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E. V. GLINYANAYA

ASYMPTOTICS OF DISORDERING IN THE DISCRETE

APPROXIMATION OF AN ARRATIA FLOW

We propose an approach to study the geometrical properties of stochastic flows with

coalescence. We consider the discrete time approximation of a stochastic flow. In

contrast to flows with continuous time, the ordering of particles in the discrete-time
flows does not hold. The disordering in the approximation scheme can be considered

as geometrical properties of a stochastic flow. We establish the rate of decrease to
zero of the time which two particles spend in the opposite order.

1. Introduction

The main object of the article is a discrete flow of random mappings which approx-
imates the Arratia flow [2, 3]. The Arratia flow consists of the Brownian motions that
start from every point of the real line and move independently up to the meeting,
when they coalesce and move together. One of the main features of the Arraita flow
{x(u, t), u ∈ R, t ≥ 0} is the ordering of particles: x(u1, t) ≤ x(u2, t) if u1 ≤ u2. It is
known that the x(·, t)-image of any bounded subset of R is finite for any positive t due
to the coalescence [2, 4]. So, the graph of the mapping x(·, t) is a step function. The
graph of the mapping x(·, t) does not give an idea of the characteristic features of a be-
havior of particles that coalesce. To detect a characteristic property of the joint behavior
of particles up to the time moment of their meeting and coalescence, we consider the
discrete-time approximation of the Arratia flow. On the one hand, the motion of par-
ticles in the approximation scheme is more complicated: in this case, the change of the
initial order of particles is possible. On the other hand, in the flow with discrete time, it
is easier to analyze a joint behavior of particles: at each time instant from a discrete set,
we can estimate the probability of disordering in the system of particles. In other words,
the approximation scheme of the Arratia flow is driven by a finite number of random
fields. The idea of considering a finite number of points instead of a continuous flow was
advanced by H. Helmholtz. He proposed an approach to approximate a two-dimensional
incompressible flow of a liquid with a finite set of vortices. In other words, in order to
study a flow which consists of a continuum set of particles, one can consider a finite
set of points with infinitesimal geometrical characteristics. In such approach, the Euler
equation is replaced by combined equations which describe the evolution of vortices [1].

In the construction of an approximation, we follow the procedure proposed in [5, 6].
Namely, we start from a sequence of independent stationary Gaussian processes {ξn;n ≥
1} on R, which have zero mean and a covariance function Γ. Define the iterations:

(1) x0(u) = u, xn+1(u) = xn(u) +
1√
n
ξn (xn(u)) , n ≥ 0, u ∈ R.

Using these iterations, one can built the random process x̃n on [0, 1] as follows. Let x̃n
be a polygonal line with edges

(
k
n , xk(u)

)
, k = 0, . . . , n. It was proved in [5] that if the co-

variance Γ approximates the function I{0} in some sense (a precise statement will be given
later), then the m−point motions of x̃n, i.e., the sets of processes {x̃n(u1), . . . , x̃n(um)}
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weakly converge to the m−point motions of the Arratia flow. Hence, one can expect
that the time of the disordering between the particles in x̃n will go to zero, when it
approximates the Arratia flow. Here, we will try to find the rate of this convergence.

2. Approximation of Arratia’s flow and the time of disordering

Let us start from the definition of a flow of Brownian motions on the real line and the
precise statement about flow’s approximation.

Definition 1. The Arratia flow is a family {x(u, ·), u ∈ R} of Brownian martingales
with respect to the join filtration such that:

1)for every u ∈ R,
x(u, 0) = u;

2) for every u1 ≤ u2 and t ≥ 0,

x(u1, t) ≤ x(u2, t);

3) the joint characteristics are

d〈x(u1, ·), x(u2, ·)〉(t) = I{x(u1,t)=x(u2,t)}dt.

The Arratia flow describes the joint behavior of Brownian particles on the real line,
which move independently till the time instant of their meeting and then coalesce and
move together.

