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A. V. IVANOV AND I. V. ORLOVSKY

ASYMPTOTIC PROPERTIES OF LINEAR REGRESSION

PARAMETER ESTIMATOR IN THE CASE OF LONG-RANGE

DEPENDENT REGRESSORS AND NOISE

Sufficient conditions of consistency and asymptotic normality of least squares estima-

tor of linear regression model parameter in the case of long-range dependent random

regressors and noise are obtained in the paper.

1. Introduction

Estimation of unknown parameters in linear and nonlinear regression models is an
important problem of statistics of random processes. Linear regression models with
regressors observed with random errors are of a particular interest. The least squares
estimator (LSE) is chosen in the paper for parameter estimation as one of the most
important and much used regression model parameter estimator.

Among the asymptotic properties of statistical estimators consistency and asymptotic
normality are the first two properties that should be considered as they are necessary for
further more detailed study of asymptotic behavior of the estimators.

The LSE asymptotic properties of linear regression model parameter with stationary
random regressors were considered in the book of A.Ya. Dorogovstev [1] and in [2]. The
paper continues this study in the case when random errors in regressors and random
noise are long-range dependent and regressors have time dependent trends.

2. Assumptions and results

Consider a regression model

(2.1)
X(t) =

q∑
i=1

θizi(t) + ε(t), t ∈ [0, T ],

zi(t) = ai(t) + yi(t), i = 1, q,

where θ∗ = (θ1, ..., θq) ∈ Rq is a vector of unknown parameters (∗ means transposition),
ai : [0, ∞)→ R1, i = 1, q are some nonrandom continuous functions and

A1. yi(t), t ∈ R1, i = 1, q, are independent mean square continuous measurable
stationary Gaussian processes with zero mean and covariance functions (c.f.)

Bi(t) = Eyi(0)yi(t) =
σ2
i cosκit

(1 + t2)
αi
2

,

where σ2
i > 0, αi ∈

(
1
2 , 1
)
, i = 1, q, 0 ≤ κ1 < . . . < κq.

A2. Random noise ε(t), t ∈ R1, is a mean square continuous measurable stationary
Gaussian process independent of yi(t), t ∈ R1, i = 1, q, with zero mean and c.f.

B(t) = Eε(0)ε(t) =
σ2 cosκt
(1 + t2)

α
2
, σ2 > 0, κ > 0, κ 6= κi, i = 1, q, α ∈

(
1

2
, 1

)
.
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Note that c.f. introduced in A1 and A2 do not belong to L1(R1), i.e. yi(t), i = 1, q,
and ε(t), t ∈ R1, are long-range dependent processes.

Definition 2.1. LSE of the unknown parameter θ obtained by the observations{
X(t), zi(t), i = 1, q, t ∈ [0, T ]

}
of the form (2.1) is said to be any random vector

θ̂T = θ̂T
(
X(t), zi(t), i = 1, q, t ∈ [0, T ]

)
having the property

QT (θ̂T ) = inf
τ∈Rq

QT (τ), QT (τ) =

T∫
0

[
X(t)−

q∑
i=1

τizi(t)

]2

dt.

Introduce the following notation:

A∗(t) = (a1(t), ..., aq(t)) , Y
∗(t) = (y1(t), .., yq(t)), Z(t) = A(t) + Y (t),

f1 ∼
T→∞

f2 means
f1(t)

f2(t)
−→
T→∞

1.

Then

(2.2) θ̂T = Λ−1
T T−1

T∫
0

Z(t)X(t)dt = θ + Λ−1
T T−1

T∫
0

Z(t)ε(t)dt

with

ΛT =
(
ΛilT
)q
i, l=1

, ΛilT = T−1

T∫
0

zi(t)zl(t)dt, i, l = 1, q.

We will denote by letters k positive constants. Let also

d2
T = diag

(
d2
iT , i = 1, q

)
, d2

iT =

T∫
0

a2
i (t)dt, i = 1, q .

