead
to valleys of very variable depth just as simulations do not exhibit a universal depth or
timescale.

1. VALLEYS

Let X be a Markov chain on a finite set S with transition matrix P = (p(r, $))r ses
and stationary distribution 7, and let £ : S — R be an energy function such that the
following conditions hold:

Irreducibility: P is irreducible with p(s,s) > 0 and p(r,s) > 0 iff p(s,r) > 0 for
all m,s € S.

Transition Probabilities: There exist parameters 8 > 0 and g > 0 with vg —
0, Bvg — oo as f — oo such that

e BUB()=B(r) +vs) < plr,s) < e BUE(s)=E(r)T—7s)
for all distinct r, s € S with p(r,s) > 0. Furthermore,
p*(r,s) == lim p(r,s)
B—o00

exists for all r, s € S, is positive if E(r) > E(s) and = 0 otherwise.
Reversibility: The pair (7, P) satisfies the detailed balance equations, i.e.

m(r)p(r; s) = m(s)p(s,r)

for all r,s € S.
Non-Degeneracy: E(r) # E(s) for all r,s € S,r # s.
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We are thus dealing with a reversible Markov chain with exponentially small tran-
sition probabilities driven by an energy landscape. As an example, which is also the
main motivation behind this work, one can think of a Metropolis chain with transition
probabilities of the form

1 +
_ —B(E(s)—E(r))
r,s) = ——¢€ .
p(r, ) )
Here (3 is the inverse temperature and C(r),r € S, is a parameter, independent from [,
giving the number of neighbors of . For 75 := max,cs In(C(r))(B + 1)7'/2 the above
conditions are fulfilled. Let us start with the following basic result for the ratios of the
stationary distribution.

Lemma 1.1. For any two states r,s € S with E(r) > E(s), we have

e*/@(E(r)*E(s)+2’Yﬁ) < M < efﬂ(E(T)fE(s)f2'y[3).

(s
Proof. Reversibility and the assumptions on the transition probabilities imply
max (77(7“)6_7’35, W(s)e_ﬁ(E(T)_E(s))_'wﬁ> < 7 (r)p(r,s)
=m(s)p(s,r)
min (ﬂ(r)ewﬁ’W(S)e—ﬁ(E(T)—E(S)H’mB) .

IN

In particular,
m(r)e ™7 < m(s)e PECED 00,
w(s)e BB =B 138 < ()58
and therefore
(BB~ B(s) 23 m(r) < e~ BB =E(9) 4276
7(s)

as claimed. O

Under the stated assumptions, SCOPPOLA [21] has shown the existence of a successive
filtration (aggregation) S = M© > MM 5> .. 5 M®™ = {55}, n € N, of the state
space such that the elements of each set M (9,1 < i < n, can be called metastable in the
following sense:

e They arise from the local minima of the energy function or certain modifications
of it.

e There is a lower bound on the expected time needed for a transition from mi to
mey for any mi, ms € M which increases very fast with i.

e There exists a constant C' such that

P, (X, ¢ MU+D) < ¢=CF
for all m € M(i)7 0 <i<n-—1, and sufficiently large t.
This filtration starts with
MW = {s € S|E(s) < E(r) for all r ~ s},

and deletes one local minimum at each step. In fact, the local minimum with minimal
activation energy for a transition to another minimum is deleted, see [21] and [20] for
further details.
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F1aure 1. Example of an energy landscape with minima shown as black
dots (e)

Example 1.2. For the simple energy function depicted in Figure 1, a successive ap-
plication of the algorithm from [21] as illustrated in Figure 2 leads to the following
decomposition into subsets of metastable states:

MY ={2,4,6,8,10,12,14}, M® ={2,4,6,10,12,14},
M® ={2,4,6,10,14}, M® ={2,4,10,14},
M®) = {4,10,14}, M© = {4,14},

M = {4}.

Based on the filtration of S just described, we now proceed to a definition of a sequence
of metastable sets associated with the metastable states which will induce the MB. In
order to do so, we must study first minimal paths between two states and maximal
energies along such paths.

Definition 1.3. (a) For any two distinct states r,s € S, let
L(r,s) == {(x0ye.., zi) |k €N, zg =1, 21, = 8,
x; # xj, p(Ti, xig1) >0for 0<i<k—1,7+#j}

be the set of all finite self-avoiding paths from r to s having positive probability.
For any such path v = (yo,..., &) € I'(r, 8), let |y| :== k be its length. We further
write t € v if t € {71,..., Vi }-

(b) A self-avoiding path v = (y1,...,7%) from r to s is called minimal if its maximal
energy maxi<;<x £(7;) is minimal among all 4/ € I'(r, s). The set of these paths
is denoted I'*(r, s).

(c) The essential saddle z*(r,s) between r and s is then defined as

z"(r,s) == argmax,c, B(t) € S
for any v € I'*(r, s).

As for (c), it is to be noted that, due to the assumed non-degeneracy of the energy
function, the essential saddle is unique, which means that it does not depend on (as it
must) which minimal path we choose in the definition of z*(r, s). There may indeed be
several minimal paths, every single one thus crossing the saddle at some time. With the
help of these notions the valleys can now be defined in a quite concrete way. Let us label
the local minima as m™,...,m™ so that M = {m® .. m™} for each i = 1,...,n.

Definition 1.4. For each m € M®, 1 <4 <n, let

V<(i) (m) = {s € S‘E(z*(s,m)) < E(2"(s,m’)) for all m’ € M(i)\{m}} ~



8 GEROLD ALSMEYER AND ANDREA WINKLER

E(s) | i=1 E(s)

Es) | i=3 "B | iza ’
M |
\ \/\’ A
" B | ize | ’

\ /\ e metastable states M) 1< <7
TN \ - 4 minimal hill

o valley

S

FIGURE 2. Successive application of the algorithm in [21] to the energy
landscape in Figure 1. For each step i, the metastable states as well as
the corresponding valleys are shown.

We say that state s is attracted by m at level i, expressed as s ~» m at level i, if

B(="(s,m)) = min B(="(s,n))

and every minimal path from s to a state m’ € M\ {m} with E(z*(s,m’)) = E(z*(s,m))
hits V<(l) (m) at some time. Finally, let

(i) :==inf {i < j < njm® ~» m at level j for some m € M(j)}

denote the minimal level at which the minimal state m(®) becomes attracted by a minimal
state of superior level.

Definition 1.5. (a) Initialization: For each m € M) define

VA (m) = {s € S's ~>m at level 1}.
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as the wvalley of order 1 containing m and let
NO . U vV (mO))

be the set of non-assigned states at level 1.

(b) Recursion: For 2 < i <nandm € M@ define

V@O (m) :=vi-Y(m) U {8 e NG1 ’ s~ m at level z} U U VO (m))
J:l(g)=1
m wsm at level i

as the wvalley of order i containing m and let

C

NG — UV(W) ”)

be the set of non-assigned states at level i.

Here is a more intuitive description of what the previous two definitions render in a
formal way: First, we define, for each level i and m € M, the set V<(i) (m) of those states
s that are strongly attracted by m in the sense that E(z*(s,m)) is strictly smaller than
E(z*(s,m’)) for any other m’ € M. Then, starting at level one, each valley V() (m),
m e MW is formed from V( )( ) by adjoining all further states s attracted by m at
this level. This leaves us with a set of non-assigned states, denoted N1 In the next step
(level 2), any V() (m) for m € M® is obtained by adjoining to V(1) (m) all those s € N1
which are attracted by m at level 2. Observe that this ensures V<(2)(m) C V@ (m).
Moreover, if m(!) is attracted by m at level 2, then V1) (m(1)) is merged into V(? (m) as
well. If no such m exists (thus I(1) > 2), it remains untouched until reaching level (1)
where its bottom state m(!) becomes attracted by some m’ € M 1) causing its valley
to be merged into V(1)) (m’). This procedure continues in the now obvious recursive
manner until at level n all states have been merged into one valley. Obviously, valleys of
the same order are pairwise disjoint. Also, valleys once formed at some level can only be
merged as a whole and will thus never be ripped apart during the recursive construction.
For the energy function depicted in Figure 1, the successively derived valleys of order
i =1,...,7 are shown in Figure 2.

Before proceeding to results on the general shape of valleys, we collect some basic,
mostly technical properties of essential saddles which will be useful thereafter.
Proposition 1.6. For any r,s,u € §, 0 < i < n, my,ms € MO my # my, and
r1,T2 € S with x1 € V<(l) (m1) and x5 € 1740 (ms), we have

(a) z*(r,s) = z*(s,r).

(b) E(z*(r,s)) < E(z"(r,u)) V E(z"(u,)).

(c) E(2*(w2,m2)) < E(2*(x9,m")) for allm’ € M,
(d) E(z"(x1,mz)) = E(2"(m1,m2)).

(e) E(2"(z1,22)) = E(z"(m1,m2)).

(f) z*(x1,x2) # 1.

Proof. Parts (a) and (b) are obvious.

For (c) we use an induction over ¢ and note that there is nothing to show when ¢ = 1.
For general i, we must only verify that E(z*(z2,m2)) < E(2*(x2,m’)) for all m’ € M©®)
if 7o € VU (m) for some j < i such that I(j) = i and mU) ~ my at level i (due
to the recursive definition of V(9 (m)). But the latter ensures that F(z*(x2,m))) <
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E(z*(z2,n)) forallm € MU > M® (inductive hypothesis) as well as E(z*(m), my)) <
E(z*(mY m/)) for all m' € M®. Consequently, for any such m/,

E(2" (w2, m2)) < B(2" (22, m( )V E(@(mY, ms))

< E(z(z2,mY)) v E(z"(mY),m"))
< B(z* (w2, mY)) V E(z" (22,m")))
= B(2" (22, m))

as asserted.
For assertion (d), note that E(z*(z1,m2)) > E(2*(z1,m1)), which in combination
with (a) and (b) implies

E(z*(m1,m2)) < E(z*(m1,21)) V E(z*(x1,m2)) = E(2"(z1,m2))
and then further
E(z*(z1,m2)) < E(z"(z1,m1)) V E(z"(m1,m2)) < E(2"* (21, m2)).

<E(z*(z1,m2)) <E(z*(z1,m2))

So the above must be an identity, i.e. E(z*(x1,m2)) = E(z*(m1,m2)).
Turning to part (e), we first infer with the help of (¢) and (d) that

E(z"(x1,m1)) < E(z" (21, m2))
= E(z*(m1, m2))
(1) < E(z*(my,x2)) V E(2" (22, m2))
= E(2*(x2,m1))
< E(z%(x2,21)) V E(z"(x1,m1))
thus
(2) E(z*(x1,m1)) < E(z" (21, x2)).

Together with the just shown inequality E(z*(mi,m2)) < E(2*(xz2,m1)) (see (1)) and
another use of (c¢), this yields

E(z"(21,22)) = E(2"(x2,21)) V E(2" (21, m1)) = E(2"(22,m1)) = E(2"(m1, ma)).
Finally, we infer with the help of (2) that
E(z*(z1,22)) > E(z"(x1,m1)) > E(x1)

and thus z*(z1,z2) # 1 as claimed in (f). O
Remark 1.7. It is useful to point out the following consequence of the previous proposi-
tion. If, for an arbitrary state s and any two distinct metastable states m,n € M@ there
exists a minimal path v from s to n that hits a state r with E(z*(r,m)) < E(z*(r,n),
then there is also a minimal path from s to n that passes through m. Namely, if we

replace the segment from r to n of the former path by the concatenation of two minimal
paths from r to m and from m to n, then the maximal energy of this new path is

E(z*(s,n)) V E(z*(r,m)) V E(z*(m,n)) < E(z"(s,n)) V E(z*(r,m)) V E(z*(r,n))
= E(z*(s,n)) V E(z*(r,n))
= E(z"(s,n)),

by Proposition 1.6(b), whence the new path has to be minimal from s to n as well. This
yields two facts:
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(a) A minimal path from s to n, where s ~» n at level 4, hits V<(i) (n) before it hits
any r with FE(z*(r,m)) < E(z*(r,n)) for some m € M®. Otherwise, since the
subpath from 7 to m can be chosen to stay in {t|E(z*(t,m)) < E(z*(t,n))} and
thus E(z*(s,m)) = E(z*(s,n)), there would be a path from s to m not hitting
VY (n). |

(b) If s ~ n at level i and m € M\{n} with E(2*(s,n)) = E(z*(s,m)), then a
minimal path from s to m does not only hit V<(Z) (n) at some time, but in fact
earlier than any other valley V<(1) (m’),m" € MO\{n}.

