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A. A. POGORUI

SYSTEM OF INTERACTING PARTICLES WITH MARKOVIAN

SWITCHING

Most of the published articles on random motions have been devoted to the study

of the telegraph process or its generalizations that describe the random motion of a
single particle in Rn in a Markov or semi-Markov medium. However, up to our best

knowledge, there are no published papers dealing with the interaction of two or more

particles which move according to the telegraph processes. In this paper, we construct
the system of telegraph processes with interactions, which can be interpreted as a

model of ideal gas. In this model, we investigate the free path times of a family

of particles, before they are collided with any other particle. We also study the
distribution of particles, which is described by telegraph processes with hard collisions

and reflecting boundaries, and investigate its limiting properties.

1. Introduction

Let {ξ (t) , t ≥ 0} be a Markov process on the phase space {0, 1} with generator matrix

Q = λ

(
−1 1
1 −1

)
.

Definition 1.1. S (t) is the telegraph process if

d

dt
S (t) = v(−1)

ξ(t)
, v = const > 0,

S (0) = y0.

For a set of real numbers y1 < y2 < · · · < yn, we consider a family of independent
telegraph processes Si (t) , i = 1, 2, . . . , n with Si (0) = yi. It is assumed that all the
processes have the absolute velocity v and the parameter of the switching process λ > 0.
Moreover, starting from yi, the process Si(t) has equal probabilities of initial directions
of the motion.

Denote, by x(yi, t), the position of the particle i at time t, which starts from site yi.
Suppose that the particle x(yi, t) develops as the telegraph process Si(t) up to the hard
collision with another particle. Under the hard collision of two particles, we mean that,
at the time of the collision, the particles change their direction to the opposite, i.e., the
particles exchange the telegraph processes that describe their movement. It is easily
verified that the positions of the particles x(yi, t), i = 1, 2, . . . , n at time t coincide with
the order statistics of Si(t), i = 1, 2, . . . , n as follows:

(1) x(y1, t) = S(1)(t), x(y2, t) = S(2)(t), . . . , x(yn, t) = S(n)(t).

Remark 1.1. It should be noted that each x(yi, t), i = 1, 2, . . . , n is not a telegraph
process for all t ≥ 0.
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Remark 1.2. It follows from the description of x (yi, t) that x (y1, t) ≤ x (y2, t) ≤ · · · ≤
x (yn, t) for any t ≥ 0. Such kinds of the model for Wiener processes with coalescence
after the collision are called the Arratia flow, and they were studied in [6]-[8].

Various problems such as the number of particle collisions up to time t in the Arratia
flow are studied in [9].

Below, the explicit form for the distribution of the meeting instant of two telegraph
processes on the line, which started at the same time from different positions on the
line, is obtained. We also study the limiting distribution of the meeting instant of two
telegraph processes on the line under Kac’s condition. It allows us to investigate the
system of telegraph processes with interactions, which can be interpreted as a model of
ideal gas. In this model, we investigate the free path times of a family of particles before
they collide with any other particle. We also study the distribution of particles, which
is described by telegraph processes with hard collisions and reflecting boundaries, and
investigate its limiting properties.

2. Distribution of the first collision of two telegraph particles

Consider two particles 1 and 2 on a line. Each particle can move in two opposite
directions. Starting at xi ∈ R, i = 1, 2, particle i moves with the velocity v > 0 in one
of two directions during a random time interval that is exponentially distributed with
parameter λ > 0. Then the particle changes its direction and so on. In the sequel, such
particle is said to be a telegraph particle as its motion satisfies the telegraph equation
[1], [2].
Let ξ1 (t) , ξ2 (t) be independent alternating Markov processes with the phase space {0, 1}
and with the generator matrix Q.
Denote, by xi(t), the position of particle i at a time moment t ≥ 0 up to the first collision
with another particle. It is easily seen that

d

dt
xi (t) = v(−1)

ξi(t),

xi (0) = xi.