Impose some additional conditions on functions ai(t), t ∈ [0,+∞), i = 1, q.
B1. ai are bounded: sup

t∈[0,∞)

|ai(t)| = ki <∞, i = 1, q .

Write

JT =
(
J ilT
)q
i, l=1

, J ilT = T−1

T∫
0

ai(t)al(t)dt.

B2. There exists lim
T→∞

JT = J , where J =
(
J il
)q
i=1

is some positive definite matrix.

It follows from B2 that

lim
T→∞

T−1d2
iT = lim

T→∞
J iiT = J ii > 0, i = 1, q.

Theorem 2.1. If conditions A1, A2, B1 and B2 are fulfilled then θ̂T −→
T→∞

θ almost

sure (a.s.).
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Introduce matrix measure µT (dx) on (R1, B1) with density matrix (µj lT (x))qj, l=1,

µj lT (x) = ajT (x)alT (x)

∫
R1

|ajT (x)|2dx
∫
R1

|alT (x)|2dx

−1/2

,

ajT (x) =

T∫
0

eixtaj(t)dt, j, l = 1, q.

Note that d2
jT = (2π)−1

∫
R1

|ajT (x)|2dx, j = 1, q.

From the condition A2 it follows that the process ε(t), t ∈ R1 has spectral density
fε ∈ L2(R1) which has two discontinuity points ±κ of the 2-nd type [7].

B3. Family of measures µT (·) converges weakly, as T → ∞, to a measure µ(·), fε is
µ-admissible function and

∫
R1

fε(x)µ(dx) is some positive definite matrix.

Remind that µ-admissability of the function fε means the fulfillment of relation [8]
∞∫
−∞

fε(λ)µT (dλ) −→
T→∞

∞∫
−∞

fε(λ)µ(dλ).

Sufficient conditions of µ-admissability of spectral density function fε can be found in
[8, 9].

Definition 2.2. Matrix measure µ(·) is said to be spectral measure of regression function
q∑
i=1

θiai(t) [10, 8, 11].

Introduce some notation:

Λ = diag
(
σ2
i , i = 1, q

)
+ J ; Γ = diag

(
J ii, i = 1, q

)
; bi =

∞∫
−∞

Bi(t)B(t)dt, i = 1, q;

Ξ = 2π · Γ 1
2

∫
R1

fε(x)µ(dx)

Γ
1
2 + diag

(
bi, i = 1, q

)
.

Theorem 2.2. If conditions A1, A2 with α ∈
(

3
4 , 1
)
, B1 - B3 hold, then the dis-

tribution of the normed LSE T
1
2

(
θ̂T − θ

)
as T → ∞ tends to normal distribution

N
(
0, Λ−1 Ξ Λ−1

)
.

3. Auxiliary assertions

At first we study asymptotic behavior of ΛT .

Lemma 3.1. If conditions A1, B1 and B2 hold, then

ΛT −→
T→∞

Λ a.s.

Proof. For fixed i, l consider general element of the matrix ΛT :

(3.1)

ΛilT = T−1

T∫
0

yi(t)yl(t)dt+ T−1

T∫
0

ai(t)yl(t)dt+ T−1

T∫
0

yi(t)al(t)dt+

+ T−1

T∫
0

ai(t)al(t)dt = ∆il(T ) + ∆l
i(T ) + ∆i

l(T ) + J ilT .
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Let i 6= l. Then for sufficiently large T (T > T0)

E
(
∆il(T )

)2
= T−2

T∫
0

T∫
0

Bi(t− s)Bl(t− s)dtds ≤

≤ σ2
i σ

2
l T
−2

T∫
0

T∫
0

dtds

(1 + (t− s)2)
αi+αl

2

≤ 2σ2
i σ

2
l T
−1

T∫
−T

dv

(1 + v2)
αi+αl

2

.

As subintegral function is integrable (αi + αl > 1) then

(3.2) E
(
∆il(T )

)2 ≤ 2σ2
i σ

2
l T
−1

∞∫
−∞

dv

(1 + v2)
αi+αl

2

= 2KilT
−1.

