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V. P. KNOPOVA

ON THE SPEED OF CONVERGENCE IN THE LOCAL LIMIT

THEOREM FOR TRIANGULAR ARRAYS OF RANDOM VARIABLES

We establish the upper bound on the speed of convergence to the infinitely divisible

limit density in the local limit theorem for triangular arrays of random variables

{Xk,n, k = 1, .., an, n ∈ N}.

1. Introduction

This paper is motivated by [5], where the local limit theorem for a triangular array of
random variables {Xk,n, k = 1, .., an}, independent and identically distributed (i.i.d) in
each series random variables, is established. Staying in frames of the situation studied
in [5], we would like make a step further and obtain the information about the speed of
convergence to the limit density.

In contrast to the local limit theorem for the normal law, there is not much known
even about the local limit theorem for infinitely divisible limit densities. Of course,
one can refer to Gnedenko’s theorem on the necessary and sufficient conditions for the
convergence to the stable law, see [3]. Under certain conditions the uniform convergence
to the limit density was proved in [5], but to the best of author’s knowledge, in the
general case nothing is known about the speed of convergence.

To make the presentation self-contained, we quote below the necessary and sufficient
conditions for convergence to the infinitely divisible law, see [2, Theorem 2, Chapter
XVII §2].

Recall that a measure M on R is called canonical if M(I) <∞ for any finite interval,
and

M+(x) =

∫ +∞

x

1

u2
M(du) < +∞, M−(x) =

∫ −x
−∞

1

u2
M(dy) < +∞, x > 0.

A sequence of canonical measures {Mn} converges to a canonical measure properly, if
Mn(I) → M(I) for any finite interval, and M+

n (x) → M+(x), M−n (x) → M−(x) for
every x > 0. In this case we write Mn →M .

Theorem 1.1. [2] Let {Xk,n 1 ≤ k ≤ an} be such that Xk,n are i.i.d. for any 1 ≤ k ≤ an,
an →∞ as n→∞, and satisfy

(1.1) lim
n→∞

P{|X1,n| ≥ ε} = 0.

Let Fn(du) be the distribution function of X1,n,

Mn(du) := anu
2Fn(du), βn :=

∫
R

sinuFn(du).
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Table 1. Notation

Variable Char. function Probab. measure Probab. density

ξ1,n θn(z) Gn(du) gn(u)
X1,n θn(z/bn) Fn(du) ≡ Gn(bndu) fn(u) ≡ bngn(bnu)
Sn Φn(z) ≡ θann (z/bn) Pn(dx) pn(x)
ζ Φ(z) = e−ψ(z) P (dx) p(x)

Then Sn := X1,n+ ...+Xan,n converges in distribution to some random variable ζ if and
only if

(1.2) Mn →M, anβn → β, as n→∞,
for some β ∈ R and some canonical measure M . In this case the characteristic function
Φ(z) of ζ is given by

(1.3) Φ(z) = exp

{
iβz +

∫
R

eizu − 1− iz sinu

u2
M(du)

}
.

The function

(1.4) ψ(z) := −iβz +

∫
R

1− eizu + iz sinu

u2
M(du) = −iβz + φ(z)

is called the characteristic exponent of the infinitely divisible variable ζ. Put

(1.5) ψn(z) := −iβnz +

∫
R

1− eizu + iz sinu

u2
Mn(du) = −iβnz + φn(z).

Remark 1.1. Of course, one can formulate Theorem 1.1 with the function 1|u|≤1 instead
of sinu under the integral, but for technical reasons we need the Lévy representation
(1.3).

Sometimes, especially when the convergence in Theorem 1.1 is that to a stable law
(cf. [3]), it is more convenient to consider the random variables in the form

(1.6) Xk,n =
ξk,n
bn

,

where the variables ξk,n, 1 ≤ k ≤ an, are i.i.d. for each n, and the sequence (bn)n≥1

satisfies certain growth assumptions. In what follows we assume that the random vari-
ables Xk,n are of the form (1.6). We assume that the conditions of Theorem 1.1 hold

true, and thus Sn =
ξ1,n+..+ξk,n

bn
converges weakly as n→∞ to some infinitely divisible

random variable ζ. Under some conditions on the sequences (an)n≥1, (bn)n≥1, and on
the distribution of ξ1,n (cf. [5]), Sn and ζ possess transition probability densities, and
the local limit theorem takes place. Taking this result as the starting point we derive in
Theorem 2.1 the speed of convergence to the limit density, and illustrated our result by
examples.