To define a discrete approximation of the Arratia flow, we consider a sequence of
series of random processes {ξnk , k = 0, n}n≥1, where, for every n ≥ 1, {ξnk , k = 0, n} are
independent identically distributed stationary Gaussian processes with zero mean and
a covariance function Γn. Suppose that, for every n ≥ 1, Γn is a continuous function.
Define the sequence of random mappings {xnk , k = 0, n}n≥1 via the recurrence equation

(2) x0(u) = u, xnk+1(u) = xnk (u) +
1√
n
ξnk+1(xnk (u)), k = 0, n− 1, u ∈ R.

The continuity of Γn implies that the processes {ξnk } have measurable modifications.
This allows us to substitute xnk into ξnk+1. Consider the sequence of random functions
{xn(u, t), t ∈ [0, 1], n ≥ 1}, where we define xn(u, ·) to be the piecewise linear version
of xnk (u) with the interpolation interval 1

n :

xn(u, t) = n

(
k + 1

n
− t
)
xnk (u) + n

(
t− k

n

)
xnk+1(u),

u ∈ R, t ∈
[
k

n
,
k + 1

n

]
, k = 0, n− 1

The following proposition is known for such approximation scheme [5].

Theorem 1. Suppose that, for every n ≥ 1, xn is built upon a sequence {ξnk , n ≥ 1},
where the independent identically distributed processes ξnk have the covariance function
Γn, which satisfies the Lipschitz condition, and Γn(0) = 1. For every n ≥ 1, we define

Cn = sup
R

2− 2Γn(x)

x2
.

If

1) limn→∞
Cne

Cn

n = 0,
2) for every δ > 0, supR\[−δ,δ]|Γn(x)| → 0, n→ 0,
then the random processes {xn(u1, ·), . . . , xn(ul, ·), n ≥ 1} weakly converge to the l-point
motions of Arratia’s flow starting from u1, . . . , ul.
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In the next example, we give some covariance functions Γn, which satisfy the conditions
of Theorem 1.

Example 1. Consider a function Γn(u) = e−
anu2

2 . One can calculate that Γn satisfies
the Lipschitz condition, and Cn = an. To satisfy the conditions of the previous theorem,
we can take an = α lnn, α < 1.

Since our aim is to describe the time of disordering between the particles in the
discrete-time approximation scheme, we consider the two-point motions

{xn(u1, ·), xn(u2, ·)}

and define a sequence of random processes {yn(t), t ∈ [0, 1]}n≥0:

(3)

{
yn(t) = xn(u2, t)− xn(u1, t)

y0(t) = u2 − u1 > 0.

Denote Bn(u) =
√

2− 2Γn(u). The sequence of random variables
{
yn
(
k
n

)
, k =

0, n
}
n≥1, is equidistributed with a sequence of random variables {ynk , k = 0, n}n≥1,

which is defined via the recurrence equation:

(4) ynk+1 = ynk +Bn(ynk )∆w(
k

n
), yn0 = u2 − u1,

where ∆w( kn ) = w(k+1
n ) − w( kn ) are the increments of a standard Brownian motion w.

From the recurrence equation (4), one can see that the random process {yn(t), t ∈ [0, 1]}
is equidistributed with a difference approximation of a solution to the Cauchy problem:

(5)

{
dỹn(t) = Bn(ỹn(t))dw(t),

ỹn(0) = u2 − u1.

It is known [7] that

(6) Emax
[0,1]
|yn(t)− ỹn(t)|2 ≤ cCne

Cn

n
.

We will analyze the joint behavior of two particles in the discrete scheme, using the
functional

Φn =

∫ 1

0

I{yn(s)<0}ds.

We obtain the rate of decreasing to zero for Φn.
To prove the main theorem, we need a preliminary lemma, in which we compare the

solution of SDE (5) with the Brownian motion. Without loss of generality, we make an
assumption: u2 − u1 = 1.

Lemma 1. Let ỹn be a solution to (5). Suppose that Bn ∈ C1((0,+∞)) and
1) Bn(u) increases for u > 0;

2) Bn

(
1√
Cn

)
≥ 1

K , n ≥ 1.

