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DARYNA D. SOBOLIEVA

LARGE DEVIATION PRINCIPLE FOR ONE-DIMENSIONAL SDES

WITH DISCONTINUOUS COEFFICIENTS

We discuss the large deviation principle for one-dimensional SDEs with discontinuous
coefficients. It is shown that the discontinuity of coefficients leads, in general, to the

LDP asymptotics with a rate function which differs from the rate function in the

standard Freidlin–Wentzell theorem.

1. Introduction

In this paper, we discuss the large deviation principle (LDP) for a family Xn of
solutions to one-dimensional stochastic differential equations (SDEs) of the form

(1) dXn
t = a(Xn

t )dt+
1√
n
σ(Xn

t )dWt

with initial conditions Xn
0 = x0 under weak assumptions on the coefficients a and σ. The

LDP for a diffusion process with continuous coefficients is a well-known result (see [1],
Theorem 4.1). The case of discontinuous coefficients was studied in works of Chiang and
Sheu (see [2], [3]), where multidimensional SDEs with coefficients possessing a disconti-
nuity of the jump type along a fixed hyperplane were considered, and Krykun (see [4]),
where one-dimensional SDEs were analyzed.
Here, we prove the LDP for a family of solutions to (1) under the conditions on coeffi-
cients, which allow rather general forms of discontinuity: to obtain our main result, we
made assumptions that the set ∆σ of discontinuity points of σ has zero Lebesgue mea-
sure, and a

σ2 has bounded derivative. These conditions are weaker than those in [2] and
[3], which mean for (1) just that σ and a have discontinuities of the jump type at a single
point. On the other hand, we consider a one-dimensional SDE which makes our model
more restrictive than those studied in [2], [3]. The condition for a

σ2 to have bounded

derivative is a restriction in comparison with [4], where a and σ2 are not supposed to be
adjusted in such a way.
The main idea of the proof of our result is to use the fact that the large deviation principle
holds for the family {Y n} of solutions to SDEs with zero coefficient a (see [5]), using
a combination of the Bryc formula and the Varadhan lemma (see, e.g., [6], Proposition
3.8). With the use of the Bryc formula Λ(f) = lim

n→∞
1
n logEenf(X

n) for the sequence

{Xn} and the Girsanov theorem on a change of the measure, the rate transform can be
written in terms of the family {Y n}. By combinating the Bryc formula and the Varadhan
lemma, we will obtain then the rate function for {Xn}.
The difference from the Freidlin–Wentzell theorem in the case of continuous coefficients
consists in that the functional Q(x) = 1

2

∫ T
0

(a(xs)−ẋs)
2

σ2(xs)
ds, which is the rate function in

the continuous case, is not lower semicontinuous, and the resulting rate function is a
lower semicontinuous hull of Q.

2010 Mathematics Subject Classification. Primary 60F10, 60H10.
Key words and phrases. Large deviation principle, Varadhan lemma, Bryc formula, change of

measure.

102



LARGE DEVIATION PRINCIPLE FOR ONE-DIMENSIONAL SDES 103

Even in the one-dimensional case, this difference shows that, in a more general situation,
the rate function may be different from the standard Freidlin–Wentzell one.

2. Main theorem

Let Xn, n = 1, 2, ..., be a sequence of X-valued random variables on a complete
separable metric space (X, ρ). We recall some standard definitions (see, e.g., [6], Chapter
3.1).

Definition 2.1. The family {Xn} satisfies the large deviation principle with the rate
function I : X→ [0,∞] if, for every open set A,

(2) lim inf
n→∞

1

n
logP {Xn ∈ A} ≥ − inf

x∈A
I(x),

and, for every closed set B,

(3) lim sup
n→∞

1

n
logP {Xn ∈ B} ≤ − inf

x∈B
I(x).

If (2) holds, and if (3) holds for every compact set only, then {Xn} is said to satisfy the
weak large deviation principle.
The rate function I is called “good” if, for every b ∈ [0,∞), the set {x : I(x) ≤ b} is
compact.