In order to make the presentation as transparent as possible, we write the main no-
tation in Table 1. Finally, denote by m̂ the symmetrization of the measure m, i.e.

m̂(A) := m(A)+m(−A)
2 for any Borel set A ∈ R.

2. Main result

We assume that the assumptions below hold true.
A. For any n ≥ 1 the variable ξ1,n possesses the density gn(x).
B. ∃α > 0 such that Reψ(z) ≥ c|z|α for |z| large enough.
C. ∀δ > 0 we have N(δ) := sup

n≥1, |z|≥δ
|θn(z)| < 1.
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D. supn≥1

∫
R
g2
n(x)dx <∞.

E. bn →∞, ln bn
an
→ 0 as n→∞.

F. For n ≥ 1 one of the conditions below is satisfied:
a) there exist c(δ) > 0, and 0 < κ < 2, such that

(2.1)

∫
R

(1−cos(zu))
u2 M̂n(du) ≥ c(δ)|z|κ for all |z| ≤ δbn,

b) M̂ ≤ M̂n on R.
G. ∃δ > 0 such that inf

n≥1, |z|≤δ
|Re θn(z)| > 0.

Remark 2.1. Conditions A and C–E are taken from [5]. Condition B is different from
those assumed in [5]. Namely, in [5] a version of the Kallenberg condition (see [4]) for

the sequence of measures M̂n is assumed, which in fact implies B.

Let

γ′n : = sup
z∈R

|Reφ(z)− Reφn(z)|
1 + z2

, γ′′n := sup
z∈R

|Imφ(z)− Imφn(z)|
1 + z2

,

χn : = |anβn − β|,
(2.2)

where βn has the same meaning as in Theorem 1.1.
Fix δ > 0 for which the above conditions hold true. For some fixed 0 < ε < 1 put

(2.3) ρε,δ(n) := max
(
χn, γ

′
n, γ
′′
n, a
−1
n , ean(lnN(δ)+ε)e−(1−ε)Reψ(δbn)

)
,

where N(δ) is defined in C.

Theorem 2.1. Suppose that conditions (1.1), (1.2), and A–G are satisfied. Then the
distributions of Sn and ζ possess, respectively, the densities pn(x) and p(x), and

(2.4) sup
x∈R
|pn(x)− p(x)| ≤ Cρε,δ(n), n→∞,

where ρε,δ(n) is given by (2.3).

One can simplify the expression for the speed of convergence at the expense of some
additional assumptions on an and bn. We say that a sequence (cn)n≥1 satisfies condition
H, if there exist some constants a, b > 0 such that

0 < lim inf
n→∞

cn
na
≤ lim sup

n→∞

cn
nb

<∞.

Corollary 2.1. Suppose that conditions of Theorem 2.1 hold true, and assume in addi-
tion that the sequences (an)n≥1 and (bn)n≥1 satisfy H. Then

(2.5) sup
x∈R
|pn(x)− p(x)| ≤ C max

(
γ′n, γ

′′
n, χn, a

−1
n

)
.

Corollary 2.2. Suppose that conditions A–F and H hold true, the densities pn(x) and
p(x) are symmetric, and

(2.6) Φn(z) ≥ Φ(z) ∀n ≥ 1,

uniformly in {z : |z| ≤ δbn}. Then

(2.7) sup
x∈R
|pn(x)− p(x)| ≤ C

(
γ′n + r(n))

)
,

where r(n) = o(n−k) as n→∞ for any k ≥ 1.
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Remark 2.2. As one can expect, the oscillation of measures involved in γ′n and γ′′n can
play the crucial role in the estimation of the speed of convergence. For example, it might
be insufficient to know the behaviour of such a “rough estimate” for γ′n as below:

sup
z∈R

∣∣∣ ∫R(1 ∧ |uz|2)(Mn(du)−M(du))
∣∣∣

1 + z2
,

in particular, when the densities (gn)n≥1 have oscillations. Such a situation is illustrated
in Example 4.1.

3. Proofs

Proof of Theorem 2.1. Recall that the densities pn(x) and p(x) can be written as the
inverse Fourier transforms of the respective characteristic functions:

(3.1) p(x) = (2π)−1

∫
R

e−izxΦ(z)dz = (2π)−1

∫
R

e−izx−ψ(z)dz,

(3.2) pn(x) = (2π)−1

∫
R

e−izxΦn(z)dz.

