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SEIJI HIRABA

INDEPENDENT INFINITE MARKOV PARTICLE SYSTEMS WITH

JUMPS

We investigate independent infinite Markov particle systems (IIMPSs) as measure-
valued Markov processes with jumps. We shall give sample path properties and
martingale characterizations. In particular, we investigate the Hölder right continuity
exponent in the case where each particle participates in the absorbing α-stable motion
on (0,∞) with 0 < α < 2, that is, the time-changed absorbing Brownian motion on
(0,∞) by the increasing α/2-stable Lévy processes.

1. Introduction

In the study of infinite Markov particle systems, there are several difficulties, even
in independent cases. For instance, “What space of measures is appropriate as a state
space of the infinite particle system?”, “Is it possible to consider the particle system as
a measure-valued diffusion or the measure-valued càdlàg process?”, or “Is it possible to
characterize the generator as that in the case of finite particle systems?”, and so on.

In [3], we considered independent infinite Markov particle systems with immigration
on a half-space associated with absorbing Brownian motions. We gave a martingale
characterization and investigated sample path properties as a measure-valued diffusion.

In the present paper, we consider more general motion processes with jumps, in partic-
ular, absorbing α-stable motions on (0,∞) with 0 < α < 2. We would like to investigate
independent infinite Markov particle systems, which have infinitely many particles near
the boundary including points at infinity. In order to control particles near the bound-
ary, we introduce a function g0(x). Fix a strictly positive C∞-function g0(x) = gp,0(x) on
(0,∞), which has the same order as x ∧ x−p for small or large x with 1 < p < 1 + α (for
other conditions, see Example 3.1 in §3). In this case, the space of counting measures on
(0,∞), Mg0 , is defined by

(1.1) μ ∈ Mg0
def⇐⇒ μ =

∑
n

δxn such that 〈μ, g0〉 =
∫
g0(x)μ(dx) <∞.

Mg0 is furnished with the topology

(1.2) μn → μ in Mg0
def⇐⇒ sup 〈μn, g0〉 <∞, 〈μn, f〉 → 〈μ, f〉 for all f ∈ Cc,

where Cc denotes the space of continuous functions with compact supports on (0,∞).
Then it holds that 〈μ, g0〉 ≤ lim inf 〈μn, g0〉 <∞, and thus, μ ∈ Mg0 . Note that, for each
1 ≤ K <∞, we define

(1.3)

{
μ ∈ Mg0,K

def⇐⇒ μ ∈ Mg0 , 〈μ, g0〉 ≤ K,

μn → μ in Mg0,K
def⇐⇒ 〈μn, f〉 → 〈μ, f〉 for all f ∈ Cc.

Then Mg0,K is a Polish space, and μn → μ in Mg0 is equivalent to μn → μ in Mg,K for
some K ≥ 1. Hence , Mg0 is a metrizable separable space (see §2).

2000 Mathematics Subject Classification. Primary 60G57; Secondary 60G75.
Key words and phrases. particle systems, measure-valued processes, jump processes.

65



66 SEIJI HIRABA

Let (Xt,Pμ) be the (indistinguishable) independent infinite Markov particle sys-
tem (IIMPS) starting from μ, in which each particle participates in the absorbing α-
stable motion (w(t), Px) on S = (0,∞), i.e., for infinitely many independent motions,

(wn(t), Pxn)
(d)
= (w(t), Pxn), and we set

(1.4) Xt =
∑
n

δwn(t) if μ =
∑

n δxn on S, and Pμ =
∏
n

Pxn .

We shall show that if μ is in Mg0 , then (Xt,Pμ) is an Mg0 -valued Markov process
with càdlàg sample paths in D([0,∞) → Mg0) and that 〈Xt, g0〉 is also càdlàg. We
shall further investigate the exponent λ > 0 of the Hölder right continuity of 〈Xt, g0〉
at time zero. Moreover, we shall characterize the generator L0 of (Xt,Pμ) by using the
martingale method and also give the semimartingale representation of Xt.

In §2, we consider the IIMPSs in a more general setting. However, in order to investi-
gate IIMPSs as measure-valued processes, we need several assumptions for the transition
semigroups of motion processes. We shall give sample path properties, i.e., the exponents
of the Hölder (right) continuity, and give the semimartingale representations.

In §3, we give several examples of IIMPSs associated with the well-known motion
processes including absorbing stable motions on (0,∞) and show that they satisfy the
conditions given in §2. Other examples are Brownian motions, Brownian motions on
Rd, rotation invariant stable Lévy processes (we call stable motions) on Rd, or absorbing
Brownian motions on (0,∞).

In §4, we give the proofs of semimartingale representations given in §2.
In §5, we characterize the generators of IIMPSs in the setting given as in §2.
We use the following notation: Let S ⊂ Rd be a domain.

• If x = (x1, . . . , xd) ∈ Rd, then ∂ki = ∂k/(∂xki ) and ∂i = ∂1i for each k = 0, 1, . . . ,
i = 1, . . . , d. Moreover, ∂t = ∂/∂t for time t ≥ 0.

• f ∈ Cc ≡ Cc(S)
def⇐⇒ f is a continuous function on S with compact support in

S, and C∞
c ≡ C∞

c (S) := Cc(S) ∩ C∞(S).

• For each integer k ≥ 0, Ck
b := Ck

b (R
d)|S , that is, f ∈ Ck

b
def⇐⇒ f is the restric-

tion to S of a k-time continuously differentiable function on Rd with bounded

derivatives of order between 0 and k. Moreover, f ∈ C0
def⇐⇒ f is continuous

on S, and f(x) → 0 whenever x → ∂S or |x| → ∞. Furthermore, Cb := C0
b ,

C∞
b :=

⋂
k C

k
b , C

k
0 := C0 ∩ Ck

b and C∞
0 :=

⋂
k C

k
0 .

• For a space D of functions on S, we say that f ∈ D+ def⇐⇒ f ∈ D; f ≥ 0.

2. General Settings and Main Results

Let S be a domain of Rd. Let (w(t), Px)t≥0,x∈S be an S-valued Markov process having
lifetime ζ(w) ∈ (0,∞] such that w : [0, ζ(w)) → S is càdlàg (i.e., right continuous and
has left-hand limits). For convenience, we fix an extra point Δ /∈ S and set w(t) = Δ
if t ≥ ζ(w). Moreover, we shall extend functions f on S to S ∪ {Δ} by f(Δ) = 0. We
denote this path space as w ∈ D([0, ζ) → S).

Assumption 2.1. Let (Tt)t≥0 be the transition semigroup of (w(t), Px), i.e., Ttf(x) =
Ex[f(w(t)) : t < ζ].

(i) (Tt) is a strongly continuous nonnegative contraction semigroup on (C0, ‖·‖∞) with
generator (A,D(A)), where ‖f‖∞ = supx∈S |f(x)|.

(ii) C∞
c ⊂ D(A), and there is a strictly positive function g0 ∈ C∞

0 such that g0 ∈ D(A),
and g−1

0 Af ∈ Cb with g−1
0 = 1/g0 for every f ∈ C∞

c ∪ {g0}.
(iii) supt≤T ‖g−1

0 Ttg0‖∞ <∞ for every T > 0.
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Under this assumption, we introduce a function space Dg0 ⊂ D(A) as follows:

f ∈ Dg0
def⇐⇒ f ∈ D(A) such that ‖g−1

0 f‖∞ <∞ and ‖g−1
0 Af‖∞ <∞.

Clearly, g0 ∈ Dg0 , C
∞
c ⊂ Dg0 and TtC

∞
c ⊂ Dg0 for every t ≥ 0. (Because for f ∈ C∞

c ,
|A(Ttf)| ≤ Tt|Af | ≤ CTtg0 ≤ C′g0 with some C,C′ > 0). Moreover, since C∞

c is dense
in C0 and TtC

∞
c ⊂ Dg0 , Dg0 is a core for A (by Prop. 3.3 in Chap. 1 of [2]). However,

Dg0 may be too large, so we further need the following assumption:

Assumption 2.2. There exist a bounded function g1 ∈ C∞; g1 ≥ g0(> 0) and a core
D ⊂ Dg0 (we denote D = Dg with g = (g0, g1)) satisfying the following:

(i) If f ∈ Dg, then lim
t↓0

1

t

(
Tt(f

2)(x) − f(x)2
)
exists for each x ∈ S (we also denote

the limit as Af2(x) = A(f2)(x), then ∂tTt(f
2)(x) = ATt(f

2)(x) = TtA(f
2)(x) →

Af2(x) as t ↓ 0 for each x ∈ S), Af2 ∈ Cb and ‖g−1
1 Af2‖∞ <∞.

(ii) For each T > 0, supt∈[0,T ] ‖g−1
1 Ttg1‖∞ <∞.

(iii) For each 0 < s < T, supt∈[s,T ] ‖g−1
0 Ttg1‖∞ <∞.