Lemma 1.8. Let 1 <i < j <n, m=m® and s € VD (m). Then s € V<(j)(m’) for
some m’ € MY implies 1(i) < j, m € V<(J)(m’) and thus VO (m) c VU (m/).

In other words, whenever V() (m()) contains an element s which at some higher level
J belongs to some V<(J)(m'), m’ € MU, the same must hold true for m(* itself implying

V@O (m®) c VW (m'). Conversely, this guarantees that V() (m)) will have no common

elements with any V<(j ) (m’) at levels j < (i) where it has not yet been merged into a
valley of higher order.

Proof. Let us first note that, under the given assumptions,
E(z*(s,m)) < E(z*(s,m')) < E(2*(s,n))
for all n € MU\ {m'}, whence
E(z*(m,n)) < E(z"(s,m)) V E(z*(s,n)) = E(2"(s,n)) < E(z*(s,m)) V E(z*(m,n))
entails E(z*(m,n)) = E(z*(s,n)) for all such n. Using this fact, we find that
E(z*(m,m)) < E(z*(s,m)) V E(z"(s,m)) < E(z*(s,n)) = E(z*(m,n))

for all n € MW\ {m'}, which implies m ~» m’ at level j and thus [(i) < j as well as the
other assertions. g

Proposition 1.9. For every m € M and 1 <i <n, V<(i) (m) is connected.

Proof. Pick any s € V<(i) (m), any minimal path from s to m and finally any intermediate

state r along this path for which r € V<(i) (m) must be verified. For every m’ € M\ {m},
we find

E(z*(r,m)) < E(z*(r,s)) V E(2"(s,m))
= E(z*(s,m))
< E(z*(s,m"))
< E(z*(s,r)) VE(z*(r,m"))

<E(z*(s,m’))
= E(z*(r,m")),

which shows r € V<(i) (m) as required. O

Note that we have even shown that a minimal path from a state in V<(i) (m) to m will
never leave this set. We may expect and will indeed show as Proposition 1.11 below that
V@ (m) is connected as well. The following lemma, is needed for its proof.

Lemma 1.10. Given 1 <i<n,m € M@ and s ~ m at level i, let v = (1,.-,7) €
I*(s,m) be a path such that E(z*(yi,m)) < E(z*(vyi,n)) for all n € MW\{m}, and

which stays in V<(i) (m) once hitting this set (such a v exists by Remark 1.7 (a)). Then
vj ~> m at level © for each j =1,.... k.
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Proof. There is nothing to prove for v; = s and any v, € V<(i) (m). So let r be any other
state visited by v, pick an arbitrary n € MW\ {m} with E(z*(r,n)) = E(z*(r,m)) and
then any minimal path 7 from r to n. Let o be the subpath of v from s to 7. We must show
that 7 hits V<(Z) (m). First, we point out that the maximal energy E(z*(s,r))VE(z*(r,n))
of o7, the concatenation of o and 7, satisfies

E(z%(s,n)) <E(z%(s,r)) V E(z"(r,n)) < E(z"(s,m)) V E(z"(r,m))

=E(2"(s,m)) < E(2%(s,n)),

implying o7 € I'*(s,n) and, furthermore,

E(z"(s,7)) V E(z*(r,n)) =E(z*(s,m)) V E(z"(r,n))

=E(2"(s,m)) V E(z"(r,m)) = E(z"(s,m)).

Thus o7 must hit V<(i) (m). But since o does not hit V<(i) (m) by assumption, we conclude
that 7 must hit V<(l) (m). Since 7 € I'*(r,n) was arbitrary, we infer r ~» m at level i. O

The next two propositions provide information on the shape of the valleys and their
nested structure.

Proposition 1.11. For everym € M® and 1 <i<n, V(® (m) is connected.

Proof. We use an inductive argument. If i = 1, the assertion follows directly from the
definition of the level-one valleys because any s € V(1) (m), m € M may be connected
to m by a minimal path that eventually enters V<(1) (m) without hitting any other V<(1) (n)
and is therefore completely contained in V(l)(m) by the previous lemma.

Turning to the inductive step, suppose the assertion holds true up to level i — 1. Fix
any m € M® and notice that, by the inductive hypothesis, V(i_l)(m) as well as all
V) (m)) with I(j) = i and m9) ~» m at level i are connected. Now, since these m{)
as well as all s € NG—1 attracted by m at level i may be connected to m by minimal
paths as assumed in Lemma 1.10, we conclude that V() (m) is also connected. O

The second proposition shows the nested structure of our construction of valleys.

Proposition 1.12. The following inclusions hold true:

(a) VW (m) C ... c VO (m) for eachme M@, 1<i<n.

(b) V@O (m) CVU(n) for each 1 <i<j<n,ne M9 andme MD VO (n).
Proof. Since there is nothing to show for (a) we move directly to (b). But if m €
M® NV (n), then the definition of valleys ensures the existence of 1 < k < j —i and of
N1,y g1 € MUN\M such that n,_; ~ n, at level I, for each p = 1,..., k and levels
i <ly <..<lg =], where ng := m and ni := n. As a consequence,

VO (m) cvW(ng) C ... c V-1 (n,_1) C VO (n)

which proves the asserted inclusion. O

To finish the analysis of the shape of the valleys we show that they have the following

important property: a special class of minimal paths from the inside of any V) (m) to

the outside of it must hit its interior V<(i) (m). But in order to show this we must first

verify that all states attracted by m at level i belong to V@ (m).

Lemma 1.13. For each 1 <i<nandm € M(i), we have that
{s € S’s ~m at level z} c V@ (m)

C {s € S‘E(z*(s,m)) < E(z*(s,m")) for all m' € M(i)} )
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Proof. For the second inclusion it suffices to refer to Proposition 1.6(c). The first inclusion
being obviously true for s € N1 we turn directly to the case when

s~ nq at level [{, mnj ~ no at level I, ... ng_1 ~ ng at level g

with k >1and 1 <I; < .. <l <i—1. Here, n; denotes the first minimum to which
s is attracted (thus s € V(1) (n;)), while ny is the last minimum of this kind in the
sequence. We may assume without loss of generality that n; # m for all j, for otherwise
the assertion is clear.

We show now that n; ~» m at level ¢ which in turn implies n; ~~ m at level 4
for all 1 < j < k. As a consequence, n, € V@ (m) and thus s € V@ (m). If
E(z*(n1,m)) < E(z*(ny,m")) for all m’" € M@\{m}, the assertion is proved. Hence
suppose E(z*(n1,m)) > E(z*(n1,m’)) for some m’ € M®\{m}. Then

E(z*(s,m)) < E(z*(s,n1)) V E(z*(n1,m))
2*(s,m1)) V E(z*(n1,m))
2" (s,m1)) V E(2"(s,m))

~—

implies F(z*(s,m)) = E(z*(s,m’)) and also that the concatenation of any minimal
path ~ from s to n; and any minimal path 7 from n; to m’ (with maximal energy
E(z*(s,n1))VE(z*(n1,m'))) constitutes a minimal path from s to m’ and must therefore

hit V”(m). Note that we can choose v to stay in V(1) (ny) since s € V1) (n) and
V(1) (ny) is connected. Now, if 7 hits V<(i) (m), then E(z*(n1,m)) = E(z*(n1,m’)) and
we are done. Otherwise, v hits V<(i) (m) implying V(1) (ny) N V<(i) (m) # (. Now use
Lemma 1.8 to conclude n; € V<(i) (m) and therefore ny ~» m at level i. This completes
the argument for the first inclusion. O

We provide too further lemmata that will be needed later on.

Lemma 1.14. Let m € M@ 2 ~» m at level i and y ¢ VI (m). Then either every
minimal path from x to y hits the set V<(l) (m), or E(z*(z,y)) > E(z*(z,m)).

Proof. Suppose there is a minimal path + from z to y avoiding V<(i) (m). Since y ¢
V@ (m), it is not attracted by m at level i implying the existence of some m’ € M®)
with E(z*(y,m')) < E(2*(y,m)) and of some 7 € T"*(y, m') avoiding V<(i) (m). Hence, the
concatenation y7 avoids V<(i) (m) and must therefore have maximal energy larger than
E(z*(x,m)). Consequently,

E(z"(z,m)) < E(z"(z,y)) V E(z"(y,m'))
< E(Z"(z,y)) V E(Z"(y,m))
< E(Z(z,y) V E(Z (z,m)),
and thus E(z*(x,y)) > E(z*(z,m)). O

In order to state the second lemma, let us define the outer part 9™V of a valley V to
be the set of those states outside V' which are adjacent to a state in V. With the help
of the previous result, we can easily show that 97V contains only non-assigned states at
any level where V has not yet been merged into a larger valley.

Lemma 1.15. For any 1 <i,j < n and m = m® with (i) > j, the outer part 9tV of
the valley V := VUM (m) is a subset of NU) and E(2*(s,m)) = E(s) for every s € 0TV
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Proof. First, let s € 9tV and suppose that s ¢ N . Then s ~ m’ at level k, in
particular s € V*) (m’) for some m’ € M* and k < j. Pick any 7 € V with 7 ~ s and
note that » € 07V (m’). W.lo.g. we may assume that r ~ m at level j A i. Then
Lemma 1.14 (with x = r and y = s) ensures that either E(z*(r, s)) > E(z*(r,m) > E(r),
thus z*(r, s) = s and E(r) < E(s), or 7 € V-(m) and, for some n € MU")
E(z%(r,m)) < E(z"(r,n))

“(r, )
“(r, )

2" (r, s

*

)V E(ZY(
)V E(ZY(
)V E(=(
)

z
z

o

< E(

(3) < E(
< E( z
= F(

s)V E(z*(r,m)),

and thus again E(r) < E(s). On the other hand, by the very the same lemma (now with
x = s and y = r), we infer E(r) > E(s) which is clearly impossible. Consequently, s
must be non-assigned at level j as claimed.

For the second assertion take again s € 97V and a minimal path v = (s,7,...,m)
from s to m with » € V. Again, by use of Lemma 1.14, we find either E(z*(r,m)) <
E(z*(r,s)) = E(s) or r € V(m), leading analogously to equation (3) to E(z*(r,m)) <
E(s)V E(z*(r,m)) and thus E(z*(r,m)) < E(s). In conclusion, both cases result in

E(z*(s,m)) = E(s) V E(z*(r,m)) = E(s),
finishing the proof. |

The reader may wonder why valleys are defined here via essential saddles and not via
the at first glance more natural overall energy barriers, viz.