The main result of this paper is given by the following theorem. Let X = C([0, T ]) with
the uniform metric ρ(x, y) = sup

t∈[0,T ]

|x(t) − y(t)|, and let {Xn} be a family of random

variables in C([0, T ]).

Theorem 2.1. Let σ(x) and a(x) be measurable and such that a
σ2 has bounded deriva-

tive. Assume also that σ is bounded, separated from zero, and such that the set ∆σ of
discontinuity points of σ has zero Lebesgue measure.
Then the family {Xn} satisfies LDP with a good rate function J, which equals

J(g) = lim inf
y→g

Q(y),

where

Q(y) =
1

2

∫ T

0

(a(ys)− ẏs)2

σ2(ys)
ds

if y ∈ C([0, T ]) is an absolutely continuous function with y(0) = x0, ẏ ∈ L2([0, T ]), and
Q(y) =∞ otherwise.

Note that the rate function is different here from that in the case of continuous coefficients
studied by Freidlin and Wentzell ([1], Chapter 7, §4). The reason for this is the fact that

Q(y) = 1
2

∫ T
0

(a(ys)−ẏs)2
σ2(ys)

ds is not lower semicontinuous, in general. This is illustrated by

the following example.

Example 2.1. Let T = 1, x0 = 0, and

σ(y) =

{
c1, y < 0

c2, y ≥ 0
, 0 < c1 < c2, a(y) = σ2(y).

Then the conditions of Theorem 2.1 are satisfied. Consider a sequence

yn(t) =

{
− t
n , t ∈ [0, 12 ]

− 1
2n , t ∈ [ 12 , 1]

.
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We have yn → y0 ≡ 0 as n→∞. For this sequence, the function Q is equal to

Q(yn) =
1

2

∫ T

0

(a(yn(s))− ẏn(s))2

σ2(yn(s))
ds =

1

2

∫ 1/2

0

(σ2(− s
n ) + 1

n )2

σ2(− s
n )

ds+
1

2

∫ 1

1/2

σ2(− 1

2n
)ds =

=
1

2

(∫ 1/2

0

σ2(− s
n

)ds+

∫ 1/2

0

2

n
ds+

∫ 1/2

0

1

nσ2(− s
n )
ds+

∫ 1

1/2

σ2(− 1

2n
)ds

)
=

=
1

2

(
c21 +

1

n
+

1

2n

1

c21

)
→ c21

2
as n→∞, Q(y0) =

1

2

∫ 1

0

σ2(0)ds =
c22
2
.

So, we obtain lim inf
n→∞

Q(yn) < Q( lim
n→∞

yn), which means that the function Q is not lower

semicontinuous.

Theorem 2.1 will be proved in Section 4. We now recall some statements, which will be
used below.

3. Prerequisites

3.1. LDP in the case a ≡ 0. In this section, we formulate LDP for the stochastic
differential equations (1) with a ≡ 0. Consider the sequence of SDEs of the form

(4) dY nt =
1√
n
σ(Y nt )dWt, t ∈ [0, T ]

with initial conditions Y n0 = y0. The following theorem gives a result for a family of
solutions to (4) under weak assumptions on the diffusion coefficient σ.

Proposition 3.1. Let σ be measurable, bounded, and separated from zero. Assume also
that the set ∆σ of discontinuity points of σ has zero Lebesgue measure.
Then the family {Y n} satisfies LDP with a good rate function I, which equals

(5) I(g) =
1

2

∫ T

0

(ġ(t))2

σ2(g(t))
dt,

if g ∈ C([0, T ]) is an absolutely continuous function with g(0) = y0, ġ ∈ L2([0, T ]), and
I(g) =∞ otherwise.