We assume that z = x2 − x1 > 0 and put ∆ (t) = x2 (t)− x1 (t) .
Denote η (t) = (ξ1 (t) , ξ2 (t)) . Suppose η (0) = (k1, k2) and define

τ(k1,k2) (z) = inf {t ≥ 0 : ∆ (t) = 0} , kj ∈ {0, 1} .

Denote, by f(k1,k2) (t, z) dt = P
(
τ(k1,k2) (z) ∈ dt

)
, the probability density function (pdf)

of τ(k1,k2) (z) .

Lemma 2.1. For t ≥ z
2v ,

(2) f(0,1) (t, z) = e−2λtδ (z − 2vt) +
zλ

2v2
e−2λt

I1
(
λ
v

√
4v2t2 − z2

)
√

4v2t2 − z2
,

(3) f(0,0) (t, z) = f(1,1) (t, z) =
zλ

2v2
e−2λt

∫ t

z/2v

I1
(
λ
v

√
4v2u2 − z2

)
√

4v2u2 − z2
I1 (2λ (t− u))

(t− u)
du,

and

(4)

f(1,0) (t, z) =
zλ

2v2
e−2λt

∫ t

z/2v

I1
(
λ
v

√
4v2u2 − z2

)
√

4v2u2 − z2

∫ t−u

0

I1 (2λ (t− u− v))

(t− u− v)

I1 (2λv)

v
dvdu.
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Proof. Let us consider the Laplace transforms of τ(k1,k2) (z) , ki ∈ {0, 1} .

ϕ(k1,k2) (s, z) = E
[
e−sτ(k1,k2)(z)

]
, s > 0.

By using the renewal theory, we can obtain the following system of integral equations for
these Laplace transforms:

ϕ(0,1) (s, z) =e−
s+2λ
2v z +

λ

2v

∫ z

0

e−
s+2λ
2v uϕ(1,1) (s, z − u) du

+
λ

2v

∫ z

0

e−
s+2λ
2v uϕ(0,0) (s, z − u) du

=e−
s+2λ
2v z +

λ

2v
e−

s+2λ
2v z

∫ z

0

e
s+2λ
2v u

(
ϕ(1,1) (s, u) + ϕ(0,0) (s, u)

)
du

ϕ(0,0) (s, z) =λ

∫ ∞
0

e−(s+2λ)uϕ(0,1) (s, z) du + λ

∫ ∞
0

e−(s+2λ)uϕ(1,0) (s, z) du

=
λ

s+ 2λ

(
ϕ(0,1) (s, z) + ϕ(1,0) (s, z)

)
,

ϕ(1,1) (s, z) =λ

∫ ∞
0

e−(s+2λ)uϕ(0,1) (s, z) du + λ

∫ ∞
0

e−(s+2λ)uϕ(1,0) (s, z) du

=
λ

s+ 2λ

(
ϕ(0,1) (s, z) + ϕ(1,0) (s, z)

)
,

ϕ(1,0) (s, z) =
λ

2v

∫ ∞
0

e−
s+2λ
2v u

(
ϕ(0,0) (s, z + u) + ϕ(1,1) (s, z + u)

)
du

=
λ

2v
e
s+2λ
2v z

∫ ∞
z

e−
s+2λ
2v u

(
ϕ(0,0) (s, u) + ϕ(1,1) (s, u)

)
du.

It is easily seen that

(5) ϕ(0,0) (s, z) = ϕ(1,1) (s, z) .

Taking into account that

(6) ϕ(0,0) (s, z) + ϕ(1,1) (s, z) =
2λ

s+ 2λ

(
ϕ(0,1) (s, z) + ϕ(1,0) (s, z)

)
,

we have

∂

∂z
ϕ(0,1) (s, z) = −s+ 2λ

2v
ϕ(0,1) (s, z) +

λ2

v (s+ 2λ)

(
ϕ(0,1) (s, z) + ϕ(1,0) (s, z)

)
,

∂

∂z
ϕ(1,0) (s, z) =

s+ 2λ

2v
ϕ(1,0) (s, z)− λ2

v (s+ 2λ)

(
ϕ(0,1) (s, z) + ϕ(1,0) (s, z)

)
.