(iv) There exist constants 0 ≤ γ < 1, δ > 0 such that sup0≤t≤δ t
γ‖g−1

0 Ttg1‖∞ <∞.
(v) g0 ∈ Dg.

In §3, we give some examples of semigroups (Tt) satisfying Assumptions 2.1 and 2.2,
with an explicit choice of g0 and g1.

All through the present paper, we suppose that Assumptions 2.1 and 2.2 are fulfilled
and sometime use the notation ‖ · ‖g0 = ‖ · /g0‖∞. Then it holds that, for f ∈ Dg0 ,
‖f‖g0 , ‖Af‖g0 <∞ and |Af2| ≤ Cg1 with some C > 0.

Let Mg0 =
⋃

K≥1 Mg0,K be a space of counting measures on S defined as (1.1)-(1.3).
Then Mg0 is metrizable and separable. In fact, it is possible to take a countable family of
nonnegative functions {fn}n≥1 ⊂ C∞

c such that {αfn : α ∈ R}n≥1 is dense in (Cc, ‖·‖∞),
and we may assume that ‖fn‖g0 = 1. We introduce a metric d on Mg0 such that

d(μ, ν) =
∞∑
n=1

1

2n
(1 ∧ |〈μ, fn〉 − 〈ν, fn〉|) .

This induces the same topology as in (1.2). It is easy to see that (Mg0 , d) is not complete.
However, for eachK ≥ 1, (Mg0,K , d) is complete and separable. We also consider another
metric ρ such that

ρ(μ, ν) = (1 ∧ |〈μ, g0〉 − 〈ν, g0〉|) + d(μ, ν).

Then ρ(μn, μ) → 0 is slightly stronger than μn → μ in Mg0 , and (Mg0 , ρ) is not complete
too. However, we can show the Hölder continuities of {Xt} under ρ (see Theorem 2.2).

We consider the case where the generator has the form

(2.1) A = Ac +Ad,

with

Acf(x) =
1

2

d∑
i,j=1

aij(x)∂2ijf(x) +

d∑
i=1

bi(x)∂if(x),

Adf(x) =

∫
S\{x}

[f(y)− f(x)−∇f(x) · (y − x)I(|y − x| < 1)]ν(x, dy)

−k(x)f(x) +
d∑

i=1

ci(x)∂if(x)
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for f ∈ Dg, where a
ij , bi ∈ Cb(S), (a

ij) is positive definite, k(x) ≥ 0 denotes the killing
rate by jumps, (ci(x)) depends on jumps, and ν(x, dy) is a Lévy kernel on S × (S \ {x})
satisfying

sup
x∈S

∫
S\{x}

(1 ∧ |y − x|2)ν(x, dy) <∞.

Let (Xt,Pμ) be an independent infinite Markov particle system associated with
(w(t), Px) defined as in (1.4). The generator L0 of this particle system is given by the
following: for f ∈ C∞

c and μ ∈ Mg0 ,(
L0e

−〈·,f〉
)
(μ) = −〈μ, efA(1− e−f)〉e−〈μ,f〉 = −〈μ,Af − Γf〉e−〈μ,f〉,

where Γf := Af − efA(1− e−f ) (a more general formula of L0F (μ) for functionals F (μ)
is given in §5). In fact, let {Ft}t≥0 be the filtration generated by {Xt}t≥0 and let

Vtf(x) = − logPx[exp−f(w(t))] = − log
{
1− Tt(1− e−f)(x)

}
.

We have that if 0 ≤ s < t, then

Eμ

[
e−〈Xt,f〉

∣∣∣Fs

]
= exp[−〈Xs, Vt−sf〉].

It is easy to see that (Vt)t≥0 is a nonnegative contraction semigroup on C0. By (ii) of
Assumption 2.1, if f ∈ C∞

c , then 1− e−f ∈ C∞
c ⊂ Dg. Hence, we have

∂tVtf =
TtA(1 − e−f)

1− Tt(1− e−f )
=

ATt(1− e−f )

1− Tt(1− e−f )
= eVtfA(1 − e−Vtf )

→ efA(1− e−f ) = Af − Γf (t ↓ 0).

Note that since Vtf ≤ Ttf (by Jensen’s inequality), Γ is nonnegative;

Γf = Af − ∂tVtf |t=0+ = lim
t↓0

1

t
[(Ttf − f)− (Vtf − f)] ≥ 0.

For each f ∈ C∞
c , vt = Vtf is the unique solution to the following equation:

∂tvt = evtA(1− e−vt), v0 = f

(because ut := 1 − e−vt satisfies ∂tut = Aut, u0 = 1 − e−f and ut = Tt(1 − e−f) is the
unique solution). Moreover, if Avt(x) is well-defined for t > 0, x ∈ S, then

∂tvt = Avt − Γvt, v0 = f,

or, equivalently,

vt = Ttf −
∫ t

0

Tt−sΓvsds.

If A is given as in (2.1), then Γ = Γc + Γd with

Γcf(x) =
1

2

∑
i,j

aij(x)∂if(x)∂jf(x),

Γdf(x) =

∫
S\{x}

(
e−[f(y)−f(x)] − 1 + [f(y)− f(x)]

)
ν(x, dy)

+k(x)
(
ef(x) − 1− f(x)

)
.

First, we mention that, by simple computations,

(2.2)

{
Eμ[〈Xt, f〉] = 〈μ, Ttf〉,
Eμ [〈Xt, f〉〈Xt, g〉] = 〈μ, Ttf〉〈μ, Ttg〉+ 〈μ, Tt(fg)− (Ttf)(Ttg)〉

hold for f ∈ C+
b . Moreover, by using the Markov property and by induction, we have
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Proposition 2.1 (Prop.1 in [3]). For every 0 ≤ t1 ≤ · · · ≤ tn and fi ∈ D+
g , i =

1, 2, . . . , n,

Eμ [〈Xt1 , f1〉 · · · 〈Xtn , fn〉] ≤
n∏

i=1

〈μ, Ttifi〉+ C
(n)
1

n∑
i=1

∏
j �=i

〈μ, Ttjfj〉

+C
(n)
2

n∑
i1=1

∑
i2 �=i1

∏
j �=i1,i2

〈μ, Ttjfj〉+ · · ·+ C
(n)
n−1

n∑
j=1

〈μ, Ttjfj〉+ C(n)
n ,

where C
(n)
k , k = 1, · · · , n are positive constants depending on (n, {‖fi‖∞}i≤n).

Hence, for μ ∈ Mg0 , if t > 0, then 〈Xt, g1〉 is in Lk(Pμ) for every k ≥ 1 by (iii) of
Assumption 2.2. Furthermore, using Jensen’s inequality and Fubini’s theorem, one can
show that, for every t ≥ 0, j, k ≥ 1,

(2.3) 〈Xt, g0〉,
∫ t

0

〈Xs, g0〉j〈Xs, g1〉ds are in Lk(Pμ)

by (iii), (iv) of Assumption 2.2 (note that g0 ≤ g1).
We next introduce a nonnegative operatorQ as Qf = Af2−2fAf for f ∈ Dg, which is

well-defined by (i) of Assumption 2.2 and plays an important role to investigate the Hölder
(right) continuity exponents. The nonnegativity follows from (Ttf

2−f2)−2f(Ttf−f) ≥
(Ttf)

2 − 2fTtf + f2 = (Ttf − f)2 ≥ 0. Moreover, the assumption yields Qf ≤ Cg1 for
f ∈ Dg with some C > 0.

Remark 2.1. (i) If we further assume that, for each x ∈ S, Px(ζ ≥ t) = o(t) as t ↓ 0, i.e.,

lim
t↓0

1

t
(Tt1− 1)(x) = 0, then we have, for f ∈ C∞

c ,

(2.4) e−2‖f‖∞Qf ≤ 2Γf ≤ e2‖f‖∞Qf.

Indeed,

Qf(x) = lim
t↓0

1

t

(
Ttf

2 − 2fTtf + f2
)
(x)

= lim
t↓0

1

t

[
Tt(f − f(x))2(x) + f(x)2(1− Tt1)(x)

]
and

Γf(x) = Af(x) − ef(x)A(1− e−f )(x)

= lim
t↓0

1

t

[
(Ttf − f)(x)− ef(x)

{
Tt(1 − e−f)− (1− e−f(x))

}
(x)

]
= lim

t↓0
1

t

[
Tt

(
e−[f−f(x)] − 1 + [f − f(x)]

)
(x) + (ef − 1− f)(x)(1 − Tt1)(x)

]
.

Hence, by using ex − 1− x = x2eθx/2 with some θ ∈ (0, 1), we have (2.4).
(ii) If A is given as in (2.1), then Q = Qc + Qd with Qc = 2Γc, i.e., Qcf(x) =∑d
i,j=1 a

ij(x)∂if(x)∂jf(x) and

Qdf(x) =

∫
S\{x}

[f(y)− f(x)]
2
ν(x, dy) + k(x)f(x)2.