In [5], a similar statement was proved for a sequence of random variables taking values
in X = C([0,∞)) and defined by the solutions to SDEs similar to (5) considered on the
whole semiaxis [0,∞). In view of this statement, Proposition 3.1 follows directly from
the contraction principle (see, e.g., [6], Lemma 3.11) applied to the natural projection
from the space C([0,∞)) onto C([0, T ]).

3.2. The Varadhan lemma and the Bryc formula. In this section, we recall two
statements (see, e.g., [6], Proposition 3.8), which will be used below.
Let {Xn} be a sequence of X-valued random variables.

Proposition 3.2. (Varadhan Lemma) Suppose that {Xn} satisfies the large deviation
principle with good rate function I. Then, for each f ∈ Cb(X),

lim
n→∞

1

n
logEenf(X

n) = sup
x∈X
{f(x)− I(x)}.

Proposition 3.3. (Bryc formula) Suppose that the sequence {Xn} is exponentially tight,
and the rate transform

(6) Λ(f) = lim
n→∞

1

n
logEenf(X

n)



LARGE DEVIATION PRINCIPLE FOR ONE-DIMENSIONAL SDES 105

exists for each f ∈ Cb(X). Then {Xn} satisfies the large deviation principle with good
rate function

I(x) = sup
f∈Cb(X)

{f(x)− Λ(f)}.

4. Proof of Theorem 2.1

In this section, we prove Theorem 2.1. Auxiliary statements, which will be used in the
proof, are proved in Appendix A.
The main idea of the proof of the theorem is to use the fact that the large deviation
principle holds for the family {Y n} of solutions to (4). We will need the Girsanov
theorem on a change of the measure and the statements from section 3.
Let us write the rate transform from the Bryc formula Λ(f) = lim

n→∞
1
n logEenf(X

n) for

the sequence {Xn}. Recall that, by the Girsanov theorem (see, e.g., [7], Chapter 4, §4.1),

if we take a solution Y n to (4) for a fixed n with some Wiener process W̃ and put

P (Xn ∈ B) = E

(
1Y n∈B exp

{∫ T

0

αn(Y ns )dW̃s −
1

2

∫ T

0

α2
n(Y ns ) ds

})
, B ∈ B(C[0, T ]),

with αn(y) =
√
n(a(y)/σ(y)), then Xn is a weak solution to (1). Hence, the rate trans-

form Λ(f) = lim
n→∞

1
n logEenf(X

n) for the family {Xn} (see (6)) can be written as

Λ(f) = lim
n→∞

1

n
logE exp

{
n

[
f(Y n)− 1

2

∫ T

0

(
a

σ
)2(Y ns )ds

]
+
√
n

∫ T

0

a

σ
(Y ns )dW̃s

}
.

Denote A(x) =
∫ x
0

a
σ2 (y)dy. Using Itô’s formula for A, we obtain the following form of

the rate transform:

Λ(f) = lim
n→∞

1

n
logE exp{n

[
f(Y n)− 1

2

∫ T

0

(
a

σ
)2(Y ns )ds+A(Y nT )−A(Y n0 )

]
−

(7) −1

2

∫ T

0

σ2(Y ns )(
a

σ2
)′(Y ns )ds}.

Under the assumption that ( a
σ2 )′ is bounded, we can omit the last term in (7) (see

Lemma 1 in Appendix). We know that the sequence {Y n} satisfies the large deviation
principle with good rate function I defined by (5). Moreover, for every f ∈ Cb(C[0, T ]),
the function

g(y) = f(y) +A(yT )−A(y0)− 1

2

∫ T

0

(
a

σ
)2(ys)ds, y ∈ C[0, T ]

belongs to Cb(C[0, T ]) as well. Then, applying the Varadhan lemma, we get that the rate
transform for the family {Xn} has the form

Λ(f) = sup
x∈C[0,T ]

{g(x)− I(x)} = sup
x∈C[0,T ]

{
g(x)− 1

2

∫ T

0

(
ẋs

σ(xs)
)2ds

}
=

= sup
x∈C[0,T ]

{
f(x) +A(xT )−A(x0)− 1

2

∫ T

0

(
a

σ
)2(xs)ds−

1

2

∫ T

0

(
ẋs

σ(xs)
)2ds

}
.