It is well known [3] that ϕ(1,0) (s, z) and ϕ(0,1) (s, z) satisfy the equation

det

(
∂
∂z + (s+2λ)

2v − λ2

v(s+2λ) − λ2

v(s+2λ)
λ2

v(s+2λ)
∂
∂z −

(s+2λ)
2v + λ2

v(s+2λ)

)
f (z) = 0.

By calculating the determinant, we get

∂2

∂z2
f (z)− s2 + 4λs

4v2
f (z) = 0.

Solving this equation, we have

f (z) = C1e
√
s2+4λs z

2v + C2e
−
√
s2+4λs z

2v .
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The constants obtained from the system of integral equations yield

(7) ϕ(0,1) (s, z) = e−
z
2v

√
s2+4λs

and

(8) ϕ(1,0) (s, z) =
s+ 2λ−

√
s2 + 4λs

s+ 2λ+
√
s2 + 4λs

e−
z
2v

√
s2+4λs.

Taking Eqs.(5) and (6) into account, we have

(9) ϕ(0,0) (s, z) = ϕ(1,1) (s, z) =
s+ 2λ−

√
s2 + 4λs

2λ2
e−

z
2v

√
s2+4λs.

The inverse Laplace transformation of ϕ(0,1) (s, z) yields the following pdf ([4], p. 239,
formula 88):

f(0,1) (t, z) =L−1
(
e−

z
2v

√
s2+4λs, t

)
=e−2λtδ (z − 2vt) + 2zλe−2λt

I1
(
λ
v

√
4v2t2 − z2

)
√

4v2t2 − z2
, t ≥ z

2v
.

Hence, Eq.(2) is proved, and

P
(
τ(0,1) (z) ∈ dt

)
= e−2λtδ (z − 2vt) dt+ 2zλe−2λt

I1
(
λ
v

√
4v2t2 − z2

)
√

4v2t2 − z2
dt.

It is easily verified that

(10) exp
{
− z

2v

√
s2 + 4λs

}
= exp

{
− z

2v
s+

∫ ∞
0

(
1− e−sy

) λ
v

e−2λyI1 (2λy)

y
dy

}
.

Then the following inverse Laplace transform comes from [12], p.237, no.49:

L−1
(

1 +
s−
√
s2 + 4λs

2λ
, t

)
= e−2λt

I1 (2λt)

t
.

It is easily seen that the following condition holds:

(11)

∫ ∞
0

(1 ∧ t)e−2λt I1 (2λt)

t
dt < +∞.

It is well known that the distribution, whose Laplace transform can be represented
as the right-hand side of Eq.(10) under condition (11), belongs to the infinitely divisible
distribution [13]. Therefore, the pdf f(0,1) (t, z) is the infinitely divisible density function.
Using [12], p. 237, no. 49, we get

L−1
(
s+ 2λ−

√
s2 + 4λs

s+ 2λ+
√
s2 + 4λs

, t

)
=

1

4λ2
L−1

((
s+ 2λ−

√
s2 + 4λs

)2
, t

)
=e−2λt

∫ t

0

I1 (2λ (t− v))

(t− v)

I1 (2λv)

v
dv.

By calculating

L−1
(
s+ 2λ−

√
s2 + 4λs

s+ 2λ+
√
s2 + 4λs

e−
z
2v

√
s2+4λs

)
,

we obtain Eq.(4).
It is easily seen that f(0,1) (t, z) is a heavy tail probability density function w.r.t. t.

Indeed, by using the asymptotic expansion for I1 (t) [5], we have
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(12) lim
t→+∞

√
2πtI1 (t) e−t = 1.

Therefore,

E
[
τ(0,1) (z)

]α ≥ 2zλ

∫ ∞
z
2v

tαe−2λt
I1
(
λ
v

√
4v2t2 − z2

)
√

4v2t2 − z2
dt = +∞, for α ≥ 1

2
.