By (3.1) and (3.2) we have

∆n : = 2π sup
x∈R
|pn(x)− p(x)| ≤

∫
R

|Φn(z)− Φ(z)|dz

≤
∫ δbn

−δbn
|Φn(z)− Φ(z)|dz +

∫
|z|>δbn

|Φn(z)|dz +

∫
|z|>δbn

|Φ(z)|dz

=: I1(n) + I2(n) + I3(n),

where δ > 0. We estimate the terms Ik(n), k = 1, 2, 3, separately.
Estimation of I1. Observe, that

|1− ex+iy| = |1 + e2x − 2ex cos y|1/2

= |(1− ex)2 + 2ex(1− cos y)|1/2

≤ |(1− ex)2 + exy2|1/2

≤ |1− ex|+ ex/2|y|
≤ ex+(|x|+ |y|),

(3.3)

where x, y ∈ R, and x+ := max(x, 0). Denote

(3.4) Hn(z) := ψ(z) + an ln θn
( z
bn

)
.

By (3.3) we get

I1(n) ≤
∫ δbn

−δbn
e−Reψ(z)+(ReHn(z))+(|ReHn(z)|+ |ImHn(z)|)dz.

Since ln(1− z) ≤ −z for z ∈ (0, 1), then

(3.5) ReHn(z) = Reψ(z) + an ln
∣∣θn( z

bn

)∣∣ ≤ Reψ(z)− an
(
1− |θn

( z
bn

)∣∣).
Observe, that

(3.6)
∣∣∣θn( z

bn

)∣∣∣ =

∫
R

cos(zu)F̂n(du) = a−1
n

∫
R

cos(zu)

u2
M̂n(du).
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Therefore, by (3.5) and F we have for all n large enough and |z| ≤ δbn

Reψ(z)−
(
ReHn(z)

)
+
≥ an

(
1− |θn

( z
bn

)∣∣)
= an

∫
R

(1− cos(uz))F̂n(du)

≥ c(δ)|z|κ,

(3.7)

if F.a) holds true, or

(3.8) Reψ(z)−
(
ReHn(z)

)
+

= Reψ(z),

if F.b) is satisfied. On the other hand, for z ∈ (0, 1) we have

| ln z + 1− z| ≤
∞∑
k=2

(1− z)k

k
≤ (1− z)2

2

∞∑
k=0

(1− z)k ≤ (1− z)2

2z
.

Then by (3.6) and G we derive

|ReHn(z)| ≤
∣∣∣Reψ(z)− an

(
1− |θn(z/bn)

∣∣)∣∣∣+ an

∣∣∣(1− |θn(z/bn)
∣∣)− ln |θn(z/bn)|

∣∣∣
≤
∣∣∣ ∫
R

(1− cos(zu))u−2(M̂(du)− M̂n(du))
∣∣∣

+ 2−1an

(∫
R

(1− cos(zu))F̂n(du)
)2

·
(∫

R

cos(zu)F̂n(du)
)−1

≤ c1
(
γ′n(1 + z2) + (2an)−1

(
Reψn(z)

)2)
≤ c1

(
γ′n(1 + z2) + (2an)−1

(
(1 + z2)γ′n + (1 + z2)

)2
)

≤ c2(1 + z2)2(γ′n + a−1
n ).

(3.9)

Next we estimate |ImHn(z)|. Observe that for z = x+ iy, where x, y ∈ R,

Im ln z = Arg z = arctan
y

x
,

and for all x ∈ R we have | arctanx − x| ≤ c3|x|3, where c3 > 0 is some constant.
Therefore,

|ImHn(z)| =
∣∣∣Imψ(z) + anIm ln θn

(
z/bn

)∣∣∣
≤
∣∣∣− βz +

∫
R

z sinu− sin(zu)

u2
M(du) + an arctan

Imθn(z/bn)

Reθn(z/bn)

∣∣∣
≤
∣∣∣− βz + z

∫
R

sinu

u2
Mn(du)

∣∣∣+
∣∣∣ ∫
R

z sinu− sin(zu)

u2
(Mn −M)(du)

∣∣∣
+
∣∣∣ ∫
R

sin(zu)− z sinu

u2
Mn(du)

∣∣∣∣∣∣ 1

Reθn(z/bn)
− 1
∣∣∣

+
∣∣∣ ∫
R

z
sinu

u2
Mn(du)

∣∣∣∣∣∣ 1

Reθn(z/bn)
− 1
∣∣∣+ an

∣∣∣ arctan
Imθn(z/bn)

Reθn(z/bn)
− Imθn(z/bn)

Reθn(z/bn)

∣∣∣
≤ I11 + I12 + I13 + I14 + I15.