This expression can be transformed as

A(xT )−A(x0) =

∫ xT

x0

(
a

σ2
)(y)dy.
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After the change of variables y = xs, we obtain A(xT )−A(x0) =
∫ T
0

a(xs)ẋs

σ2(xs)
ds. Therefore,

the rate transform takes the form

Λ(f) = sup
x∈C[0,T ]

{
f(x)− 1

2

∫ T

0

(a(xs)− ẋs)2

σ2(xs)
ds

}
= sup
x∈C[0,T ]

{f(x)−Q(x)}.

The Bryc formula states that if the rate transform for {Xn} exists for each f ∈ Cb(X),
then the sequence {Xn} satisfies the large deviation principle with the good rate func-
tion J(y) = sup

f∈Cb(X)
{f(y) − Λ(f)}. Recall that the functional Q is not necessarily lower

semicontinuous. Because of that, we introduce the function Q̃(x) = lim inf
y→x

Q(y), i.e., the

lower semicontinuous hull of the functional Q. To finalize the proof, we show that

sup
x∈C[0,T ]

{f(x)−Q(x)} = sup
x∈C[0,T ]

{f(x)− Q̃(x)}

(see Lemma 2 in Appendix), and that functionals Q̃(y) and J(y) are equal (see Lemma
3 in Appendix). Together with Lemma 4 in Appendix, which shows that that the rate
function J is good, this completes the proof of Theorem 2.1.

Appendix A. Auxiliary statements

Here, we prove some statements, which were used in the proof of Theorem 2.1. The
following Lemma gives the opportunity to omit the last term in (7).

Lemma A.1. If a
σ2 has bounded derivative, then

lim
n→∞

1

n
logE exp

{
n

[
f(Y n)− 1

2

∫ T

0

(
a

σ
)2(Y ns )ds+A(Y nT )−A(Y n0 )

]
−

−1

2

∫ T

0

σ2(Y ns )(
a

σ2
)′(Y ns )ds

}
=

= lim
n→∞

1

n
logE exp

{
n

[
f(Y n)− 1

2

∫ T

0

(
a

σ
)2(Y ns )ds+A(Y nT )−A(Y n0 )

]}

Proof. Suppose that |σ2( a
σ2 )′| ≤ C. Then −C2 T ≤ −

1
2

∫ T
0
σ2(Y ns )( a

σ2 )′(Y ns )ds ≤ C
2 T.

E exp

{
n

[
f(Y n)− 1

2

∫ T

0

(
a

σ
)2(Y ns )ds+A(Y nT )−A(Y n0 )

]
−

−1

2

∫ T

0

σ2(Y ns )(
a

σ2
)′(Y ns )ds

}
≤

≤ eC
2 TE exp

{
n

[
f(Y n)− 1

2

∫ T

0

(
a

σ
)2(Y ns )ds+A(Y nT )−A(Y n0 )

]}
,

and the inverse inequality holds true with e−
C
2 T . If we take log of both sides, divide

the inequalities by n, and tend n → ∞, then the terms, which correspond to e±
C
2 T ,

vanish. �

Lemma A.2. The following equality takes place:

sup
x∈C[0,T ]

{f(x)−Q(x)} = sup
x∈C[0,T ]

{f(x)− Q̃(x)}.
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Proof. Since Q̃(x) ≤ Q(x), we obtain the inequality

sup
x∈C[0,T ]

{f(x)−Q(x)} ≤ sup
x∈C[0,T ]

{f(x)− Q̃(x)}.

To prove the inverse inequality, we denote s = sup
x∈C[0,T ]

{f(x)− Q̃(x)}.

For every fixed ε > 0, there exists xε, such that

f(xε)− Q̃(xε) ≥ s− ε.