(iii) In case of g0 
= g1, L0(exp−〈·, g0〉)(μ) may not be well-defined for all μ ∈ Mg0 ,
because 〈μ,Γg0〉 may be infinite for some μ ∈ Mg0 .

By (2.2), we have, for f ∈ C∞
c ,

L0〈·, f〉(μ) = 〈μ,Af〉, L0〈·, f〉2(μ) = 2〈μ, f〉〈μ,Af〉+ 〈μ,Qf〉.
Moreover, we can see the following:
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Proposition 2.2. Let μ ∈ Mg0 . For f ∈ Dg,

Mt(f) = 〈Xt, f〉 − 〈X0, f〉 −
∫ t

0

L0〈·, f〉(Xs)ds,

Nt(f) = 〈Xt, f〉2 − 〈X0, f〉2 −
∫ t

0

L0〈·, f〉2(Xs)ds

are Pμ-martingales and Mt(f)
2 −

∫ t

0

〈Xs, Qf〉ds is also a Pμ-martingale. In particular,

Eμ[Mt(f)
2] = Eμ

[∫ t

0

〈Xs, Qf〉ds
]
=

∫ t

0

〈μ, TsQf〉ds.

Proof. Let f ∈ Dg. If the particle system is finite, it is easy to check that Mt(f),
Nt(f) are martingales. Moreover, by a simple computation, we have

Mt(f)
2 −

∫ t

0

〈Xs, Qf〉ds

= Nt(f)− 2〈X0, f〉Mt(f) +

(∫ t

0

〈Xs, Af〉ds
)2

−2〈Xt, f〉
∫ t

0

〈Xs, Af〉ds+ 2

∫ t

0

〈Xs, f〉〈Xs, Af〉ds

= Nt(f)− 2〈X0, f〉Mt(f)− 2

∫ t

0

[Mt(f)−Ms(f)] 〈Xs, Af〉ds.

This is a martingale. Hence, the above results are valid for finite particle systems. Let

X
(n)
t =

∑
k≤n δwk(t) with X

(n)
0 = μ(n). For f ∈ Dg, recall |f |, |Af | ≤ Cg0, |Qf | ≤ Cg1

with some C > 0. By (2.3) for each fixed t ≥ 0, under Pμ, 〈X(n)
t , g0〉 ↑ 〈Xt, g0〉 and∫ t

0

〈X(n)
s , g0〉i〈X(n)

s , g1〉jds ↑
∫ t

0

〈Xs, g1〉i〈Xs, g1〉jds a.s. and in Lk for every k ≥ 1 as

n→ ∞ (i = 0, 1, 2, j = 0, 1). Therefore, the results are valid for the infinite case. �

Theorem 2.1. Let μ ∈ Mg0 .
(i) If the motion process is a continuous Markov process in C([0, ζ) → S), then {Xt}

is in C([0,∞) → Mg0) and {〈Xt, g0〉} is in C([0,∞) → R), Pμ-a.s.
(ii) If the motion process is a discontinuous Markov process in D([0, ζ) → S), then

{Xt} is in D([0,∞) → Mg0) and {〈Xt, g0〉} is in D([0,∞) → R), Pμ-a.s.

Proof. Fix T > 0. Let X(n) = {X(n)
t }t≤T be the n-particle system such that X

(n)
0 =

μ(n) given as in the previous proof. We denote the corresponding martingale part by

{M (n)
t (f)}. Recall Qg0 ≤ Cg1, |Ag0| ≤ Cg0 with some C > 0. By Assumption 2.2 (iv),∫ T

0

〈μ, TtQg0〉dt ≤ C

∫ T

0

〈μ, Ttg1〉dt

≤ C sup
t≤T

tγ‖g−1
0 Ttg1‖∞

∫ T

0

t−γdt 〈μ, g0〉

≤ CT 〈μ, g0〉,
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where CT are positive constants. We note that μ(m) ≤ μ(n) if m < n. By Proposition
2.2 and Doob’s maximal inequality, we have, for m < n,

Eμ

[
sup
t≤T

∣∣∣M (n)
t (g0)−M

(m)
t (g0)

∣∣∣2] ≤ 4

∫ T

0

〈μ(n) − μ(m), TtQg0〉dt

≤ 4CT 〈μ(n) − μ(m), g0〉
→ 0

as n > m→ ∞. Moreover, ‖g−1
0 Ttg0‖∞ <∞ by Assumption 2.1. If m < n, then

Eμ

[∫ T

0

〈X(n)
t −X

(m)
t , |Ag0|〉dt

]
≤ C′

∫ T

0

〈μ(n) − μ(m), Ttg0〉dt

≤ C′
T sup

t≤T
‖g−1

0 Ttg0‖∞〈μ(n) − μ(m), g0〉

→ 0 (n > m→ ∞),

where C′, C′
T are positive constants. By Proposition 2.2, this yields

Eμ

[
sup
t≤T

|〈X(n)
t −X

(m)
t , g0〉|

]
→ 0 (n > m→ ∞).

Thus, there is a subsequence {X(nk)}k≥1 such that

(2.5) sup
t≤T

|〈X(nk)
t −X

(nj)
t , g0〉| → 0 as j, k → ∞, Pμ-a.s.

Moreover, (2.5) is also valid for f ∈ C+
c instead of g0. Hence, for Pμ-a.a. ω, there is a

positive numberK = K(ω) ≥ 1 such that {X(nk)(ω)} is a Cauchy sequence in C([0, T ] →
(Mg0,K , d)) (or in D = D([0, T ] → (Mg0,K , d))). Since (Mg0,K , d) is complete, the limit

X̃ = {X̃t}t≤T exists in C = C([0, T ] → Mg0) (or D = D([0, T ] → Mg0)), which is a

version of {Xt}t≤T . Hence, Pμ(X̃r = Xr for all r ∈ Q+) = 1, and, by Fatou’s lemma, we
have, for f ∈ C+

c ∪ {g0},
〈X̃t, f〉 = lim

r(∈Q+)↓t
〈Xr, f〉 ≥ 〈Xt, f〉 for every t ≥ 0, Pμ-a.s.,

Therefore,

sup
t≤T

|〈X̃t −Xt, f〉| ≤ sup
t≤T

|〈X̃t −X
(nk)
t , f〉| → 0 (k → ∞), Pμ-a.s.,

that is, X̃t = Xt for all t ≥ 0, Pμ-a.s. �
We now investigate the exponents of the Hölder (right) continuity of 〈Xt, g0〉. First,

we consider the continuous case.

Theorem 2.2 (Hölder continuity). Let (w(t), Px) be a continuous Markov process in
C([0, ζ) → S) with a transition semigroup (Tt) satisfying Assumptions 2.1 and 2.2. Let
μ ∈ Mg0 . The following holds with Pμ-probability one:

(i) {〈Xt, g0〉} is locally (1/2−ε)-Hölder continuous at t > 0 and ((1−γ)/2−ε)-Hölder
right continuous at t = 0 for sufficiently small ε > 0, where the constant 0 ≤ γ < 1
is as in Assumption 2.2 (iv).

(ii) Let 〈μ, g1〉 < ∞, in particular, for g1 ≥ g0. If it is possible to take g1(x) = g0(x),
then {〈Xt, g0〉} is locally (1/2− ε)-Hölder continuous at t ≥ 0 for sufficiently small
ε > 0.

Moreover, the same results hold for {Xt} under the metric ρ.
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Proof. The proof is similar to that of Theorem 2 in [3]. First, we show the local
((1 − γ)/2− ε)-Hölder continuity of {〈Xt, g0〉}. By Kolmogorov’s continuity theorem, it
is enough to show that, for each T > 0 and for large k ∈ N; k(1 − γ) > 1, there are
constants CT,k > 0 such that

Eμ

[|〈Xt, g0〉 − 〈Xs, g0〉|2k
] ≤ CT,k(t− s)k(1−γ)

for all 0 ≤ s < t ≤ T. First, we note that∫ t

s

〈μ, Tug0〉du ≤ sup
u∈[0,T ]

‖g−1
0 Tug0‖∞〈μ, g0〉(t− s).

Hence, by Jensen’s inequality and using Proposition 2.1 and Assumption 2.1 (iii), we

have that, for each T > 0 and for each k ∈ N, there are constants C
(0)
T,k, C

(1)
T,k > 0 such

that

Eμ

[(∫ t

s

〈Xu, g0〉du
)k

]
≤ C

(0)
T,k

(∫ t

s

〈μ, Tug0〉du
)k

≤ C
(1)
T,k(t− s)k

for all 0 ≤ s < t ≤ T. As |Ag0| ≤ Cg0 by Assumption 2.1 (ii), we further obtain

Eμ

[(∫ t

s

〈Xu, |Ag0|〉du
)2k

]
≤ C

(2)
T,k(t− s)2k.