It is easily verified that E
[
τ(0,1) (z)

]α
<∞ for 0 ≤ α < 1

2 .
For τ(0,1)(z) at time t = 0, particles move in opposite directions to meet each other,

whereas, for τ(0,1)(z) at time t = 1, particles move in opposite directions far away from
each other.
Hence, Eτ(0,1) (z) ≤ Eτ(1,0) (z) and f(1,0) (t, z) is also a heavy tail density function w.r.t.
t.
Let us consider the following so-called Kac’s condition (or the hydrodynamic limit):

denote, by λ = ε−2, v = cε−1, as ε > 0, i.e., v → +∞, and λ→ +∞, such that v2

λ → c2.
It was proved in [1] that, under Kac’s condition, the telegraph process x (t) weakly
converges to the Wiener process w (t) ∼ N

(
0, c2t

)
.

Denote f (t, z) =
cz exp

(
− c2z24t

)
2
√
πt3/2

. It is well known that f(t, z) is the pdf of a collision

instant of two particles moving according to Wiener paths w(t), where z > 0 is the
distance between starting points of the particles.

Lemma 2.2. For each k1, k2 ∈ {0, 1}, f(k1,k2)(t, z) weakly converges to f(t, z) under
Kac’s condition.

Proof. It follows from Eqs.(7)-(9) that

lim
ε→0

ϕ(k1,k2) (s, z) = e−zc
√
s.

Passing to the inverse Laplace transform, we have

f (t, z) = L−1
(
e−zc

√
s
)

=
cz exp

(
− c

2z2

4t

)
2
√
πt3/2

.

Therefore, under Kac’s conditions, not only the telegraph process weakly converges
to the Wiener process, but the first meeting instant of two telegraph processes weakly
converges to the first meeting instant of the corresponding two Wiener processes.

Remark 2.1. It should be noted that, instead of two telegraph processes x(y1, t), x(y2, t)
on the line, we can consider the bivariate process −→x (t) = (x(y1, t), x(y2, t)) on the plane.
The process −→x (t) is driven by the switching process η(t). Denote l = {(x, y) : x =
y;x, y ∈ R}. For this case,

τ(k1,k2) (z) = inf {t ≥ 0 : −→x (t) ∈ l}

.

3. Estimation of the number of particle collisions

Denote, by N(0,1) (t, z) , the number of collisions of particles xi (t) , i = 1, 2, during the
time (0, t), t > 0, assuming η (0) = (0, 1) .
Consider the renewal function H(0,1) (t, z) = EN(0,1) (t, z) . By using the Laplace trans-
form for the general renewal function [16], it follows from Eqs. (7)-(8) that the Laplace

transform Ĥ(0,1) (s, z) = L
(
H(0,1) (t, z) , s

)
of H(0,1) (t, z) w.r.t. t has the form
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Ĥ(0,1) (s, z) =
e−

z
2v

√
s2+4λs

s

∞∑
k=0

(
s+ 2λ−

√
s2 + 4λs

s+ 2λ+
√
s2 + 4λs

)k

=e−
z
2v

√
s2+4λs

(
s+ 2λ+

√
s2 + 4λs

2s
√
s2 + 4λs

)
.

It is easily verified that

L−1
(
s+ 2λ+

√
s2 + 4λs

2s
√
s2 + 4λs

)
=

1

2
+

((
1

2
+ λt

)
I0 (2λt) + λtI1 (2λt)

)
e−2λt.

Therefore,

(13) H(0,1) (t) =

∫ t

z
2v

e−2λu

(
δ (z − 2vu) + 2zλ

I1
(
λ
v

√
4v2u2 − z2

)
√

4v2u2 − z2

)

×
(

1

2
+ e−2λ(t−u)

((
1

2
+ λ (t− u)

)
I0 (2λ (t− u)) + λ (t− u) I1 (2λ (t− u))

))
du

=
e−

λz
v

2
+ zλ

∫ t

z
2v

e−2λu
I1
(
λ
v

√
4v2u2 − z2

)
√

4v2u2 − z2
du

+ e−2λt
((

1

2
+ λ

(
t− z

2v

))
I0

(
2λ
(
t− z

2v

))
+ λ

(
t− z

2v

)
I1

(
2λ
(
t− z

2v

)))
+ e−2λtzλ

∫ t

z
2v

I1
(
λ
v

√
4v2u2 − z2

)
√

4v2u2 − z2

× (1 + ((1 + 2λ (t− u)) I0 (2λ (t− u)) + λ (t− u) I1 (2λ (t− u)))) du.