Since Q̃(xε) = lim inf
y→xε

Q(y), there exists a sequence yn → xε such that

Q(yn)→ Q̃(xε), as n→∞.

Then f(yn)−Q(yn)→ f(xε)− Q̃(xε) ≥ s− ε, as n→∞.
Taking the supremum on both sides of the inequality, we obtain sup

y
{f(y)−Q(y)} ≥ s−ε.

Tending ε→ 0, we obtain

sup
x∈C[0,T ]

{f(x)−Q(x)} ≥ s = sup
x∈C[0,T ]

{f(x)− Q̃(x)},

and the proof is completed. �

Lemma A.3. The functionals Q̃(y) and J(y) are equal.

Proof. For each y ∈ C[0, T ] and f ∈ Cb(C[0, T ]), we have Λ(f) ≥ f(y) − Q̃(y), and,

therefore, f(y) − Λ(f) ≤ Q̃(y). Taking the supremum w.r.t. f on both sides of the
inequality, we obtain

J(y) ≤ Q̃(y), y ∈ C[0, T ].

We now show that J(y) ≥ Q̃(y) for a fixed y. To do that, it is enough to construct, for
every fixed ε > 0, a function f = fε ∈ Cb(C[0, T ]) such that

(8) f(y)− Λ(f) > Q̃(y)− ε.
Consider the sequence of functions hN ∈ Cb(C[0, T ]), N ≥ 1, defined by

hN (x) =

{
−N3ρ(x, y)2, ρ(x, y) < 1

N

−N, ρ(x, y) ≥ 1
N

, x ∈ C[0, T ].

Let us show that, for every ε > 0, there exists N such that (8) holds true for f = hN . If
this fails, then there exists ε1 > 0 such that

(9) hN (y)− Λ(hN ) ≤ Q̃(y)− ε1, N ≥ 1.

Recall that Λ(f) = supx∈C[0,T ](f(x)−Q(x)). Hence, for every N ≥ 1, there would exist

xN ∈ C[0, T ] such that

hN (y)− (hN (xN )−Q(xN )) ≤ Q̃(y)− ε2, N ≥ 1,

where ε2 = ε1/2 > 0. We have hN (y) = 0 by the construction of hN . Hence, we can
rewrite the above inequalities as

(10) Q(xN )− hN (xN ) ≤ Q̃(y)− ε2, N ≥ 1.

Next, hN (x) ≤ −N if ρ(x, y) ≥ 1/N. Because Q(x) ≥ 0, x ∈ C[0, T ], this means that

ρ(xN , y) <
1

N
, N > Q̃(y)− ε2.

Therefore, xN → y in C[0, T ], and, by the definition of Q̃,

lim inf
N→∞

Q(xN ) ≥ lim inf
x→y

Q(x) = Q̃(y).
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The latter relation contradicts (10): because hN (x) ≤ 0, x ∈ C[0, T ], we have, by (10),

lim inf
N→∞

Q(xN ) ≤ lim inf
N→∞

(
Q(xN )− hN (xN )

)
≤ Q̃(y)− ε2.

This contradiction shows that assumption (9) fails. This proves (8) and completes the
proof. �

Lemma A.4. The rate function J is good.

Proof. The function J(g) = lim inf
x→g

1
2

∫ T
0

(a(xs)−ẋs)
2

σ2(xs)
ds is lower semicontinuous, which

means that, for every level set B = {x : J(x) ≤ b}, it is closed. Using the Cauchy–
Schwarz inequality, one can write an increment of the function x as follows:

|x(t)− x(s)| = |
∫ t

s

ẋpdp| ≤

√
(t− s)

∫ t

s

(ẋp)2dp.

Since a and σ are bounded,
∫ T
0

(ẋs)
2ds is also bounded for each x ∈ B, and the family

B is equicontinuous. Since, for each x ∈ B, x(0) = 0, the functions in the family B are
bounded at one point. According to the Arzelá-Ascoli theorem, the level set is compact,
and the rate function J is good. �
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