Moreover, by (iii) and (iv) of Assumption 2.2, it holds that, for any 0 ≤ s < t ≤ T,∫ t

s

〈μ, Tug1〉du ≤ sup
u≤T

uγ‖g−1
0 Tug1‖∞〈μ, g0〉

∫ t

s

u−γdu ≤ CT (t− s)1−γ

with some constant CT . Recall Proposition 2.2. Since, for each fixed s ≥ 0, {Ns
t (g0)}t≥s;

Ns
t (g0) :=Mt(g0)−Ms(g0) is a continuous martingale with quadratic variation

[Ns
t (g0)] = [M(g0)]t − [M(g0)]s =

∫ t

s

〈Xu, Qg0〉du,

we have, by using the Burkholder–Davis–Gundy inequality and by Qg0 ≤ Cg1,

Eμ

[
(Mt(g0)−Ms(g0))

2k
]
≤ C

(3)
T,kEμ

[(∫ t

s

〈Xu, Qg0〉du
)k

]
≤ C

(4)
T,k(t− s)k(1−γ),

where the constants C
(i)
T,k, i = 2, 3, 4, depend only on (T, k). Thus, the ((1 − γ)/2 − ε)-

Hölder continuity of {〈Xt, g0〉} in 0 ≤ t ≤ T follows. Furthermore, if 〈μ, g1〉 < ∞, then,
by 〈μ, Tug1〉 ≤ 〈μ, g1〉‖g−1

1 Tug1‖∞ and (ii) of Assumption 2.2, we have,∫ t

s

〈μ, Tug1〉du ≤ sup
u∈[0,T ]

‖g−1
1 Tug1‖∞〈μ, g1〉(t− s).

Thus, {〈Xt, g0〉} is locally (1/2 − ε)-Hölder continuous at t ≥ 0, Pμ-a.s. For general
μ ∈ Mg0 , if t > 0, then, by (iii) of Assumption 2.2,

Eμ[〈Xt, g1〉] = 〈μ, Ttg1〉 ≤ 〈μ, g0〉‖g−1
0 Ttg1‖∞ <∞.

Thus, 〈Xt, g1〉 < ∞, Pμ-a.s. Therefore, the locally (1/2 − ε)-Hölder continuity of
{〈Xt, g0〉} at t > 0 and the ((1 − γ)/2 − ε)-Hölder right continuity at t = 0 follow.
Finally, in the definition of the metric ρ for n ≥ 1, we can take {fn} ⊂ (C∞

c )+ such that

‖fn‖g0 + ‖Afn‖g0 + ‖Qfn‖g0 ≤ 1.

Hence we can get the same inequalities for ρ(Xt, Xs)
2k instead of |〈Xt, g0〉 − 〈Xs, g0〉|2k.

�
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For more specific cases (e.g., the Brownian motion or absorbing Brownian motion),
it is possible to discuss the non-Hölder continuities as in [3]. The Hölder continuity
exponent is determined by the order of t in Eμ[〈Xt, g1〉] = 〈μ, Ttg1〉.

Next, we consider the discontinuous case. In this case, we can only discuss the Hölder
right continuity exponents at a fixed time.

Theorem 2.3 (Hölder right continuity at t = 0). Let (w(t), Px) be a discontinuous
Markov process in D([0, ζ(w)) → S) with a transition semigroup (Tt) satisfying Assump-
tions 2.1 and 2.2. Let μ ∈ Mg0 . The following holds with Pμ-probability one.

(i) {〈Xt, g0〉} is ((1 − γ)/2− ε)-Hölder right continuous at t = 0 for sufficiently small
ε > 0, where the constant 0 ≤ γ < 1 is in (iv) of Assumption 2.2.

(ii) If 〈μ, g1〉 < ∞, in particular, if g1(x) = g0(x), then {〈Xt, g0〉} is (1/2 − ε)-Hölder
right continuous at t = 0 for sufficiently small ε > 0.

If t > 0, then 〈Xt, g1〉 <∞, Pμ-a.s. Hence, the following is immediately obtained.

Corollary 2.1. Let μ ∈ Mg0 . For each fixed t0 > 0, with Pμ-probability one, it holds
that {〈Xt, g0〉} is (1/2− ε)-Hölder right continuous at t = t0 for sufficiently small ε > 0.

By using the following proposition, the above theorem can be shown similarly to the
continuous case. However, we only use the square moment, i.e., p = 2.

Proposition 2.3. Let p > 1. On a probability space (Ω,F , P ), let {Mt} be a right-
continuous Lp(P )-martingale starting from M0 = 0. For small T > 0, if there exist
constants β > 0 and Cp,T > 0 such that

E[|Mt|p] ≤ Cp,T t
pβ for all 0 ≤ t ≤ T ,

then

lim sup
t↓0

|Mt|
tβ log 1/t

= 0, P -a.s.

Proof. For each integer n, set tn = 1/2n and let

Zn = sup
tn+1≤t<tn

|Mt|
tβ log 1/t

.

By Doob’s maximal inequality, we have

E[|Zn|p] ≤ E[suptn+1≤t<tn |Mt|p]
tpβn+1(log 1/tn)

p

≤
(

p

p− 1

)p
E|Mtn |p

(tn/2)pβ(log 2n)p

≤
(

p2β

(p− 1) log 2

)p
Cp,T

np
.

Hence, E [
∑

n |Zn|p] =
∑

nE[|Zn|p] <∞. This yields

P

(
lim sup

t↓0

|Mt|
tβ log 1/t

= 0

)
= P

(
lim
n→∞Zn = 0

)
= 1.

�
We give a semimartingale representation of (Xt,Pμ). The following result can be

shown like Theorem 6.1.3 in [1]. The proof is given in §4.
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Theorem 2.4 (Semimartingale Representation of (Xt,Pμ)). Under Assumptions 2.1
and 2.2, we suppose that the generator A of the motion process is given as in (2.1). If
μ ∈ Mg0 , then (Xt,Pμ) has the following semimartingale representation: For f ∈ Dg,

〈Xt, f〉 = 〈X0, f〉+
∫ t

0

〈Xs, Af〉ds+M c
t (f) +Md

t (f),

where
M c

t (f) is a continuous L2-martingale

with quadratic variation [M c(f)]t =

∫ t

0

〈Xs, Q
cf〉ds = 2

∫ t

0

〈Xs,Γ
cf〉ds and

Md
t (f) =

∫ t

0

∫
M±

g0

〈μ, f〉Ñ(ds, dμ) is a purely discontinuous L2-martingale

with Ñ = N − N̂ is the martingale measure such that, for ΔXu = Xu −Xu−,

N(ds, dμ) =
∑

u;ΔXu �=0

δ(u,ΔXu)(ds, dμ) : the jump measure of {Xt},

N̂(ds, dμ) = ds

∫
Xs(dx)

(∫
ν(x, dy)δ(δy−δx) + k(x)δ−δx

)
(dμ) :

the compensator of N,

where M±
g0 is the family of signed-measures of μ+ − μ−;μ+, μ− ∈ Mg0 .

3. Examples of Motion Processes and the Hölder (Right) Continuity

Exponents

In this section, we shall investigate the exponents of the Hölder right continuity of
sample paths of independent Markov particle systems associated with motion processes
given in the following examples:

Example 3.1. (i) Brownian motion and stable motion on Rd: Let p > d and gp(x) :=

(1 + |x|2)−p/2. We define function spaces Cp, C
2
p by f ∈ Cp ≡ Cp(R

d)
def⇐⇒ f ∈ C(Rd)

and ‖f/gp‖ <∞, f ∈ C2
p

def⇐⇒ f ∈ C2
b (R

d); |f |, |∂if |, |∂2ijf | ≤ Cgp for all i, j = 1, · · · , d
with some constant C = C(f). In this case, we can take gp(x) as g0(x) and Dg = C2

p ≡
C2

p (R
d) (see the following proof of Theorem 3.1).

(a) If (w(t), Px) is the Brownian motion on Rd, then p > d and

Af =
1

2
�f =

1

2

d∑
i=1

∂2i f, Qf = |∇f |2 =

d∑
i=1

(∂if)
2.

(b) If (w(t), Px) = (wα(t), Pα
x ) is the α-stable motion on Rd (0 < α < 2), that is, a

rotation-invariant α-stable Lévy process on Rd, then d < p < d+ α and

Af(x) = Aαf(x) = −(−�)α/2f(x)

= c

∫
Rd\{0}

[f(x+ y)− f(x)−∇f(x) · yI(|y| < 1)]
dy

|y|d+α

= c

∫
Rd\{x}

[f(y)− f(x)−∇f(x) · (y − x)I(|y − x| < 1)]
dy

|y − x|d+α
,

Qf(x) = Qαf(x) = c

∫
Rd\{0}

|f(x+ y)− f(x)|2 dy

|y|d+α

= c

∫
Rd\{x}

|f(y)− f(x)|2 dy

|y − x|d+α
,
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where c > 0 is a suitable constant.
(ii) Absorbing Brownian motion and absorbing stable motion on (0,∞): Let h0(v) be

a C∞-function on (0,∞) such that 0 < h0 ≤ 1 on (0,∞), h0(v) = v for v ∈ (0, 1/2] and
h0(v) = 1 for v ≥ 1. Let p > 1 and set

gp,0(x) := gp(x)h0(x) for x ∈ (0,∞) with gp(x) = (1 + x2)−p/2.