Set Tn = n1+ν , ν > 0. Then
∞∑
n=1

E
(
∆il(Tn)

)2
<∞ and consequently

∆il(Tn) −→
n→∞

0 a.s.

Suppose that T ∈ [Tn, Tn+1]. Then

|∆il(T )| ≤ sup
Tn≤T≤Tn+1

|∆il(T )−∆il(Tn)|+ |∆il(Tn)|.

Let us show that

sup
Tn≤T≤Tn+1

|∆il(T )−∆il(Tn)| −→
n→∞

0 a.s.

Obviously

(3.3)

∆il(T )−∆il(Tn) = T−1

T∫
0

yi(t)yl(t)dt− T−1
n

Tn∫
0

yi(t)yl(t)dt =

=
(
T−1 − T−1

n

) Tn∫
0

yi(t)yl(t)dt+ T−1

T∫
Tn

yi(t)yl(t)dt = I1 + I2,

|I1| ≤
Tn+1 − Tn

Tn
·

∣∣∣∣∣∣T−1
n

Tn∫
0

yi(t)yl(t)dt

∣∣∣∣∣∣ ∼n→∞ 1 + ν

n

∣∣∆il(Tn)
∣∣ ,

and I1 −→
n→∞

0 a.s.. Consider the second summand in (3.3):

|I2| ≤ T−1
n

Tn+1∫
Tn

|yi(t)| · |yl(t)| dt ≤

≤ 1

2

T−1
n

Tn+1∫
Tn

(yi(t))
2
dt+ T−1

n

Tn+1∫
Tn

(yl(t))
2
dt

 =
1

2

(
Ii3(n) + I l3(n)

)
,

Ii3(n) =
Tn+1

Tn
Ii4(n+ 1)− Ii4(n) + σ2

i

Tn+1 − Tn
Tn

, Ii4(n) = T−1
n

Tn∫
0

[
(yi(t))

2 − σ2
i

]
dt.
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Due to Isserlis formula (see, for example [4], p. 30)

E
(
Ii4(n)

)2
=T−2

n

Tn∫
0

Tn∫
0

(
E (yi(t))

2
(yi(s))

2 − σ2
i

)
dtds =

= 2T−2
n

Tn∫
0

Tn∫
0

B2
i (t− s)dtds ≤ 2KiiT

−1
n ,

where Kii = σ4
i

∞∫
−∞

dv

(1 + v2)
αi . So

∞∑
n=1

E
(
Ii4(n)

)2
<∞ and Ii4 −→

n→∞
0 a.s.. Thus I2 −→

n→∞

0 a.s., and

(3.4) ∆il(T ) −→
T→∞

0 a.s.

Let us prove

(3.5) ∆l
i(T ) −→

T→∞
0 a.s., i, l = 1, ..., q.

Evidently E∆l
i(T ) = 0 and

E
(
∆l
i(T )

)2 ≤ k2
i T
−2

T∫
0

T∫
0

∣∣Bl (T (t− s))
∣∣dtds ≤

≤ 2k2
i σ

2
l T
−1

T∫
−T

dv

(1 + v2)
αl
2

∼
T→∞

4k2
i σ

2
l T
−αl

1− αl
.

Taking Tn = n
1
αl

+ν
, ν > 0, one obtains ∆l

i(Tn) −→
n→∞

0 a.s. Further prove of (3.5) is

similar to the proof of (3.4).
From (3.4),(3.5) and condition B2 it follows that for i 6= l,

ΛilT −→
T→∞

J il a.s.

Now let i = l. Then (3.1) can be rewritten in the form

ΛiiT = ∆ii(T ) + 2∆i
i(T ) + J iiT .

Similarly to the proof of (3.4) one can get

(3.6) ∆ii(T ) −→
T→∞

σ2
i a.s.