It follows from Eq.(13) that, by putting λ = ε−2, v = cε−1, we have

H(0,1) (t, z) = O
(
ε−1
)

= O
(√

λ
)

= O (v) as ε→ 0.

For y, y∗ such as y < y∗ and a fixed T > 0, denote τ̃ = inf {T ; t : x (y, t)− x (y∗, t) = 0} .
Almost in the same way, we can show that, for all k1, k2 ∈ {0, 1} ,

H(k1,k2) (t, z) = O
(
ε−1
)

= O
(√

λ
)

= O (v) as ε→ 0.

Lemma 3.1. There exist C > 0 such that, for any two points y, y∗ (y < y∗),

Eτ̃ ≤ C (y∗ − y) .

Proof.

Eτ(0,1) =

∫ T

z
2v

te−2λt

[
δ (z − 2vt) + 2zλ

I1
(
λ
v

√
4v2t2 − z2

)
√

4v2t2 − z2

]
dt

≤ z

2v
+ 2zλ

∫ T

z
2v

t
I1
(
λ
v

√
4v2t2 − z2

)
√

4v2t2 − z2
dt

=
z

2v
+

z

2v

(
I0

(
λ

v

√
4T 2v2 − z2

)
− 1

)
≤ Cz,

where C = I0(2Tλ)
2v .
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Now

Eτ(1,0) =

∫ T

z/2v

tf(1,0) (t, z) dt

=2zλ

∫ T

z/2v

te−2λt
∫ t

z/2v

I1
(
λ
v

√
4v2u2 − z2

)
√

4v2u2 − z2

×
∫ t−u

0

I1 (2λ (t− u− r))
(t− u− r)

I1 (2λr)

r
drdudt < Cz,

where C = λ
v

∫ T
0
te−2λt

∫ t
0
I1(2λu)

u

∫ t−u
0

I1(2λ(t−u−r))
(t−u−r)

I1(2λr)
r drdudt.

4. Free path times of a family of particles

Since we consider the model of an ideal gas, it is natural to assume that the number
of particles is very large. As an example, we consider a model with an infinite number
of particles, and study the free path of the particles before collisions.
Consider the segment [0, S] ⊂ R and an increasing sequence of different points {yn; n ≥ 1}
from this segment. As above, we consider a family of independent telegraph processes
Sk(t), k ≥ 1 and trajectories x(yk, t) of particles, which satisfy Eq. (1).

Introduce the following random times:

τ1 = T > 0,

τk = inf {T ; t : (x (yk, t)− x (yk−1, t)) = 0} , k ≥ 2.

The random variable τk is the duration of the free motion of the particle with number k
up to the collision with a particle starting with a smaller number or till T (finite) if none
collision occurs.

Lemma 4.1. Suppose {yn; n ≥ 1} ⊂ [0, S] , 0 < S < +∞ is a sequence of different
points. Then

∞∑
k=1

τk < +∞ a.s.

Proof. Consider the following random times

τ̃1 = T,

τ̃k = inf {T ; t : (Sk (t)− Sk−1 (t)) = 0} , k ≥ 2.

It is easily seen that τk ≤ τ̃k for all k ≥ 1.
Hence, if we show that

∑∞
k=1 τ̃k < +∞ a.s., we prove the lemma. Since τ̃k ≥ 0, it is

sufficient to prove that
∞∑
k=1

Eτ̃k < +∞.

Consider the set of numbers y1 < y2 < · · · < yn. It follows from Lemma 2.1 that there
exists C > 0 such that, for any k ≥ 2,

Eτ̃k ≤ C (yk − yk−1) .