We further define f ∈ Cp,0
def⇐⇒ f ∈ C(R)|(0,∞) and ‖f/gp,0‖ < ∞. Moreover, for

k ≥ 2, we set f ∈ Ck
p,0

def⇐⇒ f ∈ Ck
b (R)|(0,∞); |f |, |f ′′| ≤ Cgp,0 and |f ′| ≤ Cgp with some

constant C = C(f). In this case, g0(x) is given as gp,0(x).
(a) If (w(t), Px) = (w0(t), P 0

x ) is the absorbing Brownian motion on (0,∞), then p > 1.
Moreover, we can take Dg = C2

p,0, and A, Q are the same as in the case of the Brownian
motion on R.

(b) If (w(t), Px) = (w−,α(t), P−,α
x ) is the absorbing α-stable motion on (0,∞) (0 <

α < 2), i.e., the time-changed absorbing Brownian motion on (0,∞) by the increasing
α/2-stable Lévy process yα/2(t) on [0,∞) starting from 0; w−,α(t) = w0(yα/2(t)), where
{w0(t)}, {yα/2(t)} are independent, then 1 < p < 1 + α, and we can take Dg = C3

p,0 (see

the following proof of Theorem 3.1). Moreover, for a function f on (0,∞), let f be an
extension of f on R defined as

f(z) =

⎧⎨⎩ f(z) (z > 0),
f(0+) (z = 0),
−f(−z) (z < 0).

The generator A = A−,α is given as

A−,αf(x) = Aαf(x).

We can also write that if 0 < α < 1, then

A−,αf(x) = c

∫
R\{x}

[
f(y)− f(x)

] dy

|y − x|1+α

= c

∫ ∞

0

[f(y)− f(x)]K(x, y)dy − 2cf(x)

∫ ∞

0

dy

(y + x)1+α

= c

∫ ∞

0

[f(y)− f(x)]K(x, y)dy − 2c

α
x−αf(x)

and that if 1 ≤ α < 2, then (in §4 of [4], we have some misprints)

A−,αf(x) = c

∫
R\{x}

[
f(y)− f(x)− (f)′(x)(y − x)I(|y − x| < 1)

] dy

|y − x|1+α

= c

∫ ∞

0

[f(y)− f(x)− f ′(x)(y − x)I(|y − x| < 1)]K(x, y)dy

+c

∫ ∞

0

[−2f(x) + f ′(x)(y + x)I(y + x < 1)

−f ′(x)(y − x)I(|y − x| < 1))]
dy

(y + x)1+α

= c

∫ ∞

0

[f(y)− f(x)− f ′(x)(y − x)I(|y − x| < 1)]K(x, y)dy

−2c

α
x−αf(x) + f ′(x)c(x),

where

K(x, y) =
I(y 
= x)

|y − x|1+α
− 1

(y + x)1+α
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and

c(x) = c

∫ ∞

0

[(y + x)I(y + x < 1)− (y − x)I(|y − x| < 1))]
dy

(y + x)1+α
.

(Note that if 0 < x < 1, then

c(x) =

⎧⎪⎨⎪⎩
2

α

(
x1−α − x(2x+ 1)−α

)− 1

α− 1

(
1− (2x+ 1)1−α

) ∼ 2

α
x1−α (1 < α < 2),

2

(
1− x

2x+ 1

)
− log(2x+ 1) ∼ 2 (α = 1).

as x ↓ 0. We can also show that c(x) is positive.) Moreover, we have, for 0 < α < 2,

Qf(x) = Q−,αf(x) = c

∫ ∞

0

|f(y)− f(x)|2K(x, y)dy +
2c

α
x−αf(x)2.

With the above motion processes, we have the following results:

Theorem 3.1. Let g0 be given in the following each case. Let μ ∈ Mg0 , and let ε > 0
denote any small number.

(i) Continuous case; Brownian motion on Rd or absorbing Brownian motion on (0,∞).
Under Pμ, the following holds with probability one.

(a) Let the motion process be the Brownian motion on Rd and g0 = gp with p > d.
Then {〈Xt, gp〉} is locally (1/2− ε)-Hölder continuous in t ≥ 0.

(b) Let d = 1. If the motion process is the absorbing Brownian motion on (0,∞)
and g0 = gp,0 with p > 1, then {〈Xt, gp,0〉} is locally (1/2−ε)-Hölder continuous
at t > 0 and (1/4− ε)-Hölder right continuous at t = 0. Moreover, if 〈μ, gp〉 <
∞, then {〈Xt, gp〉} is locally (1/2− ε)-Hölder continuous at t ≥ 0.

(ii) Discontinuous case; the stable motion on Rd or absorbing stable motion on (0,∞).
Under Pμ, the following holds with probability one.

(a) Let the motion process be the α-stable motion on Rd with 0 < α < 2 and
g0 = gp with d < p < d+α. Then {〈Xt, gp〉} is (1/2−ε)-Hölder right continuous
at t = 0.

(b) Let d = 1, let the motion process be the absorbing α-stable motion on (0,∞)
with 0 < α < 2, and let g0 = gp,0 with 1 < p < 1 + α. {〈Xt, gp,0〉} is (1/(2(α∨
1))−ε)-Hölder right continuous at t = 0. Moreover, in the case of 1 < α < 2, if
〈μ, g1〉 <∞ with g1(x) = gp(x)h0(x)

2−α, then {〈Xt, gp,0〉} is (1/2− ε)-Hölder
right continuous at t = 0.

Corollary 3.1. In the above discontinuous case, if t0 > 0, then, under Pμ, {〈Xt, g0〉} is
(1/2− ε)-Hölder right continuous at t = t0 for sufficiently small ε > 0, where μ ∈ Mg0 .

Proof of Theorem 3.1.
It suffices to check that the conditions in Assumptions 2.1 and 2.2 are fulfilled with

suitable g1 ∈ C∞ and 0 ≤ γ < 1;

(i) (a) g1(x) = gp(x), γ = 0. (b) g1(x) = gp(x), γ = 1/2.
(ii) (a) g1(x) = gp(x), γ = 0. (b) Let h0 be given as in (ii) of Example 3.1. Let

h1 ∈ C∞; 0 < h1 ≤ 1, h1(v) = v log(1/v) for v ∈ (0, 1/e] and h1(v) = 1 for v ≥ 1.
If 0 < α < 1, then g1(x) = gp,0(x), γ = 0. If α = 1, then g1(x) = gp(x)h1(x), γ = δ
for any small 0 < δ < 1. If 1 < α < 2, then g1(x) = gp(x)h0(x)

2−α, γ = 1− 1/α.

It is well known that the following in Prop. 2.3 of [5] holds: Let (Tt) (resp., (Tα
t )) be

a transition semigroup of the Brownian motion on Rd (resp., of the α-stable motion on
Rd). For f ∈ C0(R

d), if there exists a constant L ∈ R such that lim|x|→∞ |x|pf(x) = L,
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then

lim
|x|→∞

sup
t≥0

|x|pTtf(x) = L if p > d

lim
|x|→∞

sup
t≥0

|x|pTα
t f(x) = L if d < p < d+ α.

(i) Continuous case.
(a) By C2

p ⊂ D(A) and AC2
p ⊂ Cp, and by the above result, Assumption 1 follows with

Dg0 = C2
p . Furthermore, the fact that C2

p is stable under multiplication (i.e., if f ∈ C2
p ,

then f2 ∈ C2
p ) yields Assumption 2 with g1 = g0 = gp, Dg = C2

p and γ = 0.
(b) It is essentially proved in [3].

(ii) Discontinuous case. Let 0 < α < 2 and d < p < d+ α.
(a) It is easy to see that if f ∈ C∞

c , then ∂iTtf = Tt(∂if). Therefore, we have
Tα
t C

∞
c ⊂ C2

p for every t ≥ 0. Moreover, it is well known that C2
p ⊂ C2

0 ⊂ D(Aα). Thus,

Dg = C2
p is a core. It suffices only to show that AαC2

p ⊂ Cp. A
αf ∈ C(Rd) is clear

by Lebesgue’s convergence theorem. We prove that, for f ∈ C2
p , ‖g−1

p Aαf‖∞ < ∞, i.e.,

|Aαf(x)| ≤ C|x|−p for sufficiently large |x|. For simplicity of the notation, we omit the
superscript “α” as Aα = A. In the following, we fix x; |x| ≥ 2 and use the same symbol C
as any finite x-independent constant. Let f (2) = (∂2ijf) and |f (2)(x)| = maxi,j |∂2ijf(x)|.
Note that |f (2)(x)| ≤ C|x|−p. Therefore, if |y| ≤ 1, then

|f(x+ y)− f(x)−∇f(x) · y| = |f (2)(x+ θy)||y|2/2 ≤ C|x+ θy|−p|y|2 ≤ C|x|−p,

where θ = θ(x, y) ∈ (0, 1) (note that |x+ θy| ≥ |x| − |y| ≥ |x| − 1 ≥ |x|/2). Thus,

|Af(x)| = c

∫
Rd\{0}

[|f(x+ y)− f(x)−∇f(x) · yI(|y| < 1)|] dy

|y|d+α

≤ c

∫
|y|<1

|f(x+ y)− f(x)−∇f(x) · y| dy

|y|d+α

+c

∫
|z−x|≥1

|f(z)| dz

|z − x|d+α
+ c|f(x)|

∫
|y|≥1

dy

|y|d+α

≤ C|x|−p

∫
|y|<1

|y|−d−α+2dy + c

∫
|z−x|≥1

|f(z)| dz

|z − x|d+α
+ C|x|−p

≤ C|x|−p + c

∫
|z−x|≥1

|f(z)| dz

|z − x|d+α
.