Let τ = inf{t : ỹn(t) = 1√
Cn
}. Then, for t ∈ [0, τ),

ỹn(t) ≤
√

2(K + w(t)) +
1√
Cn

,

where w is the very same Wiener process as in (5).

Proof. For the function

f(x) =

∫ x

1√
Cn

1√
Bn(u)

du,
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the Itô formula yields

f(ỹn(t))− f(1) =

∫ t

0

dw(s)− 1

2

∫ t

0

B′n(ỹn(s))ds.

Since Bn(0) = 0 and ỹn(0) = 1 > 0, the process ỹn(t) is positive for all t ≥ 0 as a
solution of SDE (5). So, using condition 1) of this lemma, B′n(ỹn(s)) > 0 for s ≥ 0, and
we have

f(ỹn(t)) ≤ f(1) + w(t).

Using the estimation Bn(u) ≤
√

2 and condition 2), we obtain

f(x) ≥ 1√
2

(
x− 1√

Cn

)
, if x ≥ 1√

Cn
,

f(1) ≤ 1

Bn

(
1√
Cn

) ≤ K.
Combining these inequalities, one can get

1√
2

(
ỹn(t)− 1√

Cn

)
≤ f(ỹn(t)) ≤ K + w(t),

for all t such that ỹn(t) ≥ 1√
Cn
. �

The main result of this paper is as follows.

Theorem 2. Suppose that, for every n ≥ 1, the covariance function Γn satisfies the
conditions of Theorem 1. Then

P{Φn > 0} ≤ nF
(√

n

Cn

)
.

If Γn is such that

1)limn→∞
C2

ne
Cn

n = 0,
2) u
Bn(u)

increases for u > 0,

3)Bn

(
1√
Cn

)
≥ 1

K , n ≥ 1,

then, for any ε > 0,

lim
n→∞

P{Φn > ε}

F
(
K
√

n
Cn

) ≥ const > 0,

where F (x) =
∫∞
x

1√
2π
e−

u2

2 du

Proof. Using (4) for any k ≥ 1 we have:

I{ynk−1>0}P{ynk > 0|ynk−1} = I{ynk−1>0}P
{
ynk−1 +Bn(ynk−1)∆w

(
k

n

)
> 0|ynk−1

}
=

= I{ynk−1>0}P
{

∆w

(
k

n

)
> −

ynk−1
Bn(ynk−1)

∣∣∣ynk−1} ≥ I{ynk−1>0}

∫ ∞
−
√

n
Cn

1√
2π
e−

x2

2 dx =

= I{ynk−1>0}

(
1− F

(√
n

Cn

))
,

where we used the inequality |u|
Bn(u)

≥ 1√
Cn
, which follows from the definition of Cn.

Using this inequality, we obtain



12 E. V. GLINYANAYA

P{Φn = 0} = P{yn1 > 0, yn2 > 0, . . . , ynn > 0} =

= E
(
I{yn1>0} . . . I{ynn−1>0}E

[
I{ynn>0}

∣∣∣∆w (0) ,∆w

(
1

n

)
, . . . ,∆w

(
n− 1

n

)])
=

= E
(
I{yn1>0} . . . I{ynn−1>0} · P{ynn > 0|ynn−1}

)
≥

≥
(

1− F
( √

n√
Cn

))
E(I{yn1>0} . . . I{ynn−1>0}) ≥

≥ . . . ≥
(

1− F
(√

n

Cn

))n
≥ 1− nF

(√
n

Cn

)
.

Thus, we have

P{Φn > 0} = 1− P{Φn = 0} ≤ nF
(√

n

Cn

)
.

To prove the second part of this theorem, let us introduce the following stopping times:

κn = min

{
k

n
: ynk <

√
2

Cn

}
.

Then, for any ε > 0,

P{Φn > ε} ≥
[n(1−ε)]∑
k=1

P
{
κn =

k

n
, ynk+j < 0, j = 1, . . . , n− k

}
.