Indeed, E∆ii(T ) = Bi(0) = σ2
i and

E[∆ii(T )− σ2
i ]2 = 2T−2

T∫
0

T∫
0

B2
i (t− s)dtds ≤ 2KiiT

−1.

If we take Tn = n1+ν , ν > 0, then
∞∑
n=1

E[∆ii(Tn)− σ2
i ]2 <∞ and

∆ii(Tn) −→
n→∞

σ2
i a.s.

Further proof of (3.6) is similar to (3.4).
Then from condition B2, (3.5) and (3.6) it follows that

ΛiiT −→
T→∞

σ2
i + J ii a.s. ,

and Lemma 1 is proved. �
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Corollary 3.1. If conditions A1, A2, B1 and B2 hold, then for almost all ω ∈ Ω there

exists such T0 = T0(ω) that for any T > T0 LSE θ̂T given by (2.2) is defined.

Let us formulate a subcase of homogeneous Hölder-Young-Brascamp-Lieb inequality
for R1 (see [5, 6] for details). Denote by r(A) rank of a matrix A.

Lemma 3.2. Let lj(x) = x∗βj , j = 1, k be the linear functionals lj : Rm → R1,

βj ∈ Rm, j = 1, k, M is a matrix with columns βj , j = 1, k.

If functions fj ∈ Lpj (R1), j = 1, k, 1 ≤ pj ≤ ∞, zj = 1
pj

, j = 1, k, such that
k∑
j=1

zj = m and for arbitrary 1 ≤ d ≤ k, and {s1, ..., sd} ⊂ {1, ..., k} the next inequality

holds
d∑
i=1

zsi ≤ r(A),

where A = (βs1 ...βsd), then∣∣∣∣∣∣
∫
Rm

k∏
j=1

fj(lj(x))dx

∣∣∣∣∣∣ ≤ K
k∏
j=1

‖fj‖pj ,

where K = K(z1, ..., zk) is some constant which depends on values (z1, ..., zk) only (de-
termination of K can be found in [6]), ‖ · ‖pj is norm in Lpj (R1).

4. Proof of the strong consistency of LSE

Proof. From Lemma 1 and the representation of LSE in the form (2.2) it follows that we
need to show that

(4.1) T−1

T∫
0

Z(t)ε(t)dt −→
T→∞

0 a.s.

in order to prove the Theorem 1. For the fixed i

(4.2) T−1

T∫
0

zi(t)ε(t)dt = T−1

T∫
0

ai(t)ε(t)dt+ T−1

T∫
0

yi(t)ε(t)dt = I5(T ) + I6(T ).

The proofs of I5(T ) −→
T→∞

0 a.s. and I6(T ) −→
T→∞

0 a.s. repeat the argument of convergence

to zero a.s. of ∆l
i(T ) and ∆il(T ) from Lemma 1, respectively. �

5. Proof of asymptotic normality of LSE

Proof. Due to Lemma 1 to prove the Theorem 2 it is sufficient to determine the asymp-
totic distribution of the vector

ΨT = T−
1
2

T∫
0

Z(t)ε(t)dt,

as T
1
2

(
θ̂T − θ

)
= Λ−1

T ΨT .

Let λ∗ = (λ1, ..., λq) ∈ Rq be an arbitrary fixed vector, F – σ-algebra generated by{
Y (t), t ∈ R1

}
. Conditional distribution relatively to F of random variable λ∗ΨT is

Gaussian with expected value E {λ∗ΨT |F} = 0 and variance

E
{

(λ∗ΨT )
2 |F

}
= λ∗

T−1

T∫
0

T∫
0

Z(t)Z∗(s)B(t− s)dtds

λ = λ∗ΞTλ,
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where equalities are valid a.s. [1]. Then for characteristic function of the vector ΨT we
have

ϕT (λ) = Eeiλ
∗ΨT = E

{
E
(
eiλ

∗ΨT |F
)}

= Ee−
1
2λ

∗ΞTλ.