For the second term, we divide the integral area into {|z−x| ≥ 1} = {|z−x| > δ|x|}∪{1 ≤
|z − x| ≤ δ|x|} with 0 < δ < 1/2 and denote each integral by I1(x), I2(x), respectively.
We have

I1(x) ≤ |x|−d−αδ−d−α

∫
Rd

|f(z)|dz = C|x|−d−α ≤ C|x|−p

and

I2(x) = |x|−p

∫
1≤|z−x|≤δ|x|

∣∣∣x
z

∣∣∣p (|z|p|f(z)|) dz

|z − x|d+α
≤ C|x|−p

∫
|y|≥1

dy

|y|d+α
= C|x|−p,

because |z| ≥ (1 − δ)|x| if |z − x| ≤ δ|x|. Therefore, if f ∈ C2
p , then |Aαf(x)| ≤ C|x|−p

for |x| ≥ 2 with some constant C = C(f).

(b) Let (T−,α
t ) be a transition semigroup of the absorbing α-stable motion

(w−,α(t), P−,α
x ) on (0,∞). Note that, in this case, Dg = C3

p,0 is not stable under mul-

tiplication. For simplicity of the notation, we omit the superscript “α” as T−,α
t = T−

t ,
A−,α = A−, Tα

t = Tt, A
α = A, and so on. We will show the following:
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(B1) C3
p,0 ⊂ D(A−), T−

t C
∞
c ⊂ C3

p,0 for every t ≥ 0, A−C3
p,0 ⊂ Cp,0 and

supt≥0,0<x≤1 |x−1T−
t gp,0(x)| < ∞ (this yields Assumption 2.1, and C3

p,0 is a
core).

(B2) For every f ∈ C3
p,0, ∂tT

−
t f

2(x) = A−T−
t f

2(x) = T−
t A

−f2(x) (x > 0), A−f2 ∈ Cb

and ‖g−1
1 Q−f‖∞ <∞ (this yields (i) of Assumption 2.2).

(B3) For each 0 < β ≤ 1, supt≥0 T
−
t (yβ)(x) ≤ 2(1+ β)xβ for all x > 0 (this yields (ii)

of Assumption 2.2).

(B4) For each 0 < β ≤ 1, sup0<x≤1 x
−1T−,α

t (yβ)(x) ≤ Cβ t−(1−β)/α with a constant
Cβ > 0 depending only on β (this yields (iii) and (iv) of Assumption 2.2).

Note that we take γ = (1 − β)/α in Assumption 2.2. More exactly, if 0 < α < 1, then
we take β = 1, i.e., γ = 0. If α = 1, then β = 1− δ for any small 0 < δ < 1, i.e., γ = δ.
If 1 < α < 2, then β = 2− α, i.e., γ = 1− 1/α.

Let pα(x) be the density of the α-stable motion on R starting from 0. It is well known
that pαt (x) satisfies the relations pαt (x) = t−1/αpα1 (t

−1/αx) (the scaling property) and

pα1 (x) ≤ C(1 ∧ |x|−1−α). The transition density p−t (x, y) ≡ p−,α
t (x, y) of the absorbing

α-stable motion on (0,∞) is given as

p−t (x, y) = pαt (y − x)− pαt (y + x) = −
∫ x

−x

∂vp
α
t (y + v)dv.

Hence, by using the integration by parts, we have, for 0 < β ≤ 1,

T−
t (yβ)(x) =

∫ ∞

0

yβp−t (x, y)dy =

(∫ x

0

+

∫ ∞

x

)
yβp−t (x, y)dy

≤ xβ
∫ x

0

p−t (x, y)dy −
∫ ∞

x

dy

∫ x

−x

yβ∂vp
α
t (y + v)dv

≤ xβ +

∫ x

−x

dv

(
xβpαt (x+ v) + β

∫ ∞

x

yβ−1pαt (y + v)dy

)
≤ 2xβ + βxβ−1

∫ x

−x

dv

∫ ∞

x

pαt (y + v)dy

≤ 2(1 + β)xβ .

Thus, we have (B3) and, hence, the last claim of (B1). Moreover,

T−
t (yβ)(x) = −

∫ x

−x

dv

∫ ∞

0

yβ∂vp
α
t (y + v)dy

= β

∫ x

−x

dv

∫ ∞

0

yβ−1pαt (y + v)dy

= β

∫ x

−x

dv

∫ ∞

0

yβ−1t−1/αpα1 (t
−1/α(y + v))dy

= βt(β−1)/α

∫ x

−x

dv

∫ ∞

0

zβ−1pα1 (z + t−1/αv)dz

≤ Ct−(1−β)/αx.

It is easy to see that ∫ ∞

0

zβ−1pα1 (z + u)dz is bounded in u ∈ R.

Therefore, we have (B4).
If f ∈ C3

p,0, then T
−
t f = Ttf and f ∈ C2

p(R
d) ⊂ D(A). Hence, we have A−f = Af and

C3
p,0 ⊂ D(A−). Moreover, (T−

t f)
(k) = Tt(f

(k)
) for f ∈ C∞

c (k ≥ 0) yields T−
t C

∞
c ⊂ C3

p,0
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by the last claim of (B1). In order to show that A−C3
p,0 ⊂ Cp,0, it suffices to prove that

(3.1) A−f(x) = O(x) as x ↓ 0 for f ∈ C3
p,0.

Let 0 < x ≤ 1.

A−f(x) = c

∫
R\{0}

[
f(y + x)− f(x) −∇f(x)yI(|y| < 1)

] dy

|y|1+α
(3.2)

= c

∫ x

−x

[f(y + x)− f(x)− f ′(x)y]
dy

|y|1+α

+ c

∫ ∞

x

[f(y + x)− f(y − x) − 2f(x)]
dy

y1+α
.

We denote the first term on the right-hand side as J1(x). For the second term, we

divide the integral into

∫ ∞

1

+

∫ 1

x

dy and denote the corresponding terms as J2(x) and

J3(x), respectively. In the following, we use the same symbol C as any finite constant,
independent of 0 < x ≤ 1. It is easy to see that, by |f ′′(x)| ≤ Cx,

|J1(x)| ≤ c

∫ 1

0

dt(1 − t)

∫ x

−x

|f ′′(x + ty)|y2 dy

|y|1+α

≤ C

∫ x

−x

(x+ |y|)y2 dy

|y|1+α

= Cx3−α (= o(x) as x ↓ 0)

and, by f(y + x)− f(y − x) = 2f ′(y − x+ θ(y + x))x for some θ ∈ (0, 1),

|J2(x)| ≤ c

∫ ∞

1

[|f(y + x)− f(y − x)| + 2|f(x)|] dy

|y|1+α

≤ Cx‖f ′‖∞
≤ Cx.

By using Taylor’s formula for f at 0+ and f(0+) = 0, we see that

f(y + x)− f(y − x) − 2f(x)

=

∫ 1

0

dt(1− t)
[
f ′′(t(y + x))(y + x)2 − f ′′(t(y − x))(y − x)2 − 2f ′′(tx)x2

]
=

∫ 1

0

dt(1− t)
[{f ′′(t(y + x)) − f ′′(t(y − x))} (y2 + x2)

+2 {f ′′(t(y + x)) + f ′′(t(y − x))} xy − 2f ′′(tx)x2
]
.

=

∫ 1

0

dt(1− t)
[{f ′′(t(y + x)) − f ′′(t(y − x))} (y2 + x2)

+2 {f ′′(t(y + x)) + f ′′(t(y − x))} xy − 2f ′′(tx)x2
]
.

=

∫ 1

0

dt(1− t)
[
2f (3)(t(y − x+ 2θx))x(y2 + x2)

+2 {f ′′(t(y + x)) + f ′′(t(y − x))} xy − 2f ′′(tx)x2
]
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with some θ ∈ (0, 1). Thus, by |f ′′(x)| ≤ Cx,

|J3(x)| ≤ c

∫ 1

x

[
2‖f (3)‖∞x(y2 + x2) + C(y + x)xy + 2Cx3

] dy

y1+α

≤ Cx

∫ 1

x

(y2 + xy + x2)
dy

y1+α

≤ 3Cx

∫ 1

0

y2
dy

y1+α
= 3Cx

∫ 1

0

y1−αdy =
3C

2− α
x.