4 I = inf [
() (87m) ’)’611}(18,771) (717 7’Y|’y\)

with

n

I(s1,0y8n) == Y (E(si) — E(si-1))"

i=1
for a state s in a valley and the pertinent minimum m. This latter quantity, also called
activation energy, is indeed an important parameter in [21]. The reason for our definition
becomes clear when regarding the last proposition which shows the nested structure of
valleys of increasing order and which may fail to hold when choosing an alternative
definition based on the activation energy. Valleys that are formed in one step may
then be ripped apart in the next one. This happens, for instance, if there is just one
large saddle along the path to a metastable state and several small ones, lower than the
essential saddle, along the paths to another minimum such that their total sum is larger
than the big saddle. In further support of our approach, it will be seen later that the
essential saddles are the critical parameters for the behavior of the aggregated chain (see
Theorem 2.4).

In a nutshell, by going from (V) (m)),,c e to (VEFD(m)),.cas6+1), some valleys are
merged into one (with only the smaller minima retained as metastable states) and addi-
tionally those states from N®) are added which at level i were attracted by metastable
states now all belonging to the same valley. This induces the following tree-structure on
the state space:

e Fix @ = sp.
e The first generation of the tree consists of all m € M®=Y UN®=1 and are thus
connected to the root.
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e The second generation of the tree consists of all m € M®=2 U N©®=2) and m is
connected to the node k of the first generation for which E(z*(m, k)) is minimal
or to itself (in the obvious sense).

e This continues until in the n*" generation each state is listed and connected either
with its unique point of attraction in the previous generation or with itself.

Example 1.16. For the energy function of Example 1.2 and depicted in Figure 1, the
described tree is shown in Figure 3. The sets of non-assigned states at the different levels

FI1GURE 3. The tree belonging to Figure 1

are
N ={3,5,7,9,11,13}, N® ={3,5,7,11,13},
N® ={3,5 7,11}, N®W = {3,711},
N® = {711}, NGO = {11},
N =9,

At each level i of such a tree the subtree rooted at a node m € M® consists of the
states in the valley V() (m). A similar graph-theoretical modeling in order to visualize
high dimensional energy landscapes has been used, for example, by OKUSHIMA et al. in
[15]. These authors work with saddles of paths as well. In contrast to our approach,
every possible path, that is every possible saddle is represented as a node in the tree.
But as we will see, in the limit of low temperatures (8 — oo) the essential saddle is all
we need.

Now there are two fundamental directions for further investigations:

(1) Microscoric VIEW: What happens while the process visits a fixed valley V' (of
arbitrary level)?
In Section 2, we will show that during each visit of a valley V' its minimum will
be reached with probability tending to 1 as 8 — oo, and we also calculate the
expected residence time in V', establish Property 3 stated in the Introduction
and comment briefly on quasi-stationarity.

(2) Macroscopic VIEW: How does the process jump between the valleys?
In Section 3, by drawing on the results of Section 2, we will show that an ap-
propriate aggregated chain is Markovian in the limit as § — oo and calculate its
transition probabilities. With this we will finally be able to provide the definition
of MB and establish Properties 1, 2 and 4 listed in the Introduction.

2. MicroscorIiC VIEW: FIXING A VALLEY

Based on the provided definition of valleys of different orders, we are now going to
study the process when moving in a fixed valley.
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2.1. Trajectories for § — co. The first goal in our study of the microscopic process
and also the basic result for the subsequent analysis of the macroscopic process deals
with the probabilities of reaching certain states earlier than others. From this we will
conclude that in the limit 8 — oo (which is the low temperature limit in the Metropolis
Algorithm) the process, when starting somewhere in a valley, will visit its minimum
before leaving it.

For A C S and z € S, we define
7o =inf{n > 1|X,, € A}, 7, : =7, and N(z):={ye Slp(z,y) > 0}.
Two states z,y with p(z,y) > 0 are called neighbors (z ~ y) and N (z) the neighborhood
of . Hence, S may (and will) be viewed as a graph hereafter with edge set {(z,y)|z ~ y}.

Theorem 2.1. Let xz,y,z € S be any pairwise distinct states satisfying E(z*(x,z)) >
E(z*(z,y)) and z*(x,z) # x. Then there exist nonnegative constants K(B) satisfying
supg~o K(B) < 0o (and given more explicitly in Proposition 2.4 below) such that

B—o0

Po(r: <7y) < K(B) e PEE @D =EE@0=T0) = e(z,y, 2, 8) =5 0.

Thus in the limit of low temperatures (8 — o0), only the smallest of all possible
energy barriers affects the speed of a transition. In particular, we have the following
result which is preliminary to the subsequent one.

Theorem 2.2. Given distinct z,y € S and m € MY such that x ~ m at level i and
y ¢ VO (m), let B :={z € S|E(z*(x,2)) > E(z*(x,m))}. Then it holds true that

]Pw(Ty < Tm) < E(x,m,y,ﬁ)]lB(y)

+ Z E(x7yvzvﬁ)+ Z E(z7m7y7ﬁ) ]lB“(y)
z:E(2)>E(z*(z,y)) z€V<(i)(m)

= &am,y,B) 3 0.

Theorem 2.3. Given m € M@, x € VO (m) and y ¢ VO (m), let k < i be such that
mo :=x ~» mq at level 1, mq1 ~ mo at level I3, ... mpr_1 ~> myp =m at level [},

for suitable 1 < I3 < ... < I <4, m; € M) for j = 1,...k determined by the
construction in Definition 1.5. Then

k k
Polry < 7m) <> Pry o (1 <7y) < > E(myor,my,y, 8) 25 0.

j=1 j=1

For the valleys as defined here this confirms Property 1 stated in the Introduction:
If B is sufficiently large, then with high probability the minimum of a valley is visited
before this valley is left.

The proof of Theorem 2.1 will be accomplished by a combination of two propositions
due to BOVIER et al. [5] for a more special situation. We proceed with a reformulation
of the first one in a weaker form and under weaker assumptions. The proof is the same
as in the original version that is why we scip it here.

Proposition 2.4 (compare Theorem 1.8 in [5]). Let z,y,z € S be pairwise distinct such
that z*(x,z) # x. Then

Po(r. < 72) < K(f) |S|_1 e—ﬁ(E(z*(0672))—13(06)—2’75)7
]Pw(Ty < T) > |S|_1 e—ﬁ(E(Z*(06,11))—13(06)4-5’Y/3)7

where K () := |S| max,cs |N(r)

(|S|e*5(mi“a¢b:E(a)>E<b>(E(a)*E(b))*%fs) + 1),
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The second proposition needed to prove Theorem 2.1 is
Proposition 2.5 (see Corollary 1.6 in [5]). Given I C S and distinct x,z € S\I,

P (7_ <r ) _ ]Pw(Tz < TIU{z})
e ! IP>at(7-1u{z} < Tz)

holds true.

With this two Propositions, the proof of Theorem 2.1 can now be given quite easily.

Proof. (of Theorem 2.1) By first using the previous result and then Proposition 2.4 (with
K (B) as defined there), we find

< T{ay})

Py (7
Pm(T{z yr < Tz)
P
P

IF)Q:(Tz < Ty) z
Po(r: < 72)
Ty < Tr)
K(B) e~ BE(" (2,2))~E(2"(2,y)) = T78)

IA

The argument is completed by noting that E(z*(z,2)) > E(z*(z,y)) and K(8) > 0
converges to

S| max |V ()
as f — oo. O

Proof. (of Theorem 2.2) If B occurs, the asserted bound follows directly from Theorem
2.1. Proceeding to the case when B¢ occurs, i.e. E(z*(x,y)) < E(z*(x,m)), we first point
out that
Po(ry < Tm) = Pu(ry < T, E(X,) > E(2"(x,y)) for some n < 7))
+ Po(1y < T, E(X,) < E(2"(x,y)) for all n < 7))

= P1 + PQ.
For all z € S with E(z) > E(2*(x,y)), we have z*(x,z) # x and E(z*(z,2)) >
E(z*(z,y)), for

E(z"(z,2)) 2 E(z) > E(z"(z,y)) > E(x).
Therefore, by an appeal to Theorem 2.1,

Py < Py(r. < 7y for some z with E(z) > E(2*(z,y)))

< Z P.(m. < 1y)

2:E(2)>E(2*(z,y))

Z E(:c,y,z,ﬁ).

2:E(2)>E(2*(z,y))

IA

To get an estimate for Py, note that every minimal path from x to y must pass through
V<(l) (m) (Lemma 1.14). With this observation and by another appeal to Theorem 2.1,
we infer
Po(ry < Tm, B(Xp) < E(z*(x,y)) foralln < 7)) < Y Pu(ry < 7m)
zEVéi)(m)

< Y elzmyB),

zGVéi)(m)
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having further utilized that (by Proposition 1.6(f) and (e)) 2*(z,y) # z and

E(z*(z,m)) < E(z*(z,m'))
< E(2"(z,9) VE(z"(y,m'))
< E(2"(2,9) V E(z"(y,m))
< E(Z(2,9) V E(z7(2,m))
= E(z%(z,9))
for some m’ € MO\{m} with E(z*(y,m)) > E(z*(y,m')), which must exist since y ¢
V@ (m). O

Proof. (of Theorem 2.3) We first note that y ¢ V() (m;) for all 1 < j < k. With
mo,..., My as stated in the theorem (recall mg = x and my = m), we obtain
Po(ry < Tm) =Po(Timy < Ty < Tim) + Po(my < Tiny ATim)
<P (1y < Tm) + Po(1y < Tny)
< Priy (7y < Tin) + Py (Ty < Tiny) + Pa(1y < Ty )

k
< ZPM.f—l(Ty < Ty )-
i=1

Finally use Theorem 2.2 to infer
Pm.f—l (Ty < ij) S 5(mj—17 m;,Y, /8)
foreach j =1,.... k. O

2.2. Quasi-stationarity and exit time. Naturally, several other questions concerning
the behavior of the process when moving in a fixed valley are of interest, and quasi-
stationarity may appear as one to come up with first. For a given valley V' (of any level),
a quasi-stationary distribution v = (v(j));ev is characterized by the quasi-invariance,
viz.

(5) ]PV(Xn = j|TS\V > n) = V(]) for all] ev,
but also satisfies
(6) ILm P (Xn =jlts\zv >n) =v(j) foralljeV

if p is an arbitrary distribution with p(V') = 1. The latter property renders uniqueness
of v. Since S is finite, existence of v follows by an old result due to DARROCH & SENETA
[7]. It is obtained as the normalized eigenvector of the Perron-Frobenius eigenvalue
A = A(V) of a modification of P. This eigenvalue A is also the probability for the chain
to stay in V at least one step when started with v, thus P,(7ye > 1) = A\. As an
immediate consequence, one finds that the exit time 7y has a geometric distribution
with parameter 1 — A\ under P,. In the present context, this naturally raises the question
how the parameter A relates to the transition probabilities or the energies of the valley
V. A simple probabilistic argument shows the following basic and intuitively obvious
result concerning the eigenvalues associated with the nesting V1) (m) c ... ¢ V) (m)
(Proposition 1.12) for any 1 <i <nand m € M®.

Proposition 2.6. Fizing any 1 < i < n and m € M, let \9) = NV (m)) for
j=1,.,i. Then XV < ... < \®,
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Proof. Write v; as shorthand for the quasi-stationary distribution on V) (m) and T} for
TS\V(J‘)(m). Plainly, Tj S Tj+1

A" = P (Ty >n) < Py (Tj41 >n)

= / ]P)Xk. (Tj+1 >n— k) d]P)l,j
{Tj+1>k}
(7) = ]PVJ' (Tj+1 > k) Puk (Tj+1 >n— k)?

where . (z) := Py, (X), = 2|Tj41 > k) for z € VU, Since S is finite and by virtue of
(6), we have that px < 2vj41 when choosing k sufficiently large. For any such &, we find
that (7) has upper bound

2P, (Tj41 > k) Py, (Tjy1 >n—k) = 2P, (Tjp > k) AUk,

Hence, we finally conclude
. . i/n .
A9 < (2 P, (Tjt1 > k) ()\(J-i-l))—k) AU+
and thereby the assertion upon letting n — oc. |

Another question is how long a given valley is visited and thus about its exit time.
There is an extensive literature on exit problems for different kinds of stochastic processes.
We mention [22, Ch. XI.2] and [8, Ch. 4, §4, Theorem 4.1] as two related to our work.
The latter one studies perturbed systems on a continuous space. We can discretize their
argument to get, with use of the main theorem in [21], a nice result on the time needed
to leave a valley 1740 (m) for any fixed 1 < i < nand m € M®@ . This result is more
explicit than the one in [16, Proposition 4.6].