Hence, we have

lim
n→∞

n∑
k=2

Eτ̃k ≤ C lim
n→∞

n∑
k=2

(yk − yk−1) = C

∞∑
k=2

(yk − yk−1) ≤ CS.(14)

Therefore, it follows from Eq.(14) that
∑∞
k=1 τ̃k converges almost surely. This con-

cludes the proof.
Note that Lemma 4.1 for Wiener particles was proved in [8].
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Let us denote, by N(k1,k2,...,kn) (t, y1, y2, . . . , yn) , ki ∈ {0, 1} , y1 < y2 < · · · < yn,
the number of collisions of particles x (yi, t) , i = 1, 2, . . . , n during time (0, t), t > 0
assuming η (0) = (k1, k2, . . . , kn) .
Then it is easily seen that

H(k1,k2,...,kn) (t, y1, y2, . . . , yn) = EN(k1,k2,...,kn) (t, y1, y2, . . . , yn)

=

n−1∑
i=1

H(ki,ki+1) (t, yi+1 − yi),

where H(ki,ki+1) (t, yi+1 − yi) can be calculated similarly to Eq. (13).

5. Random motion with reflecting boundaries

Consider a set of real numbers {yi; i = 1, . . . , n} ⊂ (0, b), where b > 0 and y1 < y2 < · · · <
yn. Let S1 (t) , S2 (t) , . . . , Sn (t) be independent telegraph processes. It is assumed that
all processes have absolute velocity v and parameter of switching process λ and, starting
from yi, the process Si(t) has equal probabilities of initial directions of the motion. We
suppose that 0 and b are two reflecting boundaries such that if a process reaches boundary
0 or b, then it changes the velocity direction to the opposite one. Consider the family
of particles with trajectories x(y1, t), x(y2, t), . . . , x(yn, t), where every x(yi, t) coincides
respectively with processes Si(t) before particle i has first hard collision with another
particle or equivalently to the first intersection of the process Si(t) with another process.
After the first hard collision of the particle x (yi, t) with another particle, say x (yj , t) ,
they will switch the telegraph processes that describe their trajectories so, Si (t) will
coincide with the trajectory of x (yj , t) and so on.

It is easily seen that the trajectories of the particles x (yk, t) , k = 1, 2, . . . , coincides
with the order statistics of Si(t), i = 1, 2, . . . , as follows:

(15) x (y1, t) = S(1) (t) , x (y2, t) = S(2) (t) , . . . , x (yn, t) = S(n) (t) .

Let us introduce the distribution functions Fyr (x) = P {x (yr, t) < x} . Denote, by M
(l)
k ,

l = 1, 2, . . . , Ckn, different k-element subsets of the set M = {1, 2, . . . , n}. It follows from
Eqs. (15) that

Fyr (x) = P {x (yr, t) < x} =

n∑
k=r

Ckn∑
l=1

∏
i∈M(l)

k

P (Si(t) < x)
∏

j∈M\M(l)
k

P (Sj(t) ≥ x).

For some particular cases, we have

Fy1 (x) = P (x (y1, t) < x) = 1−
n∏
i=1

P (Si (t) ≥ x),

Fyn−1 (x) = P (x (yn−1, t) < x) =

n∑
k=1

n∏
i=1,i6=k

P (Si (t) < x)P (Sk (t) ≥ x)

+

n∏
i=1

P (Si (t) < x),

Fyn (x) = P (x (yn, t) < x) =

n∏
i=1

P (Si (t) < x).
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Let us study the limiting distribution of Sk (t) , k = 1, . . . , n as t → +∞. Denote, by
N (t) , the number of Poisson events that have occurred in the interval (0, t) , and let
sj , j ≥ 0, be instants, at which Poisson events occur, and s0 = 0. We assume that the
instants sj denote the times of a change of the direction of Sk (t) .

Lemma 5.1. Suppose that f (x) is an integrable function on [0, b] . Then

P

(
lim

T→+∞

1

T

∫ T

0

f (Sk (t)) dt =
1

b

∫ b

0

f (x) dx

)
= 1.

Proof In the sequel, we will use the well-known strong law of large numbers for a Poisson
process

(16) P

(
lim

T→+∞

N (T )

T
= λ

)
= 1.