Therefore, we have (3.1). Next, we prove (B2). Fix f ∈ C3
p,0 and denote h ≡ hf = f2.

Note that if f ′(0+) 
= 0, then h′′(0+) 
= 0, i.e., h /∈ C2
p,0 (h /∈ C2(R)). However,

there exists a sequence {hn}n≥1 ⊂ C3
p,0 such that hn, h

′
n → h, h′ uniform, respectively,

and h′′n → h′′ locally uniform and uniformly bounded as n → ∞. Note that it holds

that hn, h
′
n → h, h

′
as n→ ∞ uniformly on R. By the formula of A−hn (see (3.2)), it is

possible to extend A− for h, that is, there is a function g ∈ C such that A−hn → g locally
uniform and uniformly bounded, thus g = A−h. Moreover, T−

t hn = Tthn → Tth = T−
t h,

(T−
t hn)

′ = Tt(hn)
′ → Tt(h)

′ = (T−
t h)

′ uniformly as n→ ∞, respectively. Hence, it holds
that A−T−

t hn → A−T−
t h and T−

t A
−hn → T−

t A
−h. Thus, we have the first claim. To

show Q−f(x) ≤ Cg1(x) for all x > 0, it is enough to consider it for 0 < x ≤ 1 (because
even if f2 /∈ C2

p,0, but f ∈ C2
p,0, then it holds that |A−f2(x)| ≤ C(1 ∧ x−p) for all x > 0

as in the case of Aα). Let 0 < x ≤ 1. Q− = Q−,α is also expressed as

Q−f(x) = c

∫ x

−x

[f(y + x)− f(x)]2
dy

|y|1+α

+ c

∫ ∞

x

[{f(y + x)− f(y − x)} {f(y + x) + f(y − x) − 2f(x)}+ 2f(x)2
] dy

y1+α
.

The first term on the right-hand side is bounded by

c‖f ′‖∞
∫ x

−x

|y|1−αdy ≤ Cx2−α.

For the second term, we divide the integral into

∫ ∞

1

+

∫ 1

x

dy. Since |f(y+x)−f(y−x)| ≤
2x‖f ′‖∞ and f(x)2 ≤ C1x

2, the first integral is bounded by Cx. Furthermore, by using
|f(y + x) + f(y − x)− 2f(x)| ≤ C2(y + x), we have that the second integral is bounded
by ∫ 1

x

[
2x‖f ′‖∞C2(y + x) + 2C1x

2
] dy

y1+α
≤
{
C(x ∨ x2−α) (α 
= 1),
Cx log 1/x (α = 1).

Thus, we get Q−f(x) ≤ Cg1(x) for 0 < x ≤ 1; so, for all x > 0. Therefore, (B2) is
proved. �

4. Proofs of Theorem 2.4

We always assume that Assumptions 2.1 and 2.2 are satisfied, and A is given as in
(2.1).

Proof of Theorem 2.4.
In this independent case, the semimartingale representation will be almost evident.

However, we shall show the representation only by using the properties of Theorem 4.1
described as below. The following proposition is needed to prove the uniqueness of the
solution to the martingale problem in §5.
Lemma 4.1. For each f ∈ C∞

c and T > 0, sup
t∈[0,T ]

‖g−1
0 ∂tVtf‖∞ <∞.
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Proof. Since ‖Vtf‖∞ ≤ ‖f‖∞ and |A(1 − e−f)| ≤ Cg0 by (ii) of Assumption 2.1, we
have

|∂tVtf | = |eVtfTtA(1 − e−f)| ≤ Ce‖f‖∞Ttg0.

Hence, the claim follows. �

Theorem 4.1. For f ∈ C∞
c ,

e−〈Xt,f〉 − e−〈X0,f〉 −
∫ t

0

L0e
−〈·,f〉(Xs)ds

is a Pμ-martingale. Moreover,

Ht(f) = exp

[
−〈Xt, f〉+

∫ t

0

〈Xs, Af − Γf〉ds
]

is also a Pμ-martingale.

Proof. By the above lemma, we see that if s < t, then

∂tEμ

[
e−〈Xt,f〉

∣∣∣Fs

]
= ∂te

−〈Xs,Vt−sf〉

= ∂u=0+e
−〈Xs,Vt−s+uf〉

= ∂u=0+Eμ

[
e−〈Xt,Vuf〉

∣∣∣Fs

]
= Eμ

[
∂u=0+e

−〈Xt,Vuf〉
∣∣∣Fs

]
= Eμ

[
L0e

−〈·,f〉(Xt)
∣∣∣Fs

]
,

where ∂u=0+ denotes the right differential operator at u = 0. Hence, the first claim
follows. The second claim follows from Cor. 3.3 of Chap. 2 in [2]. �

We proceed to the proof of Theorem 2.4. Let, for f ∈ C∞
c ,

Gt(f) = exp

[
−
∫ t

0

〈Xs, Af − Γf〉ds
]

be a continuous process of bounded variation. Since Ht(f) is a martingale,

Zt(f) = exp[−〈Xt, f〉] = Ht(f)Gt(f)

is a semimartingale, more exactly, a special semimartingale, i.e., a bounded variation
part is (locally) integrable. In fact, by Prop. 3.2 of Chap. 2 in [2], we have

dZt(f) = Ht(f)dGt(f) +Gt(f)dHt(f)(4.1)

= −〈Xt, Af − Γf〉Zt(f)dt+ d(martingale).

On the other hand, 〈Xt, f〉 is also a special semimartingale. Hence, by (1.10) of Chap.
4 in [6], 〈Xt, f〉 has the following expression:

〈Xt, f〉 = 〈X0, f〉+ Ct(f) +M c
t (f) + Ñt(f) +Nt(f),

where Ct(f) is a continuous process of locally bounded variation, M c
t (f) is a continuous

L2-martingale with quadratic variation [M c(f)]t, and

Ñt(f) =

∫ t

0

∫
M±

〈μ, f〉I(‖μ‖ < 1)Ñ(ds, dμ),

Nt(f) =

∫ t

0

∫
M±

〈μ, f〉I(‖μ‖ ≥ 1)N(ds, dμ)
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with the jump measure N of {Xt}, its compensator N̂ , and Ñ = N − N̂ . By using Itô’s
formula, we have

dZt(f) = Zt−(f)

{
−dCt(f) +

1

2
d[M c(f)]t(4.2)

+

∫
M±

[
e−〈μ,f〉 − 1 + 〈μ, f〉

]
I(‖μ‖ < 1)N̂(dt, dμ)

+

∫
M±

[
e−〈μ,f〉 − 1

]
I(‖μ‖ ≥ 1)N(dt, dμ)

}
+ d(martingale)

= Zt−(f)

{
−
(
dCt(f) +

∫
{‖μ‖≥1}

〈μ, f〉N̂(dt, dμ)

)
+

1

2
d[M c(f)]t

+

∫
M±

[
e−〈μ,f〉 − 1 + 〈μ, f〉

]
N̂(dt, dμ)

}
+ d(martingale).

If we set

Bt(f) = Ct(f) +

∫ t

0

∫
{‖μ‖≥1}

〈μ, f〉N̂(ds, dμ),

then by expressions (4.1), (4.2) and by the uniqueness of the special semimartingale with
predictable locally bounded part (see Theorem 2.1.1 in [6]), we have

−dBt(f) +
1

2
d[M c(f)]t +

∫ [
e−〈μ,f〉 − 1 + 〈μ, f〉

]
N̂(dt, dμ)

= −〈Xt, Af − Γf〉dt
=

[−〈Xt, Af〉+ 〈Xt,Γ
cf〉+ 〈Xt,Γ

df〉] dt
Hence, it is easy to see that

Bt(f) =

∫ t

0

〈Xs, Af〉ds,

[M c(f)]t = 2

∫ t

0

〈Xs,Γ
cf〉ds =

∫ t

0

〈Xs, Q
cf〉ds

and ∫ t

0

∫ [
e−〈μ,f〉 − 1 + 〈μ, f〉

]
N̂(ds, dμ)

=

∫ t

0

〈Xs,Γ
df〉ds

=

∫ t

0

ds

∫
Xs(dx)

{∫ (
e−[f(y)−f(x)] − 1 + [f(y)− f(x)]

)
ν(x, dy)

+k(x)
(
ef(x) − 1− f(x)

)}
.

Therefore, we have

N̂(ds, dμ) = ds

∫
Xs(dx)

(∫
ν(x, dy)δ(δy−δx) + k(x)δ−δx

)
(dμ).

Finally, it is possible to extend f ∈ C∞
c to f ∈ Dg. The proof of Theorem 2.4 is completed.

�
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5. Martingale Problem for L0

The following assumption is needed to prove the well-posedness of the martingale
problem.