Definition 2.7. For 1 < i < n, N := N®, we define the following stopping (en-
trance/exit) times:
féi) = The
¢9 = inf {k > )X, e N}
€9 = inf {k > )X, € NC} , n>0.

The entrance times &(f) mark the epochs when a new valley is visited, while the exit
times Q(f) are the epochs at which a valley is left. The reader should notice that we do
not restrict ourselves to valleys of order 7 but include those valleys which up to order ¢
have not yet been absorbed by some larger valley. Exit and entrance times never coincide
since there is no way to go from one valley to another without hitting a non-assigned
state - crests are always non-assigned (see Lemma 1.15).

In this section, we will focus on Céi) for any fixed ¢, thus writing (o := Céi) hereafter,
but later for the macroscopic process the other times will be needed as well.

For each valley V) (m), m € M@ let us define
(8) Sm = ss,il) = argmilcot v (myB(8) = argmingepy o m) £(2"(m, 5)),
where the second equality follows from Lemma 1.15.

Theorem 2.8. Let m € M. Then

1
lim —

ﬁ%wﬁlnETCO = E(sm)— E(m)

for any r € VO (m).
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For the upper bound, we need a result from [21], which in our notation is:
Proposition 2.9 (see Main Theorem (iv) in [21]). For any 1 < ¢ < n, 8 sufficiently
large and t > 2" exp(B(E(s,i-1 ) — E(mU~Y) + 2i|S|y5)),

sup Py (700 > t) < exp(—Af)
reM(E-1)

holds true with a positive constant A, where M(®) = S should be recalled.
This will now be used to show the following result.

Lemma 2.10. Fiz 1 <i<n,m & M® and r € VO (m). Then, for any 3 sufficiently
large and t > 2¢ exp(B(E(sm) — E(m) + 2(i + 1)|S|vg)), it holds true that

P.(¢o < (i+1)t) > %.

Proof. Let us first note that we can always arrange for m being equal to m(®) by suffi-
ciently decreasing the energy function at any m’ € M\ {m} so as to make F(s,,)—E(m)
minimal among all states in M. This affects neither the valley V) (m) and its outer
boundary nor the distribution of (y when starting in m, for this distribution does not
depend on the energy landscape outside of V) (m)Ud+V# (m). When applying the pre-
vious proposition, the constant A may have changed but is still positive which suffices
for our purposes. So let m = m(® hereafter.

Fix t > 2 exp(B(E(sm) — E(m) 4+ 2(i + 1)|S|ys)) and T := it. Since
E(s) — E(m) 2 E(spp) — E(m)

for every 1 < j < i, we infer

Po(tpyry T) 2 Pr(tapr < T, 7pp0) < t)

> ]P)T(TM(l) < t) inf Pr(TM(i) < (Z — l)t)
zeM@)

> ]P)T(TM(l) < t) inf PT(TM(Q) < t) inf Pr(TM(i) < (Z — 2)7f)
zeM) rEM(2)

> -Uﬂ@%*“ Po (o) <t)

> (1 — exp(—Aﬁ))l

3
> 2
— 4

for g sufficiently large. Furthermore, for 8 so large that P.(my;) < 7o) < 1/4, we find
that

Pty <T) = Pr(magr = T <T) + Pr(mapr < T, 7o) < Tim)
< Pr(tin £T) 4+ Pr(1ap0 < Tim)
< Pl <T)+ i
By combining both estimates, we obtain
Pl <T) > Pr(rag <T) =7 2 3.
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Hence, state m is hit in time 7" with at least probability 1/2 when starting in r. Since
m =m(), we further have
1
PG <t) > Pp(rpyeen <t) > 1—exp(—AB) > 3

for (3 sufficiently large. Hence, state s, is hit in time ¢ with at least probability 1/2 when
starting in m. By combining the estimates, we finally obtain
Pr(o < (i+1)t) > Po(Co < T +trm <T)Pr(rm <T)
P, (Tm < T) Pm(CO < t)
1
1
which proves our claim. O

Y

Y

Proof. (of Theorem 2.8) Using the lemma just shown, we infer

E-(G) < (i+ 1)t (n+ 1P, (n(i+ 1)t <G < (n+1)(i + 1)t)

n>0

= (+1tY (n+ 1)(]}1; (Co=n(i+1)t) =P, (¢o > (n+1)(i + 1)t)>
n>0

= (i+ 1)ty Pr(Co>n(i+1)t)
n>0

< (i+1ty (?eaxiipgﬁ (Co = (i+ 1)t)>
n>0

, 3\"
< (i+ 1)2%:0 (Z)
= 4(i 4 1)t,

where t := 2" exp(B(E(s) — E(m) + 2(i + 1)|S]ys)) + 1. Since 3 — 0, we get in the
limit )
lim ElnETCO < E(sm)— E(m)

B—oo
for all r € V@ (m).
Turning to the lower bound, define a sequence of stopping times, viz. pg := 0 and
pn = 1inf{k > p,_1|Xx = m or X;, € 0TV}

for n > 1. Then Z, := X,,, n > 0, forms a Markov chain the transition probabilities of
which when starting in m can be estimated with the help of Proposition 2.4, namely

P(Zy € VO (m)|Zg =m) = Pulpr = )
]P)m(CO < Tm)
Z Po(7s < Tin)

s€EOtV
< K(§) e-Pmin,cory B (ms)—B(m)-275)

IN

— K(ﬁ) efﬁ(E(Sm)*E(m)*z’YB)

where K(3) — K € (0,00) as 8 — oo. Further defining v := inf{k > 0|Z; € 0TV}, this
implies in combination with a geometric trials argument that

n—1

Py >n) > (1- K(§)e 2ECEm-Bm-21)
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As a consequence,

E.¢o = ZEm(Pn_Pn—l)ﬂ{uzn} > me(yzn) > K(ﬁ)e*ﬁ(E(Sm)fE(m%%s)_

n>1 >1 n>1

For arbitrary r € V, we now infer

ETCO

Ergoﬂ{gggpl} + Ergo]l{<0>pl}

B (Br (ol gy 1} [ Xpr = m))
IE7’]1{Co>p1}EmCo

P,(Co > p1)K(B) e PE(m)~B(m)=2vs)

Vv v

Y

Y

1
5 K(ﬁ) e*ﬁ(E(sm)*E(m)*z’YB)

for all sufficiently large 5, because limg_,oc Pr((o > p1) = 1 (Theorem 2.3). Finally, by
taking logarithms and letting S tend to oo, we arrive at the inequality

1
lim —InE,{y > E(sm)— E(m)
B—00 6
which completes the proof. O

In [12], E(sy) — E(m), m € M, is referred to as the depth of the valley V(m).
Therefore, Property 3 from the Introduction holds true and we can relate thermodynam-
ics of the system (energies) to dynamics of the chain (holding times) in a very precise
way. Especially, there is no universal scale for the times spent in different valleys because
in general they differ exponentially.

3. MACROSCOPIC VIEW: TRANSITIONS BETWEEN VALLEYS

With the help of the nested state space decompositions into valleys of different orders
and around bottom states of different stability, we will now be able to provide an appro-
priate definition of the metabasins (MB) that has been announced and to some extent
discussed in the Introduction. We will further define and study macroscopic versions of
the original process X = (X,)n>0. These are obtained by choosing different levels of
aggregation in the sense that they keep track only of the valleys of a chosen level that
are visited by X. The motivation behind this approach is, on the one hand, to exhibit
strong relations between properties of the energy landscape and the behavior of X (as
in Theorem 2.8) and, on the other hand, to describe essential features of this process by
looking at suitable macroscopic scales.

In the subsequent definition of aggregated versions of X, we will distinguish between
two variants:

o A time-scale preserving aggregation that, for a fixed level and each n, keeps track
of the valley the original chain visits at time n and thus only blinds its exact
location within a valley.

o An accelerated version that, while also keeping track of the visited valleys, further
blinds the sojourn times within a valley by counting a visit just once.

Actually, the definition of these aggregations at a chosen level i is a little more com-
plicated because their state space, denoted S below and the elements of which we call
level i metastates, also comprises the non-assigned states at level ¢ as well as the minima
of those valleys that were formed at an earlier level and whose merger is pending at level
i because their minima are not attracted at this level.
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Definition 3.1. Fix 1 <i <, let S := {m@ ¢ MM|i(4) > i} UN® and

V@ (m)), if s =m0 for some j > i
V(l) (3) = V(]) (/]”,’L(]))7 lf S = m(]) for SOInej <Z
{s}, ifse N®

for s € S . Then define

Yn = Z Sﬂ{XnEV(i)(S)}? n Z O,
seS()

and V) =V n>o0,

where o9 = a(()i) =0 and

Op = 0'7(11) : inf {k > O-n—l‘?](j) 7é 7;;21}

for n > 1. We call v = (75:))”20 and V() = (Y»,Si))nzo the aggregated chain (AC) and
the accelerated aggregated chain (AAC) (at level i) associated with X = (Xp,)n>0-

So, starting in an arbitrary valley, the original chain stays there for a time (y = gé” (as
defined in Definition 2.7) before it jumps via some non-assigned states ki,..., k; (staying
a geometric time in each of these states) to another valley at time & = f;l). There it
stays for (3 — & time units before it moves on in a similar manner. By going from X

to its aggregation V(l) at level i, we regard the whole valley V() (s) for s € S® as one
single metastate and therefore give up information about the exact location of X within
a valley. Y(Z) is a jump process on S with successive sojourn times o411 — op, n > 0,
which do not only depend on the valley but also on the states of entrance and exit. The
AAC then is the embedded chain, viz.

YSZ) = Zyj(l)]l{ffjﬁnﬁfﬁl}’
Jj=0
giving the states only at jumps epochs: starting from the minimum of a first valley it
moves to states ki,...,k € N and then proceeds to the minimum of a second valley,
and so on.

Of course, at small temperatures the time spent in a non-assigned state or in a valley
around a low order metastable state is very small compared to the time spent in a valley
around a metastable state of higher order. Thus, such states can be seen as instantaneous
and of little importance for the evolution of the process. We account for them nonetheless
for two reasons. First, in the path-dependent definition mentioned in the Introduction
and used in Physics, they build small MB of great transitional activity of the process
and are thus relevant in view of our goal to provide a definition of MB that conforms as
much as possible to a path-dependent one. Second, a complete partitioning of the state
space that is an assignment of every s € S to a metastate via a global algorithm fails
when merely focusing on {V(i) (m),m € M(i)} because there is neither an obvious nor
natural way how to assign non-assigned states to them.

The incoherent scattering function and its associated relaxation time, for X defined
by
S(Qv n) = E, cos (Q|Xn - X0|)
(with | - | being Euclidean distance in phase space) and

T4(e) :=nf{n|S(g,n) < e}, >0,
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respectively, may serve as an example which shows the strong relation between the be-
havior of the original process and its macroscopic versions. For more detailed information
on the meaning and relevance of S(g,n) as a measure of incoherent scattering between
the initial state of a glass-forming system and its state n time steps onward, we refer to
the survey by HEUER [12].