The diagonal element of ΞT is
(5.1)

ΞiiT =T−1

T∫
0

T∫
0

B(t− s)ai(t)ai(s)dtds+ 2T−1

T∫
0

T∫
0

B(t− s)ai(s)yi(t)dtds+

+ T−1

T∫
0

T∫
0

B(t− s)yi(t)yi(s)dtds = I7 + I8 + I9.

For the first term it is easy to get, using conditions B2 and B3, that

(5.2)

I7 ∼
T→∞

J iid−2
iT

T∫
0

T∫
0

B(t− s)ai(t)ai(s)dtds =

= 2πJ ii
∫
R1

fε(x)µi iT (dx) −→
T→∞

2πJ ii
∫
R1

fε(x)µi i(dx).

Furthermore,

EI2
8 =4T−2

T∫
0

T∫
0

T∫
0

T∫
0

B(t− s)B(u− v)Bi(t− u)ai(s)ai(v)dtdsdudv ≤

≤ 4k2
i σ

2
i σ

4T−2

T∫
0

T∫
0

T∫
0

T∫
0

dtdsdudv

(1 + (t− s)2)
α
2 (1 + (u− v)2)

α
2 (1 + (t− u)2)

αi
2

.

Using the change of variables u1 = t − s, u2 = u − v, u3 = t − u, u4 = v, with unit
Jacobian, integral can be estimated as follows:

(5.3)

EI2
8 ≤ 32k2

i σ
2
i σ

4T−1

T∫
−T

du1

(1 + u2
1)

α
2

T∫
−T

du2

(1 + u2
2)

α
2

T∫
−T

du3

(1 + u2
3)

αi
2

∼
T→∞

∼
T→∞

256k2
i σ

2
i σ

4T 2−2α−αi

(1− α)2(1− αi)
,

where 2− 2α− αi < 0 as α ∈
(

3
4 , 1
)

and αi ∈
(

1
2 , 1
)
.

Now consider the behavior of the last term of (5.1). Under the conditions A1, A2
Bi(t)B(t) ∈ L1(R1), and by Lebesgue dominated convergence theorem

(5.4) EI9 = T−1

T∫
0

T∫
0

B(t− s)Bi(t− s)dtds =

T∫
−T

(
1− |t|

T

)
Bi(t)B(t)dt −→

T→∞
bi.

Using the normality of the processes yi(t), t ∈ R1, i = 1, q, we obtain

E (I9 − EI9)
2

= 2T−2

T∫
0

T∫
0

T∫
0

T∫
0

B(t− s)B(u− v)Bi(t− u)Bi(s− v)dtdsdudv =

= 2σ4
i σ

4T−2

∫
R4

f1(t− s)f2(u− v)f3(t− u)f4(s− v)f5(t)f6(s)f7(u)f8(v)dtdsdudv,
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where f1(t) = f2(t) =
cosκt

(1 + t2)
α
2
χT (|t|), t ∈ R1, f3(t) = f4(t) =

cosκit
(1 + t2)

αi
2

χT (|t|), t ∈

R1, fj(t) = χT (t), t ∈ R1, j = 5, 6, 7, 8, χT (t) is indicator of the set [0, T ]. We will use
for the last integral Hölder-Young-Brascamp-Lieb inequality (Lemma 2). In this case

M =


1 0 1 0 1 0 0 0
−1 0 0 1 0 1 0 0

0 1 −1 0 0 0 1 0
0 −1 0 −1 0 0 0 1

 .

If we put p1 = p2 = 1, p3 = p4 = 2, pj = 4, j = 5, 6, 7, 8, then one can show that
assumptions of Lemma 2 are fulfilled and so

(5.5)

E (I9 − EI9)
2 ≤2Kσ4

i σ
4T−1

 T∫
−T

∣∣∣∣∣ cosκt
(1 + t2)

α
2

∣∣∣∣∣ dt
2 T∫
−T

cos2 κit
(1 + t2)

αi dt ≤

≤ 8Kciσ
4
i σ

4T−1

 T∫
0

dt

(1 + t2)
α
2

2

∼
T→∞

8Kciσ
4
i σ

4T 1−2α

(1− α)2
,

where K = K
(
1, 1, 1

2 ,
1
2 ,

1
4 ,

1
4 ,

1
4 ,

1
4

)
, ci =

∞∫
−∞

cos2 κit
(1 + t2)

αi dt <∞ and 1− 2α < 0.