Assumption 5.1. For each f ∈ (C∞
c )+, t > 0, AVtf = −A log(1 − Tt(1 − e−f)) is

well-defined, and AVtf is continuous in t under the norm ‖ · /g1‖∞, i.e.,
‖(AVtf −AVt0f)/g1‖∞ → 0 (t → t0).

In the following, we suppose that the generator A of the motion process has the form
of (2.1).

For η ∈ Mg0 , let F (η) = Φ(〈η, f1〉, . . . , 〈η, fn〉) ∈ D0
def⇐⇒ Φ(x) ∈ C∞(Rn) be a

polynomial growth function with polynomial growth derivatives of all orders and fi ∈ Dg,
i = 1, . . . , n. For this F (η), the generator L0 of Xt will be extended to the following form:

L0F (η) =

n∑
i=1

∂iΦ(〈η, f1〉, . . . , 〈η, fn〉)〈η,Afi〉

+
1

2

n∑
i,j=1

∂2ijΦ(〈η, f1〉, . . . , 〈η, fn〉)〈η,Qc(fi, fj)〉

+

∫
S

{∫
S\{x}

ν(x, dy)

[
Φ(〈η, f1〉+ f1(y)− f1(x), . . . , 〈η, fn〉+ fn(y)− fn(x))

−Φ(〈η, f1〉, . . . , 〈η, fn〉)−
n∑

i=1

∂iΦ(〈η, f1〉, . . . , 〈η, fn〉)(fi(y)− fi(x))

]
+k(x)

[
Φ(〈η, f1〉 − f1(x), . . . , 〈η, fn〉 − fn(x)) − Φ(〈η, f1〉, . . . , 〈η, fn〉)

+

n∑
i=1

∂iΦ(〈η, f1〉, . . . , 〈η, fn〉)fi(x)
]}

η(dx),

where

Qc(f, g)(x) =
∑
i,j

aij(x)∂if(x)∂ig(x).

Theorem 5.1 (Martingale Problem for (L0,D0, μ)). Under Assumptions 2.1, 2.2, and
5.1, we suppose that the generator A is given as in (2.1). Let μ ∈ Mg0 .

(i) Pμ(X0 = μ) = 1 and for F (η) = Φ(〈η, f1〉, . . . , 〈η, fn〉) ∈ D0,

MF
t = F (Xt)− F (X0)−

∫ t

0

L0F (Xs)ds is a Pμ-martingale,

(ii) If there is a probability measure Qμ on D = D([0,∞) → Mg0) such that the

canonical process X̃t(ω) = ω(t) (ω ∈ D) satisfies the same conditions as (Xt,Pμ) in (i)
and ∫ t

0

〈X̃s, g1〉ds <∞ Qμ-a.s. for all t ≥ 0,

then Qμ = Pμ ◦ X−1 on D, that is, the martingale problem for (L0,D0, μ) on D is
well-posed.

Proof. (i) is easily obtained, so we prove (ii). We always fix any f ∈ (C∞
c )+ and

T > 0. To prove the uniqueness of the martingale problem, it is enough to show that

exp(−〈X̃t, VT−tf〉), 0 ≤ t ≤ T, is a Qμ-martingale (because this implies the uniqueness
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in the sense of finite dimensional distributions, and the separability of Mg0 yields the
uniqueness in the sense of distributions on D). By Lemma 4.1, we have

∂tVtf is continuous in t under the norm ‖ · ‖g0 = ‖ · /g0‖∞.
Moreover, by Assumption 5.1, we see that

ΓVtf ∈ Cb is continuous in t under the norm ‖ · /g1‖∞
and vt = vTt = VT−tf (0 ≤ t ≤ T ) is the unique solution to the equation;

(∂t +A− Γ)vt = 0 and vT = f.

Let Φ(v) = e−v. It is not difficult to check that (X̃t,Qμ) has the same semimartingale
representation as (Xt,Pμ) in Theorem 2.4. Hence, by using the above results and Itô’s
formula, we can show that the following quantity is a Qμ-martingale:

Φ(〈X̃t, vt〉)− Φ(〈X̃0, v0〉)−
∫ t

0

Φ′(〈X̃s, vs〉)〈X̃s, ∂svs +Avs〉ds

−
∫ t

0

Φ′′(〈X̃s, vs〉)〈X̃s,Γ
cvs〉ds

−
∫ t

0

∫
M±

[
Φ(〈X̃s + η, vs〉)− Φ(〈X̃s, vs〉)− Φ′(〈X̃s, vs〉)〈η, vs〉

]
N̂(dsdη)

= exp[−〈X̃t, vt〉]− exp[−〈X̃0, v0〉] +
∫ t

0

〈X̃s, ∂svs +Avs〉 exp[−〈X̃s, vs〉]ds

−
∫ t

0

〈X̃s,Γ
cvs〉 exp[−〈X̃s, vs〉]ds−

∫ t

0

〈X̃s,Γ
dvs〉 exp[−〈X̃s, vs〉]ds

= exp[−〈X̃t, vt〉]− exp[−〈X̃0, v0〉] +
∫ t

0

〈X̃s, (∂s +A− Γ)vs〉 exp[−〈X̃s, vs〉]ds

= exp[−〈X̃t, VT−tf〉]− exp[−〈X̃0, VT f〉].
Therefore, we have the desired result. �

Corollary 5.1 (Martingale Problem for Examples). Let μ ∈ Mg0 . The martingale prob-
lems for (L0,D0, μ) with the motion processes of Example 3.1 are well-posed.

Proof. It is enough to show that the conditions of Assumption 5.1 are fulfilled. Fix
f ∈ (C∞

c )+, and let h = 1 − e−f (then h ∈ C∞
c ). It is shown in §3 that TtC

∞
c ⊂ Dg

and supt ‖Ttg0‖g0 <∞. We shall show that Vtf := − log(1− Tth) ∈ Dg, that is, AVtf is
well-defined, and AVtf is continuous in t under the norm ‖ ·‖g0 = ‖ ·/g0‖∞ (≥ ‖ ·/g1‖∞)

in each example. In the following, we use notations (1) Tt, (2) T
0
t , (3) T

α
t , (4) T

−,α
t for

Tt, and similarly for Vt, A.
(1) Brownian motion on Rd (g0 = g1 = gp with p > d, and Dg = C2

p ).
For simplicity, we consider the case of d = 1. Since (Tth)

′ = Tt(h
′), we have

(Vtf)
′ = eVtf (Tth)

′ = eVtfTt(h
′)(5.1)

(Vtf)
′′ = e2Vtf (Tt(h

′))2 + eVtfTt(h
′′).

Hence, Vtf ∈ C2
p , and it is easy to see that AVtf = (Vtf)

′′/2 is continuous under ‖ · ‖gp .
(2) Absorbing Brownian motion on (0,∞) (g0 = gp,0 with p > 1, and Dg = C2

p,0).

In this case, T 0
t h = Tth, and the above yields the desired result.

(3) α-stable motion on Rd (g0 = g1 = gp with d < p < d+ α, and Dg = C2
p ).

As in (1), for simplicity, we consider the case d = 1 (the case d ≥ 2 is essentially
the same). We have (5.1) and, thus, V α

t f ∈ C2
p . By h ∈ C∞

c , it is easy to see that
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(Aαh)′ = Aα(h′). For ∂tV α
t f = eV

α
t fTα

t A
αh, this result yields

(∂tV
α
t f)

′ = eV
α
t f ((V α

t f)
′Tα

t A
αh+ Tα

t A
α(h′))

(∂tV
α
t f)

′′ = eV
α
t f

{
(V α

t f)
′ ((V α

t f)
′Tα

t A
αh+ Tα

t A
α(h′))

+(V α
t f)

′′Tα
t A

αh+ (V α
t f)

′Tα
t A

α(h′) + Tα
t A

α(h′′)
}
.

Hence, by |Aαh|, |Aα(h′)|, |Aα(h′′)| ≤ Cgp with some constant C > 0, we have ∂tV
α
t f ∈

C2
p . Furthermore, since supt ‖Ttgp‖gp < ∞, we can show that supt ‖Aα(∂tV

α
t f)‖gp < ∞

by the same way as in the proof of AαC2
p ⊂ Cp in §3. Thus, in this case, it easily follows

that

‖Aα(V α
t f − V α

t0 f)‖gp = ‖
∫ t

t0

Aα(∂sV
α
s f)ds‖gp ≤ |t− t0| sup

s
‖Aα(∂sV

α
s f)‖gp .

Therefore, we have the continuity of AαV α
t f.

(4) Absorbing α-stable motion on (0,∞) (g0 = gp,0 with 1 < p < 1+α, andDg = C3
p,0).

Note that T−,α
t h = Tα

t h, A
−,αh = Aαh and V −,α

t f = V α
t f. By computing (V −,α

t f)′′′,
we see that V −,α

t f ∈ C3
p,0. Moreover, the continuity of A−,αV −,α

t f follows in the same
way as above. �
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