We will estimate separately each term of the previous sum:

P
{
κn =

k

n
, ynk+j < 0, j = 1, . . . , n− k

}
=

E
(
I{κn=

k
n}

I{ynk+1<0} . . . I{ynn−1<0}E[I{ynn<0}|ynn−1]
)
≥

≥
(

1− F
( √

n√
Cn

))
P
{
κn =

k

n
, ynk+j < 0, j = 1, . . . , n− k − 1

}
≥ . . . ≥

≥
(

1− F
( √

n√
Cn

))n−k−1
P
{
κn =

k

n
, ynk+1 < 0

}
.

For P{κn = k
n , y

n
k+1 < 0}, we obtain the estimation:

P
{
κn =

k

n
, ynk+1 < 0

}
= P

{
yn1 >

√
2

Cn
, . . . , ynk−1 >

√
2

Cn
, ynk <

√
2

Cn
, ynk+1 < 0

}
=

= E
(
I{κn=

k
n}

P
{
ynk+1 < 0

∣∣∣ynk <√ 2

Cn

})
=

= E
(
I{κn=

k
n}

P
{

∆w

(
k

n

)
< − ynk

Bn(ynk )

∣∣∣ynk <√ 2

Cn

})
≥

≥ P
{

∆w

(
k

n

)
< −K

√
2

Cn

}
P
{
κn =

k

n

}
.

So we get the estimation

P{Φn > ε} ≥ F
(
K

√
n

Cn

) [n(1−ε)]∑
k=1

(
1− F

(√
n

Cn

))n−k−1
P
{
κn =

k

n

}
≥
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≥
(

1− F
(√

n

Cn

))n−2
F

(
K

√
n

Cn

) [n(1−ε)]∑
k=1

P
{
κn =

k

n

}
.

To get the estimation for
∑[n(1−ε)]
k=1 P{κn = k

n}, we use estimation (6) and Lemma 1.
Denote

τn = inf
{
t : ỹn(t) =

√
1

Cn

}
,

where ỹn(·) is a solution to SDE (5). We have

[n(1−ε)]∑
k=1

P
{
κn =

k

n

}
≥ P

{
κn ≤

[n(1− ε)]
n

,max
[0,1]
|ỹn(t)− yn(t)| ≤

√
1

Cn

}
≥

≥ 1− P
{
τn >

[n(1− ε)]
n

}
− P

{
max
[0,1]
|ỹn(t)− yn(t)|2 > 1

Cn

}
≥

≥ P
{
τn ≤

[n(1− ε)]
n

}
− cC

2
ne
Cn

n
.

We put Θn = inf
{
t :
√

2(w(t) +K) +
√

1
Cn

=
√

1
Cn

}
= inf{t : w(t) +K = 0}.

Then, by Lemma 1,

P
{
τn ≤

[n(1− ε)]
n

}
≥ P

{
Θn ≤

[n(1− ε)]
n

}
= 2P

{
w

(
[n(1− ε)]

n

)
> K

}
.

Finally, we get

P{Φn > ε} ≥ F
(
K

√
n

Cn

)
An,

where

An =

(
1− (n− 2)F

(√
n

Cn

))(
2P
{
w

(
[n(1− ε)]

n

)
> K

}
− cC

2
ne
Cn

n

)
→

→ 2P{w(1− ε) > K.}
�

In the corollary, we obtain the asymptotics of the logarithm of P{Φn > ε}.
Corollary 1. Under conditions of the previous theorem, we have

lim
n→∞

2Cn
n

lnP{Φn > 0} ≤ −1

lim
n→∞

2Cn
n

lnP{Φn > ε} ≥ −K2.

Proof. From the previous theorem,

lnP{Φn > 0} ≤ lnn+ lnF

(√
n

Cn

)
.

Using

F (x) =

∫ ∞
x

1√
2π
e−

u2

2 du ∼ 1

x
√

2π
e−

x2

2 , as x→∞,

we obtain the first part of the corollary. To get the second one, we use the estimation
from the proof of the theorem:

P{Φn > ε} ≥ F
(
K

√
n

Cn

)
An.

�
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