Proposition 3.2. For each 1 <1i <n there is a constant A(i) such that

(9) sup P (Xn # VS)) < e AWB

n>0
As a consequence, for any given € > 0, the incoherent scattering functions of X and V(i)
differ by at most 4e for B sufficiently large.

Proof. Use Lemma 1.1 to infer

SESLI\N eV (s)\{s} m(VO(s))

< Y REY-y Y W
sES\N) €V (s)\{s} m(s)

< Y B =5 Y e PE@EO2
SESAN 2eV @ (s)\{s}

< max [VO(s) max e PE@-E()-2m)
T seS\N® 2V @ (5)\{s}

This proves equation (9) because FE(z) > E(s) for each 2 € V¥ (s)\{s},s € SO\NO.
Now let 3 be so large that e=2()8 < ¢ for a given £ > 0 and observe that

En cos (q] X — Xol)

/ O cos(qlX — Xol) dP,
2P x0T )

+ / , _ cos (q|Xn — X0|) dP,
(X AV u{ XAV}

(@)

< cos (¢ X — Xo) dPr + Pr(Xn £V) + Pr(Xo £7y))

= E, cos (q|7£f) - 7((;)0 - / v . cos <q|7$j) - 7((;)0 dPr + 2¢
{Xn AV Ju{Xo£Y ("}

< E, cos (q|7£f) — 7,(;)0 + 4e

and, by a similar argument,

E, cos <q|7£f) - 7((;)|> < Ercos (¢ X, — Xo|) + 4e.

This completes the proof. O

3.1. (Semi-)Markov Property. In general, both aggregated chains are no longer Mar-
kovian. Transition probabilities of the AAC not only depend on the current state, i.e.
the current valley, but also on the entrance state into that valley, whereas transition
probabilities of the AC depend on the current sojourn times which in turn depend on the
previous, the present and the next state. On the other hand, since valleys are defined
in such a way that asymptotically almost surely (a.a.s.), i.e., with probability tending to
one as 8 — 0o, the minimum will be reached from anywhere inside the valley before the
valley is left, and since, furthermore, the exit state on the outer boundary a.a.s. equals
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the one with the smallest energy, the AAC will be shown below to converge to a certain
Markov chain on S@. Also, the sojourn times depend on the past only via the last
and the current state. This means that the AC converges to a semi-Markov chain (for
semi-Markov chains see for example [1]):

Definition 3.3. Given any nonempty countable set S, let (M, Ty )n>0 be a bivariate
temporally homogeneous Markov chain on & x N, with transition kernel Q(s,-) only
depending on the first component, viz., for all n > 0,s € S and ¢t > 0,

(10) IP)(‘]\4n+1 =35,Thy1 < t|Mn7Tn) = Q(an {3} X [Ovt])
holds. Put S, := Z?:Oﬂ for n > 0 and v(t) := max{n > 0|5, < ¢} (max := 0) for
t > 0. Then Z,, := M,(),n > 0, is called semi-Markov chain with embedded Markov

chain (My)n>0 and sojourn or holding times Ty, Th,....

Note that equation (10) holds iff M = (M,),>o forms a temporally homogeneous
Markov chain and the (7,,),>0 are conditionally independent given M such that the
distribution of T;, only depends on M,,_1, M,, for n > 1 (in a temporally homogeneous
manner), and on My for n = 0. Note further that we have specialized to the case where
holding times take values in N only (instead of (0, c0)).

Recall from (8) the definition of s,, for m € SW\N® and notice that the second
equality there entails E(z*(m, s;)) < E(z*(m, s) for any s € 37V (m)\{s,,}. Further
recall from our basic assumptions that p*(r, s) = limg_,o p(r, s) exists for all 7, s € S and
is positive if E(r) > E(s). The following result, revealing the announced convergence for
AAC, confirms in particular that a valley V(m), m € SO\N® | is a.a.s. to be left via

Sm-

Proposition 3.4. For each 1 <i <n and as 8 — oo, the level i AAC Y@ converges
to a Markov chain Y = (Yrsl))nzo on S with transition probabilities p(r,s) = p;(r, s)
stated below, that is

Jim P, = sV, D =Y = my 1,0, Y =mo) = B, s)
for all mg,...,my_1,7,5 € SY and n > 0. We have p(r,-) := 0,, if r € SO\NO, and

(D ——— R < AR P

L=p*(rr) SEN(MNN D

+ Z Z p* (’I“, ’I“/) s y

SESM\N \ 7" eN (r)NV () (s)
ifre N®,

Y@ = (}7,51))”20 is called the asymptotic jump chain at level ¢ hereafter. Note that,
typically, it is not irreducible. It may have transient states, not necessarily non-assigned,
and its irreducibility classes are of the form {mj,...,my, s} for a collection my,...,my €
SO\NG) and some s € N satisfying s = 8,0, = ... = 5y, -

Proof. Fix 1 < ¢ < n and write Y,, for Y,Si). The first step is to verify that, as 8 — oo,
P(Yn+l = 3|Yn =T, Yn—l = mn—17~-~7YO = mo) = PT‘(Yl = 3) + 0(1)

for all mg,...,mp_1,7,5 € S® and n > 0. If r € N@, then V;,, = X, and the Markov
property of X provide us with the even stronger result

P(Yn+l = 3|Yn =T, Yn—l = mn—17~-~7YO = mo) = PT(Yl = 8)'
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A little more care is needed if r € SO\N®_ For any s € S@, z € V¥ (1) and n > 0, we
have
P(Yni1 =s|Yn =1X,, =)
= P.(Y1 =87 <o01)+ P (Y1 =5,7 > 01)
P.(Y1 = s)Pu(r < 01) + Pp(Y1 = 5,70 > 01).
The last two summands can further be bounded by
P.(Y1=5)Py(r <01) < P.(Y1=5) and P, (Y1 =s,7>01) < Py(o1 <7).
For the last probability, Theorem 2.3 ensures

P.(o1 <7) < Z P.(r. < 1) Az,
2€0TV @ (r)

Consequently, as 5 — oo,

P(Yi=s) = [1— > &arzp)|P(Y1=35)+0(1)
2€0TV @ (r)
(1— 01 < Tp ) Yl—s 0(1)

P(Y,41 =5|X,, =2, Y, =7)+0(1)
PT(Yl = 8) + 0(1),

ININ A

and therefore

P(Yn+1 = S|Yn =T, Yn,1 = mnf]_,...,YQ = mo)

= Z P(Ynt1 =s|X,, =2,Y, =r)P(X,, =2|Y, =7, Y1 = mp_1,..., Yo = mo)

eV @ (r)

= P.(Y1 =s)+0(1).
It remains to verify that P.(Y; = s) = p(r, s) + o(1) for any 7, s € S, If r € SO\N ),
thep o1 = NG and Y1 = X, .. Since E(z*(r,s;)) < E(z"(r,s)) for each s, # s €
N® N otV@(r), we now infer with the help of Theorem 2.1

P.(Y1 #s,) = P, (’7'5 < 75, for some s € N(i)\{sr})

< Z P, (TS < Ts,)

sp#seN @)
< Z é(r, sr,s,0)
srASEN®D
= o(1),
as B — oo and thus P,.(Y; € -) — 8., = p(r,-) as claimed. If r € N®  then either

Yi=seNF)NND orY; =se SO\N® and X,, =+ for some 1’ € N'(r) N VO (s).
It thus follows that

Pr(Yi = 8) = PT(Xdl = 3) = 1 f(;’(:-)r) = 16*(7‘(;?),'4) +0(1)

if s € N(r) N N®, while

]P)T(Yi = S) = Z IF)T(Xm = T/) = Z Ii*(r# + 0(1)

T EN(r)NV () (s) " eN (rNV ) (s)

in the second case. |
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_ Having shown that Y () behaves asymptotically as a Markov chain, viz. the jump chain
Y @ it is fairly easy to verify with the help of the next simple lemma that the augmented
bivariate AC (75; ),7531)7»0 is asymptotically semi-Markovian.

Lemma 3.5. For each 5 > 0, the sojourn times opy1 — on, n > 0, of the AC 7(1) are
conditionally independent given Y. The conditional law of On41 — Op depends only on

(Y,Ei,)l, v, Y,E?l) and satisfies

P(oni1—on € V) =2, v, =y, Y = 2) = Q((z.,2).)
. Geom(1 —p(y,y)), ifyeN®
B {Zsevwwm P(or € V) = 2)Pu(Xo, =5), ifyg NO

for all z,y,z € SO with P Y(i_) = J;,Yéi) = y,Y(i) =2z)>0andn >1.
n—1 n+1

(11)

Proof. The assertions follow easily when observing that, on the one hand, at least one
state y € N must be visited between two states z,z € SW\N® (Lemma 1.15) and
that, on the other hand, the original chain X and its aggregation 7(1) coincide at any

epoch where a non-assigned state is hit, which renders the Markov property of V(i) at
these epochs. Further details are omitted. O

In order to formulate the next result, let 0 = 0¢ < 01 < ... be an increasing sequence of
random variables such that its increments o, 11 —7,,n > 0, are conditionally independent
given the asymptotic jump chain Y, Moreover, let the conditional law of 7,41 —
G, depend only on (ﬁfi_)l, ﬁsi),ﬁfizl) and be equal to Q((ﬁgi_)l,fﬁfi), 177521), +), with Q
as defined in (11). Then ((%“,ﬁfﬁl),&n+1)nzo forms a Markov renewal process and

(FO 70

) ;(n+1))n>0 a semi-Markov chain, where v(n) := sup{k > O|o < n}.

Proposition 3.6. For each 1 <i <mn, ((Yn(i)7Y7521)70_n+1)n20 converges to the Markov
renewal process ((%”,?ﬁfl)ﬁnﬂ)nzo in the sense that

- Pyo((Y;fi),Y;fi)l) = (Yks Yht1): Ok1 = k41, 0 < k < n)

B—roo Pyo((Y;fl),Y;fi)l) = (Yks Yht1): Okt1 = iky1, 0 < k < n)

for all yo,...;yns1 € SD, 0 < iy < ... < iny1 and n > 0 such that the denominator is

positive. Furthermore, (75:),7:11)"20 1s asymptotically semi-Markovian in the sense

that

Py, (V. Vi) = (v 90e1),0 < k < )

1m — =
fmree Pyﬂ((Yﬁ((l)f)’Yﬁ((l)g—o—l)) = (Yx, yk+1),0 < k <n)

for all yo,..., yns1 € S and n > 0 such that the denominator is positive.

Proof. The first assertion being obvious by Proposition 3.4, note that it implies, with
v(n) :=sup{k > 0|o, < n},

‘m Pyo((yu((ll)c)’yu((ll)ﬁl)) = (Yo Yr+1),0 <k <)

fmree Pyﬂ((yﬁ((ll)f)7yz7((1])€+1)) = (Yr, Uk+1),0 < k <n)

for all yo,..., yntr1 € S and n > 0 such that the denominator is positive. Therefore the
second assertion follows when finally noting that

(@ _ (2) _ 3
Yu(n) - ZYJ Lo, <n<oiny = Yy

J=0

)
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for each n > 0. O

So we have shown that, although aggregation generally entails the loss of the Markov
property, here it leads back to processes of this kind (Markov or semi-Markov chains) in
an asymptotic sense at low temperature regimes.

3.2. Reciprocating Jumps. As discussed to some extent in the Introduction, we want
to find an aggregation level at which reciprocating jumps appear to be very unlikely so
as to obtain a better picture of essential features of the observed process. To render
precision to this informal statement requires to further specify the term “reciprocating
jump” and to provide a measure of likelihood for its occurrence. It is useful to point out
first that the original chain X exhibits two types of reciprocating jumps:
Intra-valley jumps: which occur between states inside a valley (starting in a min-
imum the process falls back to it many times before leaving the valley).
Inter-valley jumps: which occur between two valleys (typically, when the energy
barrier between these valleys is much lower then the barrier to any other valley).