From (5.2)–(5.5) it follows that

(5.6) ΞiiT
P−→

T→∞
Ξii.

Similarly one can show that for elements ΞilT with i 6= l

(5.7) ΞilT
P−→

T→∞
Ξil.

Thus, from (5.6) and (5.7) it follows that ΞT
P−→

T→∞
Ξ. Note that λ∗ΞTλ ≥ 0. Then by

Lebesgue dominated convergence theorem we get

lim
T→∞

ϕT (λ) = lim
T→∞

Ee−
1
2λ

∗ΞTλ = e−
1
2λ

∗Ξλ,

and Theorem 2 is proved. �

6. Example

Consider a regression model

(6.1) X(t) = θ1 [cosωt+ y1(t)] + θ2 [sinωt+ y2(t)] + ε(t),

where y1(t), y2(t), t ∈ R1, satisfy A1, ε(t), t ∈ R1, satisfies A2, ω > 0 is some
known number, ω 6= κ. Vector parameter θ = (θ1, θ2) belongs to a bounded open set,
θ2

1 + θ2
2 > 0.

It is easily seen that

d2
1T =

T

2
+

1

4ω
sin 2ωT, d2

2T =
T

2
− 1

4ω
sin 2ωT ;

JT =


1

2
+

1

4ω
T−1 sin 2ωT

1

4ω
T−1(1− cos 2ωT )

1

4ω
T−1(1− cos 2ωT )

1

2
− 1

4ω
T−1 sin 2ωT

 ,
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and fulfillment of conditions B1, B2 is obvious with

lim
T→∞

JT = J =
1

2

(
1 0
0 1

)
=

1

2
E.

It is known (see, for example [12]) that the regression function from equation (6.1)
has spectral density

µ(dx) =

(
δω(dx) iρω(dx)
−iρω(dx) δω(dx)

)
,

where measure δω and signed measure ρω are concentrated at the points ±ω and

δω ({±ω}) =
1

2
, ρω ({±ω}) = ±1

2
.

It means that ∫
R1

fε(x)µ(dx) = fε(ω)J.

Moreover, as proved in [9], spectral density fε is µ-admissible. Thus, condition B3 is
also fulfilled.

Now we can use Theorem 2 and claim that the normed LSE T
1
2

(
θ̂T − θ

)
is asymp-

totically normal with zero mean and covariance matrix

(6.2) Λ−1ΞΛ−1 =


2πfε(ω) + 4b1

(2σ2
1 + 1)2

0

0
2πfε(ω) + 4b2

(2σ2
2 + 1)2

 ,

where bi =
∞∫
−∞

Bi(t)B(t)dt = 2π
∞∫
−∞

fi(λ)fε(λ)dλ, fi(λ) is spectral density of random

processes yi(t), t ∈ R1, i = 1, 2.
Note that the value fε(ω) can be found by formula (see [7])

fε(ω) =
2−

1+α
2

√
π Γ

(
α
2

) [(ω + κ)
α−1
2 Kα−1

2
(ω + κ) + |ω − κ|

α−1
2 Kα−1

2
(|ω − κ|)

]
,

where Kν is modified Bessel function of the 3d type and order ν, and the value of
bi, i = 1, 2, can be represented using the formula 4 on page 390 of [13] in the form

bi =

√
π 2

1−α−αi
2

Γ(α+αi
2 )

[
(κ + κi)

α+αi−1

2 Kα+αi−1

2
(κ + κi)+

+|κ − κi|
α+αi−1

2 Kα+αi−1

2
(|κ − κi|)

]
.
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