(3.10)

Since Mn →M and anβn → β (cf. (1.2)), we obtain

(3.11) I11(n) ≤ |z||β − anβn| = |z|χn.
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For I12(n) we have

(3.12) I12(n) ≤
∣∣Imφn(z)− Imφ(z)| ≤ c4(1 + z2)γ′′n.

Using G, we derive

(3.13) I13(n) ≤ c5a−1
n |Imφn(z)|Reφn(z) ≤ c6a−1

n (1 + z2)2.

Analogously,

(3.14) I14(n) ≤ c7βna−1
n |z|Reφn(z) ≤ c8a−1

n |z|(1 + z2).

Finally, for I15 we derive

I15 ≤ anc3
∣∣∣ Imθn(z/bn)

Reθn(z/bn)

∣∣∣3 ≤ c9an∣∣∣ ∫
R

sin(zu)Fn(du)
∣∣∣3

≤ c9a−2
n

∣∣∣ ∫
R

sin(zu)− z sinu

u2
Mn(du) + z

∫
R

sinu

u2
Mn(du)

∣∣∣3
= c9a

−2
n

∣∣∣Imφn(z)− zβn
∣∣∣3

≤ c10a
−2
n (1 + z2)3.

Thus, we arrive at

I1(n) ≤ c11 max(κn, γ
′
n, γ
′′
n, a
−1
n )

∫ δbn

0

e−c(δ)z
κ

(1 + z2)3dz

≤ c12 max(κn, γ
′
n, γ
′′
n, a
−1
n ).

(3.15)

Estimation of I2. We have by C and D

I2(n) =

∫
|z|≥δbn

∣∣∣θn( z
bn

)∣∣∣andz = bn

∫
|x|≥δ

|θn(x)|andx

≤ bnN(δ)an−2

∫
|x|≥δ

|θn(x)|2dx

≤ bnN(δ)an−2 sup
n≥1

∫
R

g2
n(x)dx

= c13bne
an lnN(δ).

Take ε > 0 such that lnN(δ)+ε < 0. By E, we have ln bn
an
→ 0 as n→∞. Thus, without

loss of generality we may assume that ln bn
an
≤ ε for all n ≥ 1, which implies

bne
an lnN(δ) ≤ e−an| lnN(δ)+ε|.

Estimation of I3. For any ε > 0 we have

I3(n) ≤ c14

∫
|z|≥δbn

e−Reψ(z)dz ≤ c15(ε)e−(1−ε)Reψ(δbn).

Summarizing the estimates for Ii(n), i = 1, 2, 3, we arrive at ∆n ≤ Cρε,δ(n). �

Proof of Corollaries 2.1 and 2.2. Clearly, the proofs are obtained as slight modifications
of the proof of Theorem 2.1. Since an and bn satisfy condition H, the terms I2(n) and
I3(n) decay as o(n−k), n→∞, for any k ≥ 0. This implies the statement of Corollary 2.1.
To complete the proof of Corollary 2.2, we need to estimate more precisely I1(n). Let
us look more closely on the properties of the function Hn(z) from (3.4). Since both
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pn(x) and p(x) are symmetric, the function Hn(z) is real-valued. Further, condition
(2.6) implies that Hn(z) ≥ 0. Therefore, instead of (3.9) we get

Hn(z) ≤ ψ(z) + an ln θn(z/bn) ≤ γ′n(1 + z2),

which implies

I1(n) ≤ Cγ′n.
�

4. Examples

Example 4.1. Let (ξn)n≥1 be i.i.d. random variables with probability density

g(u) = cα
(1− cosu)

|u|1+α
, u ∈ R, 0 < α < 2.

Then one can check (using Theorem 1.1 with an = n and bn = n1/α) that

Sn :=
ξ1 + ..+ ξn

n1/α
⇒ ζ,

where ζ is a symmetric α-stable distribution. In this case the respective measure M(du)
in (1.3) is equal to cα|u|1−αdu, and after the appropriate choice of cα we have ψ(z) = |z|α.
For example, in the case α = 1 we must chose cα = 1/π. Clearly, conditions A, B, D
and G are satisfied. Condition C is the Cramer condition (cf. [6]) for the characteristic
function of ξ1, which is satisfied since the law of ξ1 is absolutely continuous.

Let us check condition F. Consider∫ ∞
0

1− cos(zu)

u1+α
cos(n1/αu)du = |z|α

∫ ∞
0

1− cosu

u1+α
cos(n1/αu/z)du.