VYA

FIGURE 4. Tllustration of intra-valley jumps (left panel) versus inter-
valley jumps (right panel).

Clearly, intra-valley jumps disappear by aggregating valleys into metastates, while inter-
valley jumps may also be viewed as intra-valley jumps for higher order valleys and do
occur when transitions between any two of them are much more likely than those to
other valleys in which case they should be aggregated into one valley. This motivates the
following definition.

Definition 3.7. We say the process (Yéi))neN exhibits reciprocating jumps of order € > 0
if there exists a nonempty subset A C SO\N® with the following property: For each
mq € A, there exists ms € A such that
1 . A
Jim (m (Pml (Xgl ev® (mg))) “In (Pml (Xgl c V@(m)))) > ¢
—00

for all m € SW\(N® U A). In other words, it is exponentially more likely to stay in A
than to leave it (ignoring intermediate visits to non-assigned states).

In view of our principal goal to give a path-independent definition of MBs, we must
point out that, by irreducibility, reciprocating jumps always occur with positive proba-
bility at any nontrivial level of aggregation and can therefore never be ruled out com-
pletely. This is in contrast to the path-dependent version by HEUER [12] in which the
non-occurrence of reciprocating jumps appears to be the crucial requirement. As a con-
sequence, Definition 3.7 provides an alternative, probabilistic and verifiable criterion for
reciprocating jumps to be sufficiently unlikely in a chosen aggregation.
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The following proposition contains further information on which valleys are visited suc-
cessively by providing the probabilities of making a transition from V) (m) to V) (m/)
for any m,m’ € SO\N® . It is a direct consequence of the asymptotic results in the
previous subsection, notably Proposition 3.4.

Proposition 3.8. Let m € SO\NW s, € 0TV (m) be as defined in (8) (i.e., the

state on the outer boundary of V) (m) with minimal energy). Then

21N (5m)OVE () P (5m,T)
1 - p*(sWh sm)

lim P,,(Xe, € VO (m)) = p(sm, m) =
B—o0

)

while

ﬁlLH;OPm(Xgl eVOm)) = plsm,m)+> Y Blsmyr1) e Brn1, ) Plrn, m')

n>1 Tl,...,’r‘nEN(’i)
for any other m’ € SW\N®,

The reader should notice that, as p(s,r) = 0 whenever E(s) < E(r), the last sum ac-
tually ranges only over those non-assigned rq,..., 7, with E(sy,) > E(r1) > ... > E(ry,) >
E(m').

Proof. Let us first point out that P,.(Xg, € V¥ (m)) = o(1) as 8 — oo for any r € N
such that F(r) < E(s,,). Namely, since the last property implies » ¢ 07V ® (m), any
path from  into V%) (m) must traverse a state s € 91V (m) with E(s) > E(s;m) > E(r),
whence the probability for such a path goes to zero as 8 — oco. Noting further that
Pm(Yl(i) # $m) = o(1) as 8 — oo by Proposition 3.4, we now infer (with &, = &(f))

Bon(Xe, € VO (m))

= Py, (X € VW (m)) +o(1)
_ (i) P(5m,7) (i)
= P. (V'Y = — -~ _P.(X 1
W =my+ 3 S B(Xe € VO m) +o()
reN (sm)NN @

Sm

= P(8m,m) + o(1).

The expression for p(s,,, m) in terms of the p*(s,,,r) may be read off directly from the
formula given in Proposition 3.4. For m’ # m, m’ € SO\N) we obtain in a similar
manner

P, (Xe, € VO (m))
=P, (v =m) + Y Y P, (M = YO =, Y =) +0(1)

n>lyy,... r,eN@)

= p(8m, m') + Z Z P(SmsT1) oo P(rp—1,7n) Plrn, m’) + o(1),

n>1ry,...r,e NG

the last line by another appeal to the afore-mentioned proposition. |

In essence, the previous result tells us that a valley V() (m/) is neighbored to V® (m),
that is, reachable with positive probability by the asymptotic jump chain y® (and thus
by Y at any temperature level B) without intermediately hitting any other valley,
iff there exists at least one (in terms of energies) decreasing path in N® from s, to
m/. For any other such pair of valleys, connected by a path through states in N, the
transition probability decreases to zero exponentially in 5. If this path can be chosen to
be unimodal, here called uphill-downhill-path, this can be stated in a very precise way as
the next result shows.
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Lemma 3.9. Let mg,m; € S(i)\N(i) be two distinct local minima for some 0 < i < n.
Suppose there exists a minimal path v = (Yo,...,Vk) from $pm, to m1 not hitting any other
valley but VI (my) and such that I(Yo,..., k) = E(z*(s,m1)) — E(Smy,)- Then

1 .
Jim 2B (Xg € VO(m) = — (B( (mo,m1)) = Elsm,)
Without assuming the existence of v as stated, the result remains valid when replacing =

with <.

Note that I(yo,...;7x) = E(2*(Smg,m1)) — E(Sm,) does indeed imply the already
mentioned property that
E(vi) > E(vi—1) for1<i<jy
and E(v) < E(yiz1) forj+1<i<k
if v; = 2*(8mq, m1). We call such a path an uphill-downhill-path because it first straddles

the energy barrier E(z*($m,,m1)) and then falls down to the local minimum m;. The
existence of such a path can be found in most 2- or higher dimensional energy landscapes.

Proof. With v as stated, a lower bound for P,,,,(X¢, € V) (m;)) is easily obtained as

follows:
Pmo(Xfl € V(i) (ml)) > P, (XCo+i =7,0<1< k)

P
Pmo (XCO — Smo) eiﬂl('YO:"'v'Yk‘)*'ﬂfﬁ“sl

v

(14 o(1)) e B(E(=" (smg:m1))=E(smg))—7551S]
—B(E(z"(m0,m1))—E(smq))—788|S|
(I4+o(1))e .
For an upper bound, which does not require the existence of a v as claimed, we
decompose the event into disjoint sets depending on the number of visits IV, say, to mg
between 1 and (y = (él). This leads to

Prny(Xe, € VO (m1), N = 0) = Prng (€1 = T16) (my) < Tmo)
and, for k > 1,
Py (Xe, € VO (my), N = k)
=P, (Xe, € V@ (my), {Tme <n < (| Xn=mo}| =k —1, Ty, < (o)
=Py (Xe, € VO (1), N =k — 1) Ppy (Trmy < Co)

= mo(Xfl € V(Z) (ml)vN = 0) ]P)mo(Tmo < Co)k

P
P, (51 =TV (my) < Tmo)Pmo (Tmo < Co)k'

Consequently,

Prno(Xe, € VO (1)) = Py (Xe, € VI (my), N = k)
k>0
meo (51 =Ty (my) < 7-mo) P, (Tmo < CO)k
k>0
Prg (61 = Ty ) (my) < Tmo)
]Pmo (CO < Tmo)
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By invoking Proposition 2.4, we infer
Py (61 = TV (my) < Ting) Zrev(i)(ml) Py (70 < Timg)
IP)mo (CO < 7—mo) ]Pmo (Tw < Tmo)
K(p) Z e BE" (mo,r))—E(z" (mo,z))~T7s)

reV® (my)

(12)

IN

for all x € V@ (mg)¢, where

K(8) = 11 (1Slexp (<5, min | (B(@) = E0) + 2958 ) + 1) maxl V()L

a#b:E(a)>E(b)
For any r € V®(m1), we have E(z*(mg,r)) > E(z*(my,r)) and therefore
E(z"(mo,m1)) < E(2"(mo,7)) V E(z"(r,m1)) = E(2"(mo, 7))
Using this in (12), we obtain
IP)mo (gil) = TV (mq) < Tmo)
Pmo (CO < 7-mo)
and then, upon choosing = = s,,,, and noting that E(z*(mo, Sm,)) = E(Sm, ),

< K(B)|S] e PEE (mom))=E(=" (mo,2))=T73)

Py (Xe, € V(@ (my)) < K(B)|S| o BB (mo,m1))=E(smg)=T7s)

By combining all previous results, we finally conclude

lim %lnzfﬂm(Xgl eVO(m)) = — (BE(="(mo,m)) — E(sm,))

B—00

as asserted. O

To summarize, which valleys are visited consecutively depends on (a) their spatial
arrangement and (b) the energy barriers between them: A transition from one valley
V@ (mg) to another valley V) (m;) is only possible, if there exists a path from s,,, to
140 (mq), not hitting any other valley. This transition is made at small temperatures (i.e.
large B) if the additional energy barrier E(z*(sm,, m1)) — E(Sm,) is sufficiently small or
in other words the energy barrier E(z*(sy,,, m1)) is approximately of the same height as
all other energy barriers, including the barrier E(z*(Smq,m0)) = E(Sm,)-

A result similar to the previous lemma holds true for transitions from m € S\N®)
to any s € 9TV (m).
Lemma 3.10. Let m € SO\NO and s € 97V (m). Then

1
lim = InP,, (Y1 =s) = —(E(s) — E(sm)).
B—o0 ﬁ
Proof. For the proof, decompose again the event {¥; = s} with respect to the number
of visits to m before V(m) = V) (m) is left (or use Proposition 2.5), giving
_ Pp(or =7 <Tp)
P.(o1 < Tm)

For an upper bound, we obtain by another appeal to Proposition 2.4 that

P (Yl _ 8) _ Pm(al =Ts < Tm) < Pm(Ts < Tm) < e—ﬁ(E(s)—E(sm)—}-o(l)).
m P.(01 < Tm) = Pu(rs, <Tm) T

For a lower bound, note that, using the strong Markov property,

HDm(Ts <Tm < 7-(”)JrV(m)\{s}) = IP>m(7-s < 7-m)}P)s(Tm < 7?‘3*V(m)\*‘[s})>
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where

Y

Y )P < Torvimnis))

re~s,reV(m)

Z p(8,7) Pp(Tin, < 071).

res,reV(m)

Po(Tm < To+v(m)\{s})

Y

Since there has to be at least one state r ~ s, € V(m), with E(r) < E(s), and
P.(7m < 01) — 1 as  — oo, this last sum is bounded away from 0. Thus,

Pm(al =Ts < Tm) 2 Pm(Ts <Tm < Ta*V(m)\{S}) Z e_ﬁ(E(s)_E(m)_‘—o(l)).

Finally, since

Pn(or < ) < Z Po(7r < Tin)
redtv(m)

Z e BE(r)—E(m)+o(1))
redtv(m)
o BBlom)~Bm)+o(1))

IN

we conclude
Pm(yl _ S) > e—ﬁ(E(s)—E(sm)‘f‘O(l))

and thus the assertion. OJ

Now we see for the reciprocating jumps in the accelerated chain:

Proposition 3.11. Fiz 1 < i < n and ¢ > 0. Then the AAC at level i exhibits no
reciprocating jumps of order € if the following three conditions hold true:

(1) E(2*(mo,m1)) — E(8m,) < € for all distinct mg, m; € SO\NO,

(2) For each m € SO\NW | there exist at least two distinct my, my € SO\NO m #£
my,ma, such that Py, (Xe, € VO (my)) >0 for j =1,2.

(3) For each pair mo,m; € SO\NO with P,,,(Xe, € VD (my)) > 0, there exists a
minimal uphill-downhill-path from s,,, to m1 not hitting any valley but V@ (my).