Since, during the time sj+1 − sj , the particle covers the distance of (sj+1 − sj)v, the

number
[
(sj+1−sj)v

2b

]
is equal to the double number of passages of the segment [0, b] by

the particle.
Hence,

lim
T→+∞

1

T

∫ T

0

f (Sk (t)) dt = lim
T→+∞

1

T

N(T )∑
i=0

∫ sj+1

sj

f (Sk (t)) dt

= lim
T→+∞

1

T

N(T )∑
i=0

([
(sj+1 − sj) v

2b

]
2

v

∫ b

0

f (x) dx+ ri

)
a.s.,(17)

where ri =
∫ ui+ϑi
ui

f(Sk(t))dt, ui, ϑi are independent random variables, and ui is uni-

formly distributed on [0, 2b], and ϑi has the following pdf:

g(t) =
λ

v
e−

λt
v

(
1− e− 2λb

v

)−1
I{0≤t≤2b}.

Therefore,

Eri = E

∫ ui+ϑi

ui

f(Sk(t))dt =
λ

2bv
(

1− e− 2λb
v

) ∫ 2b

0

dx

∫ 2b

0

dp

∫ x+p

x

dtf(Sk(t))e−
λp
v

= − 1

2b

∫ 2b

0

dx

∫ x+2b

x

dtf(Sk(t))
e−

2λb
v(

1− e− 2λb
v

)
+

1

2b
(

1− e− 2λb
v

) ∫ 2b

0

dx

∫ 2b

0

dpf (Sk(x+ p)) e−
λp
v(18)

= − 2e−
2λb
v(

1− e− 2λb
v

) ∫ b

0

f(x)dx+
1

λb

∫ b

0

f(x)dx.

The strong law of large numbers for {ri, i ≥ 1} yields

lim
N→+∞

1

N

N∑
i=1

ri = Eri a.s.

Since θj = sj+1 − sj , j = 1, 2, . . . , are independent exponentially distributed random
variables, we have the strong law of large numbers takes the form
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lim
N→+∞

1

N

N∑
j=1

[
(sj − sj−1)v

2b

]
= E

[
(sj − sj−1)v

2b

]

=

∞∑
n=1

n
(
e−

2nλb
v − e−

2(n+1)λb
v

)
=

e−
2λb
v

1− e− 2λb
v

.(19)

Combining Eqs. (16)-(19), we get

lim
T→+∞

1

T

∫ T

0

f (Sk (t)) dt = lim
T→+∞

N (t)

T

1

N (T )

N(T )∑
j=1

(∫ sj

sj−1

f(Sk(t))

)

=
1

b

∫ b

0

f(x)dx a.s.

This concludes the proof.
Therefore, the limiting distribution of Sk (t) as t → +∞ for all k = 1, . . . , n is the

uniform distribution on [0, b] .

Lemma 5.2. Suppose that the initial distribution of a telegraph particle with reflecting
boundaries 0 and b is uniform on [0, b]. Then it remains uniform for all t > 0.

Proof Denote, by p (t, x | yk) , the probability density of the process position Sk (t) at
time t. It was shown in [15] that, for x ∈ [0, b] ,

p (t, x | yk) =
1

b
+

2

b
e−λt

∞∑
n=1

{[
cosh (θnt) +

λ

θn
sinh θnt

]
cos
(πnyk

b

)
cos
(πnx

b

) }
,

where

θn =

(
λ2 − π2v2

b2
n2
)1/2

.

It is easily seen that, for any t > 0 and x ∈ [0, b] ,

p (t, x) =
1

b

∫ b

0

p (t, x | yk)dyk =
1

b
.

Now let us consider the system of processes Sk (t) with the limiting distribution of
the respective processes Sk (t) , k = 1, 2, . . . , n. According to Lemmas 5.1 and 5.2, the
processes Sk (t) , k = 1, 2, . . . n, are independent and have the uniform distribution on
[0, b] for each t ≥ 0.