We need to estimate from above

I(α, k) :=

∫ ∞
0

1− cos v

v1+α
cos(kv)dv.

Note that for α = 1 we have (cf. [1, p.28])

(4.1) I(1, k) =
π

2
(1− |k|)+.

It is also possible to calculate I(α, k) for α ∈ (0, 2)\{1}. Integrating by parts, we get for
any k > 0

I(α, k) =
sin kv

k
· 1− cos v

v1+α

∣∣∣∞
0
− 1

k

∫ ∞
0

sin(kv)
v sin v − (1 + α)(1− cos v)

v2+α
dv

= −1

k

∫ ∞
0

sin(kv)
v sin v − (1 + α)(1− cos v)

v2+α
dv.

The integrals

I1(α, k) :=

∫ ∞
0

sin(kv) sin v

v1+α
dv

and

I2(α, k) :=

∫ ∞
0

sin(kv) sin2(v/2)

v2+α
dv.

can be calculated explicitly, see [1, p.77–78]. In such a way, we have

(4.2) I1(α, k) =
π

4

|k + 1|α − |k − 1|α

Γ(1 + α) sin(πα/2)
∼ cα,1|k|α−1,

(4.3) I2(α, k) = 2−2Γ(−1−α) cos(πα/2)
[
2|k|α+1−|k+1|α+1−|k−1|α+1

]
∼ cα,2|k|α−1,
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as k →∞, where cα,1 := π
2Γ(1+α) sin(πα/2) , cα,2 = 2−1α(α+1)Γ(−1−α) cos(πα/2). Thus,

we obtain the exact expression for I(α, k), from which we derive

I(α, k) ∼ c3,αkα−1, k →∞,

where c3,α = c1,α + 2(α+ 1)c2,α. Finally, for |z| ≤ δn1/α with δ > 0 is small enough, we
get

an

∫
R

(1− cos(zu))F̂n(du) = |z|α
(

1− 2cαI
(
α,
n1/α

|z|

))
≥ c(δ)|z|α, α ∈ (0, 2),

where c(δ) > 0 is some constant.
Let us calculate the order of convergence. From above, we have for α ∈ (0, 2)

|Reψ(z)− Reψn(z)| =
∣∣∣ ∫
R

(1− cos(zu))

|u|1+α
cos(n1/αu)du

∣∣∣ ≤ Cz2

n(2−α)/α
.

Thus, by Corollary 2.1 we arrive at

(4.4) ρ(n) ≤

{
Cn−1, 0 < α < 1,

Cn−
2−α
α , 1 ≤ α < 2.

Example 4.2. Suppose now that ξ1,n possesses the distribution density

gn(u) := 1
2nu sinh(u/n)1|u|≥1,

and an = bn = n. Conditions A, C–E were already checked in [5], in particular, it was
shown that Sn converges in distribution to a random variable ζ possessing a hyperbolic
cosine distribution, i.e. the distribution density of ζ is p(x) = 1

π cosh x . Since in this case

anfn(u) =
1

2u sinhu
1|u|≥ 1

n
↑ 1

2u sinhu
=: f(u) as n→∞,

the function

ψ(z) =

∫
R

(1− cos(uz))f(u)du

satisfies condition B with α = 1. Let us check F for κ = 1. Since for |z| ≤ 1 we have
1− cos z ≥ (1− cos 1)z2, then estimating u

sinhu from below for small u by a constant, we
get

an

∫
R

(1− cos(zu))fn(u)du ≥ n(1− cos 1)

∫
|uz|≤1

(zu)2fn(u)du

≥ (1− cos 1)|z| inf
|z|≤δn

|z|
∫ 1/|z|

1/n

u

sinhu
du

≥ c1|z| inf
|z|≤δn

|z|
(

1

|z|
− 1

n

)
≥ c1(1− δ)|z|,

uniformly in {z : |z| ≤ δn}. Thus, condition F holds true.
It remains to check condition G. Let |z| ≤ δ. Since the function r sinh(u/r) is increas-

ing in r, we have by the dominated convergence theorem

inf
n≥1
|θn(z)| = inf

n≥1

∣∣∣ ∫
u≥1

cos(zu)

nu sinh(u/n)
du
∣∣∣ = lim

n→∞
|θn(z)| =

∫ ∞
1

cos(zu)

u2
du

≥ cos 1

∫ 1/δ

1

du

u2
,

which gives G.
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Finally, using Corollary 2.1 we arrive at

sup
x∈R
|pn(x)− p(x)| ≤ C

n
.
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