The origin of our endeavor to define aggregations with no reciprocating jumps of an
order larger than a small € is to obtain an associated process with (almost) decorrelated
increments (in Euclidean state space), for this and a proper centering causes the variance
up to the n-th jump to grow with n instead of n2. This is known as diffusive behavior
in physics. Without aggregation increments are highly correlated due to the following
argument: at any given time, the process is with high probability in a minimum and
when leaving it, say by making a positive jump, the next increment is most likely negative
because there is a drift back to the minimum. Likewise, the increments of the asymptotic
jump chain are neither uncorrelated nor having mean zero since trajectories of Y on an
irreducibility class are almost surely of the form m; — s — mo — s = m3 — ..., where
s € N and my, ma,... € SO\N® . Thus, given the previous increments, it is in general
easy to predict the next increment and they do not have mean zero. On the other hand, if
we can choose 8 and ¢ such that, for any mg, m1, we have Py, (Y1 = m1) € {pm,Lte}U[0, €]
for € < pm,, we obtain an AAC which behaves roughly like a RW on a graph. Such a RW
is diffusive if we assume periodic boundary conditions (or sufficiently large state space
compared to the observation time n) and an energy landscape E which is homogeneous
enough to ensure zero-mean increments. In particular {m|P,,(Y1 = m) = pp,, £ €} has
to comprise at least two states.
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3.3. Metabasins. A path-independent definition of metabasins can now be given on the
basis of the previous considerations.

Definition 3.12. A finite Markov chain X driven by an energy function E satisfying
the assumptions stated at the beginning of Section 1 has metabasins of order € > 0 if
there exists an aggregation level ¢ < n — 1 such that the following conditions are fulfilled
for each m € SO\ N®:

(MB1) sup,,yesin(vmugm}) E(z*(m,m")) — E(sm) < e.

(MB2) There are at least two distinct mq,mo € SO\(N® U {m}) with a minimal
uphill-downhill-path from s,, to my not hitting any other valley but V& (my)
for k=1,2.

In this case, the valleys (V) (m)),,cs are called metabasins (MB) of order e.

The reader should notice that each singleton set {s} consisting of a non-assigned state
s € N forms a MB. The conditions (MB1) and (MB2) ensure the good nature of (a)
the energy barriers and (b) the spatial arrangement of minima. As already pointed out,
this determines which valleys are visited consecutively. Properties of MB which can be
concluded from the results of the previous sections are summarized in the next theorem.
The reader is reminded of Properties 1-4 stated in the Introduction.

Theorem 3.13. For MB as defined in Definition 3.12 we have

(1) The transition probabilities for jumps between MB do not depend on the point of
entrance as B — oo (Property 1).

(2) There are no reciprocating jumps of order € (Property 2).

(8) The expected residence time in a MB depends on E only via the depth of the MB as
B — oo (Property 3).

(4) Regarding only MB pertaining to local minima, the system is a trap model (Property
4)-

Proof. (1) follows from Proposition 3.4, (2) from Proposition 3.11, (3) from Theorem 2.8,
and (4) directly from the definition. O

It should not be surprising that the path-dependent definition of MB by HEUER [12]
and stated in the Introduction differs from our path-independent one. For example,

E

F1GURrE 5. Example of an energy landscape with a tree-like structure.

the energy landscape in Figure 5 has no reasonable path-dependent MB because every
transition between two branches of the shown tree must pass through the state . For
a typical trajectory, there will be at most three MB: the states visited before the first
occurrence of x, the states visited between the first and the last occurrence of z, and
the states visited after the last occurrence of x. The reason for this poor performance
is the tree-like structure of the energy landscape or, more generally, the fact that the
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connectivity between the branches is too small to allow a selfavoiding walk through
more than two branches. This results in a small recurrence time for x (compared to the
number of states visited in between). However, every branch constitutes a MB when
using the path-independent definition for sufficiently small e, in which case the AAC
forms a Markov chain and, given the Metropolis algorithm, even a RW on the graph.

Having thus exemplified that the two definitions of MB do not necessarily coincide,
where the path-independent approach applies to a wider class of energy landscapes, we
turn to the question about conditions for them to coincide with high probability. As
already pointed out, we have to assume a sufficient connectivity between the metastates
to ensure the existence of reasonable path-dependent MB. In terms of this connectivity
(for a precise definition see Definition 3.14) and the parameter 8 and ¢, our last result,
Theorem 3.17 below, provides lower bounds for the probability that both definitions yield
the same partition of the state space.

The first step towards this end is to identify and count, for each m € S® and a given
B, the states s € S for which a transition of Y from m to s is likely. This leads to the
announced connectivity parameter.

Definition 3.14. Let € > 0 and suppose that X has MB of order € > 0 at level i. Define
the connectivity parameters n; = 1;., 1 <1 < 3, by

{5 e Nm\VO ()| E(s) < B(m) +<}]

Me = min
neN® reS@O: V@) (r) NN (n)#£0
(13)  moe == min_|{s € 0"V (m)|E(s) < E(sm) + e},
meSO\N )
N3e = mji/?’) |{s € SW|E(x) < E(n) 4 ¢ for some z € V¥ (s) NN (n)}.
neN®

11 is the minimal number of neighboring sites of a non-assigned state n which do not
belong to a particular neighboring valley and whose energy is at most € plus the energy
of n. 7 is the minimal number of neighboring sites/valleys of a valley V() (m) whose
energy is at most € plus the energy of s,, and which can be reached via an uphill-path
from m. Finally, n3 is the minimal number of neighboring valleys of a non-assigned state
n which comprise a state with energy of at most € plus the energy of n. n; and 73
are always at least 2 and in fact quite large in the very complex energy landscapes of
structural glasses. For very small €, 7o may be 1, but if X has MB of order ¢ in a high
dimensional energy landscape, then 7y can be assumed to be quite large as well.

That transitions to states counted above have reasonable large probabilities is content
of the following lemma. Thus, the defined parameters do in fact measure the connectivity
of the MB.

Lemma 3.15. Let € > 0 and suppose that X has MB of order ¢ > 0 at level i with
connectivity parameters defined in (13). Writing Yy, for Yk(i) and V(m) for VO (m),
m € 8W, the following assertions hold true for all sufficiently large B:
(a) If m € SO\NO and s € 01V (m) N {z|E(x) — E(sy) < €}, or m € N and
s € 8 satisfies V(s) N {x € N(m)|E(z) — E(m) < e} # 0, then

P,.(Y1=s) > e 2Pe,
(b) For any distinct m € N and s € SV,
Pp(Yy #s) > me %,
(c) For any distinct m € SO\N® and s € SO,
Pp(Y1#5) > (2 —1)e %,
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We see that, for € small enough compared to 3, transitions with an energy barrier of
at most ¢ are still quite likely and thus a jump to a particular valley quite unlikely in
the case of high connectivity.

Proof. (a) Choose By > 0 so large that, for 5 > fo, 73 < ¢ and P, (Y1 = s) >
e 2B(EE)=E(sm) for any m € SO\N® and s € 97V (m), the latter being possible
by Lemma 3.10. Then for any such m and s, we infer P,,,(Y; = s) > e~2¢% provided that
additionally E(s) < E(sym)+¢ holds true. If m € N then P,,,(Y; = s) > e~2# for any
s € S such that E(x) < E(s) + ¢ for some z € V(s) N N (m), for

Po(Yi=s) > Po(Xy, =a) = p(m,z) > e PUE@-Em)*+3s)

(b) Pick again fy so large that vz < ¢ for all 8 > y. Then,
Pavi#s) = Y pma)

zEN(m),x¢V (s)

> > exp (— B((E(z) — E(m))™ +75))
zEN(m),x¢V (s),E(x)<E(m)+e
> 1 exp(—25¢),

by definition of 7;.
(c) Fix Sy so large that P, (Y = x) > e 28(F@)~E(m) for any 2 € 0V (m) and
B > Bo. In the very same way as in part (b), we then get for all 8 > Gy
P (Y1 #5) > > Pa(vi=2x)

€0tV (m),x#s
> > exp (= 268(E(z) — E(sm)))
z€01TV (m),x#s,E(x)<E(sm)+e
> (2 — 1) exp(—2p¢),
by definition of 7,. O

The above result motivates that in the case of high connectivity the probability to
revisit a particular valley within a fixed time T is quite small, or in other words, the
probability for the AAC to jump along a selfavoiding path is quite high. This is the
main step towards the announced theorem and stated below. The observation time 7" of
course has to be small compared to the cover time of the process.

Lemma 3.16. Let € > 0 and suppose that X has MB of order ¢ > 0 at level i with
connectivity parameters defined in (13). Writing Yy for Yk(i) and V(m) for VO (m),
m € 8, define
TVlz = inf{k > 1|Y}, = m}.
Then the following assertions hold true for all sufficiently large 5:
(@) Forany0<d<1—P,(Yo=m) and 1 <T <T(m,B)+1,

P, (732 )>T) > 4,

where
Ind
T(m,B) = -
( ) In (mingyozm P (Y1 7 m) (1 = Lggnmy 0(m/, 3)))
and

5(m',B) = IGH%”zegv:(m,)g(x’m/’z’ﬁ)'
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In particular, if § < ((m A (n2 — 2))6’2&)T for some T > 0, then T'(m,3) > T.
(b) For each k> 1 and mg € S,

k—1
Yo P (i =mj1) > 2 Amglie P

mi,...,mg 7=0

where summation ranges over all pairwise distinct my,...,my € SW\{mo} and
for N € N we write [N]g :=N(N—-1)-...- (N —k+1).

It should be noticed that Pm(T\(/izm) > 1) =1 (the AAC never stays put) and

for every T' > 2 with equality holding only if T = 2. We thus see that Pm(T‘(jgm) >T)>0
entails § < 1 — P,,(Ya = m), the latter being typically large. Furthermore, the bound
on the number of self-avoiding path of length £ is very crude and can be improved when

knowing more about the spatial arrangement of the metastable states.

Proof. (a) Recall from the first part of the proof of Proposition 3.4 that

P (Yogr # 2|Yn =y, Xo, =2) > Py(Y1#2) [ 1= Tpeney Y, Pulm<7)
redtVv(y)
> Py(Yl #Z) 1_n{y¢N(l)} Z 5($>y77‘7ﬁ)
redtV(y)
> Py(yi 7é Z) (1 - ]l{ygN(’i)} 6(y7ﬁ))

holds true for all y,z € S®, 2 € V(y) and 8 > 0. This will now be used repeatedly to
show that

T-1
P (7 > T) 2 ( min B (Vi #m)(1 = Lwgno, 5(m’,6))>
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for each T > 2. Putting m(z) := m’ if € V(m/) for m’ € S®, we obtain

(2)
P (71 > T)
= P, (Y1 #m,..,Yr #m)

T—-2
— > P (Xoy = 21) [ [ P (Xosy = 2a11| X0, = 26, Yie = m(2y))
Z1,exr_12€V O (m) k=1

X Pr(Yr # m|Xop_, = 27-1,Yr—1 = m(z7r_1))

v

T—2
> Pon(Xo, = 21) [[ P (Xowsy = 2as1]Xo,, = 22, Vi = m(a))
$1,...,$T71$V(i) (m) k=1

X (ngl;lélrln (P (Y1 # m)(1 = L g Ny 5(m/7ﬁ)))>

T—1
> min (IP’mz (Y1 #m)(1 = 1enoy 5(mlvﬁ))> .

m/#m

But this establishes the asserted inequality when finally observing that the last expression
is > 6 iff T <T(m,B)+ 1.
Having just said that T'(m, 8) > T holds iff

T
min (]Pm/ (Y1 #m)(1 = Lpgnon 5(m’,ﬁ))) > 0,

m/#m
it suffices to note that, as 8 — oo, 6(m/, ) — 0 holds true if m’ € SO\NO | giving
-2
L= sty > B
') > 22

for sufficiently large 5. Together with Lemma 3.15(b), this further yields

. T _ T
min (B (Vi # m)(L = Lugnoy 60m'.8) = (0 A (2 = 2))e ™)
and then the assertion.