In this case, we denote, by xk (t) , k = 1, 2, . . . , n, the positions of particles at time
t ≥ 0. It is easy to see that, for every t ≥ 0, the processes xk (t) are the order statistics
of Sk (t) , k = 1, 2, . . . , n, namely

x1 (t) = S(1) (t) , x2 (t) = S(2) (t) , . . . , xn (t) = S(n) (t) .

Consider the function

p (x) = P (Sk(t) < x) =

{
x
b , x ∈ [0, b] ,
0, x /∈ [0, b] .

It is easily verified that the distributions πk (·) of the positions of particles xk (t) , k ∈
{1, 2, . . . , n} are as follows:
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πk (x) = P (xk (t) < x) = Ip(x) (k, n− k + 1) ,

where

Ip(x) (k, n− k + 1) =

∫ p(x)
0

tk−1(1− t)n−kdt∫ 1

0
tk−1(1− t)n−kdt

.

Let us study the number of collisions C(1,2,...,n) (0, t) of particles xk (t) , k = 1, 2, . . . , n
during the time interval (0, t) . It is easy to see that C(1,2,...,n) (0, t) is a number of

intersections of Sk (t) , k = 1, 2, . . . , n, for each t > 0.
Denote, by I(k,l) (0, t) , k 6= l, the number of intersection of the processes Sk (t) and

Sl (t) during the time interval (0, t) . Then it is easily verified that

C(1,2,...,n) (0, t) =
∑

1≤k<l≤n

I(k,l) (0, t).

Therefore, let us analyze the distribution of I(k,l) (0, t) , k 6= l.

Since Sk (t) and Sl (t) have the uniform distribution on [0, b] , the probability of their
intersections I(k,l) (t, t+4t) during (t, t+4t) satisfies the following inequalities for x ∈
(a, b):

1

4
P
(∣∣Sk (t)− Sl (t)

∣∣ ≤ 24tv
)
e−2λ4t ≤ P

(
N(k,l) (t, t+4t) ≥ 1

)
≤ P

(∣∣Sk (t)− Sl (t)
∣∣ ≤ 24tv

)
.(20)

By using

P
(∣∣Sk (t)− Sl (t)

∣∣ ≤ 24tv
)

= O (4t)

and

1

4
P
(∣∣Sk (t)− Sl (t)

∣∣ ≤ 24tv
)
e−2λ4t = O (4t) ,

we get

(21) P
(
I(k,l) (t, t+4t) ≥ 1

)
= O (4t) .

It is easily verified that, for n ≥ 2,

P
(
I(k,l) (t, t+4t) = n

)
≤ P

(∣∣Sk (t)− Sl (t)
∣∣ ≤ 24tv

) (
1− e−λ4t

)2(n−1)
+P

(
{Sk (t) , Sl (t) ∈ [0, 24tv]} ∪ {Sk (t) , Sl (t) ∈ [b− 24tv, b]}

) (
1− e−λ4t

)(n−1)
≤ 44tv

b
(λ4t)2(n−1) + 2

(24tv)
2

b2
(λ4t)(n−1).(22)

In view of Eqs. (21) and (22), we conclude that

P
(
I(k,l) (t, t+4t) = 1

)
= O (4t) .

Therefore, for x ∈ (a, b) ,
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O (4t) =
1

4
P
(∣∣Sk (t)− Sl (t)

∣∣ ≤ 24tv
)
e−2λ4t

≤ EI(k,l) (t, t+4t) ≤ P
(∣∣Sk (t)− Sl (t)

∣∣ ≤ 24tv
)

+
44tv
b

∑
n≥1

n

(
(λ4t)2(n−1) +

24tv
b

(λ4t)(n−1)
)

=
44tv
b

+ o (4t) .(23)

It is easily seen the additive property of EI(k,l) (t1, t2): for any s ∈ (t1, t2) ,

EI(k,l) (t1, t2) = EI(k,l) (t1, s) + EI(k,l) (s, t2) .

Hence, there exists a constant c > 0 such that

EI(k,l) (0, t) = ct.

This implies that

EC(1,2,...,n) (0, t) =
n (n− 1)

2
ct.

Relations (20) and (23) yield the following estimation for the factor c:

v

b
≤ c ≤ 4v

b
.
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