(c) Here it suffices to notice that, by (a), [92 A 13]r forms a lower bound for the
number of self-avoiding paths (mo,...,my) such that Py, (Y1 = mj41) > e~2P¢ for each
j=0,.,k—1 O

We proceed with the announced result about the relation between path-dependent
and path-independent MB. To this end, we fix T' = ox for some K € N. Let Vj for
k =1,...,v denote the random number of MB obtained from Xj,..., X7 as defined in the
Introduction. For z € S, we further let V(z) denote the MB Vi containing x and put
V(z) := 0 if no such MB exists which is the case iff ¢ {Xo,..., X7 }.

Theorem 3.17. Let € > 0 and suppose that X has MB of order € > 0 at level i
with connectivity parameters defined in (13). Fiz K € N, T = og and 0 < 6 <

((m A (2 —1) — 1)6_2B6)K. Then, for each 0 < k < K and mo € S, there exists
Bo > 0 such that for all 8> By

(8) P (VI (Vi) S V(Y0)) = 1 = (maxuesion e
where V<(i)(s) = {s} ifs€ NO,
(b) Pine V(Y;) S VI(Y)), 0 <5 < k) > 1 — k(max,,es0\no §(m, §) + (1 = 9)).

V< (m)| + 2) MaX;,e s\ NG 5(m, 6),
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(c) If i Amz > K — 1, then

Py (V(Y;) CVO(Y)), 0<j <K —1) >

K-1
o —2Kep
[m2 A n3) K (1 meén(i?i(N(i) o(m, B)) e )

For the occurring bounds to be significant, two requirements must be met. First, K
must be small compared to the cover time of the AAC and ¢ must be small compared to
Bo to ensure exp(—28¢) > 0. Second, the connectivity must be high to ensure 1 —§ < 1
and [772 AN 7]3]1(6721{6’8 > 0.

Typically, the inclusions in parts (b) and (c) are strict because of high energy states
within a valley that will probably be missed during one simulation run and therefore
not belong to any path-dependent MB. On the other hand, since our approach strives to
cover the state space as completely as possible by valleys the latter comprise such high
energy states whenever they are assignable in the sense described in Section 1.

Proof. With i being fixed, let us write as earlier V(m) for V) (m), and also V. (m) for

v (m).

(a) For a given 0 < k < K, define

Ay = {Uk < Ty, < O'k+1},
By, := { for every x € V.(m) exists 1y, <l < o such that X; =z},

Cr :={X; =Y} for some max 7, <l <o}
z€V(Yy)

With §(m, 8) as defined in Lemma 3.16 and using

(14)

P.(o1 <7m) < Z E(x,m,y,B) < max  0(m,B) =: Omax

S\ N ()
yed+V (m) meSH

for z € V(m), m € SO\N | we obtain

Prng <V<(i) (Vi) C V(Yk))

Y

Pmo (Ak N By N Ck)
Z Pmo({Xﬂk = ’I“} NAr N B NCy)
meS® reV(m)
Z Pr (Xop = 1)Prg (Ak|Xo, = 1) P (Br N CkHXUk- = T} N Ag)
meS() reV(m)
Z P (Xo, = 1)Pr (11 < 01)
meS® reV(m)

X Py, (7 < 01 for every x € Vo (m), X; = m for some max 7, <[l <o)

€V (m)
Z Prg (Xop = 7)(1 — max)
meS® revV(m)
X Py, (1 < 01 for every x € Vo (m), X; = m for some max 7, <[l <o)

z€V<(m)
(1= Omax) D Pry(Ye =m)
meS ()

X Py, (72 < o1 for every x € Vo (m), X; = m for some max 7, <l <oq).
z€V<(m)
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Thus, in order to show that with high probability a path-dependent MB comprises the
inner part of a valley, we show that with high probability, when starting in its minimum,
the whole inner part will be visited and the process will return to the minimum once
more before the valley is left. This is trivial if m € N® and thus V<(i) (m) = {m}, for
then

P,.(1» < o1 for every € V.(m), X; = m for some max 7, <Il<oy)=1
zEV<(m)

More needs to be done if m € SO\N@ | where
P,,. (Tz < o1 for every x € V. (m), X; = m for some n‘}af )776 <l< 01>
xeV(m

> 1 =Py (72 > o1 for some z € Vo (m)) — Pr, (X; # m for each n‘}a?)rrgl<al).
xeV(m

The second probability in the preceding line can further be bounded with the help of
(14), viz.

P,.(X; # m for each max 7, <Il<o7)
€V (m)

= Z P,( max 7, =7, X;#mforevery max 7, <Il<o1)

yeV- (m) z€V<(m) z€V<(m)
< P,, a, z = Ty )Py (T, >
= Z (xer\r/l< fm)f 7y )Py (7 o1)

yeV<(m)
S 6max7

while for the first probability, we obtain with the help of Theorem 2.1

P, (1o > o1 for some x € V. (m)) < Z P (o1 < 72)
z€V<(m)

< >y > Pulry <)

€V (m) yedtV(m)
(16) < > Y emayp),
2V (m) yedtTV (m)
because E(z*(m,y)) > E(z*(m,xz)) for z € Vo(m) and y € 97V (m). The latter can
be seen as follows: It has been shown in the proof of Theorem 2.2 that E(z*(z,m)) <
E(z*(z,y)). Hence,
E(z"(z,m)) < E(z"(z,y)) < E(z"(z,m)) V E(z*(y,m)) = E(z"(y,m))
as asserted. Next, we infer
E(z"(z,y)) < E(z"(x,m)) V E(z"(m,y)) < E(z"(x,m)) V E(z"(z,y)) = E(z"(2,y)),

thus E(2*(z,y)) = E(2*(m,y)). Recalling the definition of e(m, z,y, 8), the last equal-
ity implies e(m,x,y,8) = e(x,m,y,3) which will now be used to further bound the
expression in (16), namely

Z Z e(m,z,y,B8) = Z Z e(x,m,y, )

z€V<(m) yed+ Vv (m) z€V<(m) yed+V(m)
D Ewm,y,B)

zEV(m) y€dTV(m)

[V (m)| Omax

V. Omax-
mESIAN IV ()] Gunae

IA A
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Together with (15) this yields as asserted
Py (VS (Yi) € V(1))

> (1 - 6max) Z IP)mo (Yk = m)
meS ()

X Py, (72 < o1 for every x € Vo (m), X; = m for some max 7, <l <o)
z€V(m)

Y

(1= Suna) (1_< max |v<(m)|+1>5mx>

meSH\N®)
>1- < max |V (m)| + 2) Omax-
meSH\N®)
(b) According to Lemma 3.16, choose Sy > 0 such that

(i)
(17) max Py, <Tv(m) < K) <1-§

for each 8 > By. By using (17) and (14), we now infer
P (Vi =Y for some k+1 <1< K)

= Z]P’mo(Y} =Y forsome k+1<I< K, X, =5)
seS

< Z]P’mO (Xo, = 5) (PS(T‘(/izyo) <K —k, X; =m(s) for some 0 < j < 01)
seS
+ 1{S¢N(i)}P5(T‘(j2YO) S K — k‘,Xj 7é m(S) for all 0 S j < 0’1))

<D Py (Ko, = 9) Py (Tiflyyy S K —B) + D Pr(Xo, = 5)Pa(01 < Tn(s)

seS s¢N @)
S 1_5+6max7
and finally
‘ k—1
Py (V(Y;) CVO(Y)), 0< 5 <k) > By | [ {Vi#Yj,i+1<I< K}
§=0

k—1
> I—ZIPmO(Yl:Yj for some j + 1 <[ < K)
j=0

2 1- k(émax + (1 - 6))
(¢) In the following calculation, let ro = mo, _,, range over all K-vectors (m1, ..., mx)

with pairwise distinct components in S\ {mg} and, for each k < K, let > ri...r, Tange
over all k-vectors (r1,...,7;) such that r; € V(m;) for each j = 1,...,k. As in part (b),
use (14) repeatedly to infer

Py (V(Y;) CVO(Y)),0<j < K — 1)

K-1
> Z Z Pmo n{Yj:mj,ng:rj,ij <aj+1}ﬂ{YK:mK}
My T1,e 0, TK—1 7=0

K-2
S Y II P, (Yo =my Xo, = risa, 7, < 01)

mj T1,...,Tk—1 j=0

X IPTK71 (TmK71 < 0'1) ]P)mel(Yl = mK)
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K-2
> (]- - 6max) Z Z H IF)TJ' (YO = mj7X01 =Tj+1, Tm; < 01) ]P)mK,l(Yl - mK)

mj Ti,..,TK—1 ]:0

K-3
= (1 — 5max)z Z H PTJ. (YO = mj,Xgl =Tj4+15 Tm;, < 0'1)
mj; T1 1

yoosTK—2 =0

X PTK_Q (Yb = mK—27Y1 = mK—17 TmK_Q < Ul) PmK_l(Yl - mK)

K-3
= (]- - 6max) Z Z H IF)TJ' (YO = mj7X01 = Tj+1, Tm; < 01)

mj Ti,...,TK—2 ]:0

XPrp y, (Y1 =mg_1, Timg_y < 01) Prge_, (Y1 = mi)

K-3
> (1 — 5max)z Z H PTJ. (YO = mj,Xgl =Tj4+15 Tm;, < 0'1)
mj; T1 1

yoesTK—2 =0

X PmK—Q (Yl = mK—l) PTK—Q(TmK—Q < Ul) PmK—l(Yi = mK)

K-3
> (]- - 5max)2 Z Z H ]P)rj (YO = mj7X01 =Tj+1, Tm;, < 01)

mji T1,...,Tk—2 j=0

X PmK—Q (Yl = mK—l) PmK—l(Yi = mK)

K-1
> (1 - 6max)K71 Z H ij (Yl = mj—i—l)

WLj ]:0
2(1 - 5maX)K71 [772 A WB]K 672K€ﬁ>

the last line following from Lemma 3.16. O

E(s)

S N = O 0o

1 3 5 7 9 11 13 15 s

FI1GURE 6. 2-dimensional modification of the energy landscape from Ex-
ample 1.2.

Example 3.18. We return to Example 1.2 given in Section 1, but modify the energy
landscape by allowing direct transitions between some saddles (see Figure 6) because
(MB2) can clearly not be fulfilled in a one-dimensional model. While having no effect
on the metastable states m € M@ valleys change in the way that, for levels i € {5, 6},
the states {1,2,3} do no longer belong to the valley around state 4 and {1, 2} forms its
own valley. The energy-differences sup,,,/c s\ o) E(2*(m, m')) — E(sy,) of the various
metastable states m at each level 1 < ¢ < n =7 are shown in Figure 7. The supremum
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FIGURE 7. sup,,eso\ne [E(z"(m,m")) — E(sm)| for the various
metastable states in S(i)\N(i) in dependence of the level 1 < i <n.

of these energy differences decreases in i, and we obtain MB of order 1 for i > 4, and of
order 0.5 for i > 6.

To illustrate the behavior, we have run a Metropolis Algorithm on this energy land-
scape. For initial state s = 4 and 8 = 0.75, the energies of the trajectories of the original
chain as well of the aggregated chain at levels i = 3,4,5 are shown in Figure 8. The
following observations are worth to be pointed out:

e The number of reciprocating jumps decreases with increasing level of aggregation.

e The deeper the valley, the longer the residence time.

e The motion in state space is well described by the aggregated process.

e Due to the very small size of the state space and a long simulation time, valleys
are revisited.
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aggregated chain at levels i = 3,4, 5.
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