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O. L. IZYUMTSEVA

ON THE LOCAL TIMES FOR GAUSSIAN INTEGRATORS

For the Gaussian integrators with values in R and R2 the properties of the local time

is investigated in terms of the operator which determines the geometry of covariance

function. The explicit formula for the modulus of continuity of Gaussian integrators
is obtained.

1. Introduction

In this article we study the local times for Gaussian integrators. Such class of processes
appeared in the work [1] and was named as integrators since every function from L2([0; 1])
can be integrated over the random processes from this class. Also in [1] the extended
stochastic integral with respect to integrators is constructed and the Itô formula for it is
obtained. It was proved in [2] that the result of acting of a second quantization operator
on the smooth function of the diffusion process satisfies the partial stochastic differential
equation with the extended stochastic integral over integrator.

Definition 1.1. [1] If for the random process x(t), t ∈ [0; 1] there exists c > 0 such that
for any n ≥ 1, a0, . . . , an−1 ∈ R, 0 = t0 < t1 < . . . < tn = 1 the following relation holds

(1) E
( n−1∑
k=0

ak(x(tk+1)− x(tk))
)2

≤ c
n−1∑
k=0

a2
k(tk+1 − tk),

then the process x is said to be an integrator.

The following statement describes all Gaussian integrators.

Lemma 1.1. The Gaussian process x is an integrator iff it can be represented as

(2) x(t) = (A1I[0;t], ξ), t ∈ [0; 1]

with some continuous linear operator A in L2([0; 1]) and a certain Gaussian white noise
in the same space.

Proof. Suppose that the Gaussian process x has a representation (2), then

E
( n−1∑
k=0

ak(x(tk+1)− x(tk))
)2

= E
( n−1∑
k=0

ak(A1I[tk;tk+1], ξ)
)2

=

=
∥∥∥A n−1∑

k=0

ak1I[tk;tk+1]

∥∥∥2

≤ ‖A‖2
n−1∑
k=0

a2
k(tk+1 − tk).

Inversely, suppose that x is an integrator. Denote by LS{x} the closure of the linear

span of values of x with respect to square mean norm. LS{x} is a separable Hilbert

space. There exists the subspace H1 of L2([0; 1]) which is isomorphic to LS{x}. Denote
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by H1 = j(LS{x}), where j : LS{x} → H1 is isomorphism. Then L2([0; 1]) can be
represented as a direct sum H1 ⊕H2. Suppose that ξ2 is a Gaussian white noise in H2,
which is independent of x. Put (h1, ξ1) = j−1(h1) and (h, ξ) = (h1, ξ1) + (h2, ξ2), h1 ∈
H1, h2 ∈ H2, h ∈ L2([0; 1]). The independence of ξ2 and x implies that ξ is a white

noise in L2([0; 1]). Define a linear operator B : L2([0; 1])→ LS{x} by the rule

B
( n−1∑
k=0

ak1I[tk;tk+1]

)
7→

n−1∑
k=0

ak(x(tk+1)− x(tk)).

Then for an operator A = jB

B1I[0;t] = x(t) = (jx(t), ξ) = (A1I[0;t], ξ).

Since x satisfies (1) for any step function f ∈ L2[0; 1] the next inequality holds

(3) ‖Af‖2 ≤ c‖f‖2.
The set of all step functions on [0; 1] is dense in L2([0; 1]). Consequently (3) ends the
proof. �

It is not difficult to check that the Wiener process, the Brownian bridge, the Ornstein–
Unlenbeck process are integrators. Let us check whether the fractional Brownian motion
Bαt , α ∈ (0; 1), t ∈ [0; 1] is an integrator. Recall the definition. A zero mean Gaussian
process with the cov(Bαt1 , B

α
t2) = 1

2 (t2α1 + t2α2 − (t2 − t1)2α) is said to be a fractional
Brownian motion, where α is a real number in (0; 1), called the Hurst index or Hurst
parameter associated with the fractional Brownian motion. If Bαt were integrator, then
c > 0 would exist such that

E(Bαt2 −B
α
t1)2 = (t2 − t1)2α ≤ c(t2 − t1).

For α < 1
2

(4) lim
t2−t1→0

(t2 − t1)2α−1 = +∞.

(4) implies that for α < 1
2 the fractional Brownian motion Bαt is not an integrator. In

the case of α = 1
2 the process Bαt as a standard Brownian motion is an integrator. Let

us investigate the case α > 1
2 . To do that we will use the following obvious statement.

Lemma 1.2. The process x is an integrator iff there exists c > 0 such that for any
continuous two times differentiable function f on [0; 1] with f(0) = f(1) = 0 the following
relation holds

(5) E
(∫ 1

0

x(t)f ′(t)dt
)2

≤ c
∫ 1

0

f2(t)dt.

Let us check that for α > 1
2 the process Bαt satisfies the inequality (5). Really,

E
(∫ 1

0

Bαt f
′(t)dt

)2

= −1

2

∫ 1

0

∫ 1

0

f ′(t1)f ′(t2)(t2 − t1)2αdt2dt1 =

= −2α(2α− 1)

∫ 1

0

f(t1)

∫ 1

t1

f(t2)(t2 − t1)2α−2dt2dt1.

By using the Shur test [3] one can see that for α > 1
2 the integral operator in L2([0; 1])

with the kernel K(t1, t2) = (t2 − t1)2α−21I{t2>t1} is bounded. It implies that for α > 1
2

the fractional Brownian motion Bαt is an integrator. In the partial case when A = I + S
with the identity operator I and the compact operator S the planar integrators were
studied in [4–7]. The renormalization for their self-intersection local times was proposed.
The main feature of the integrators with I + S representation is E(x(t2) − x(t1))2 ∼
t2 − t1, t2 − t1 → 0. It can be verified that for α > 1

2 the fractional Brownian motion
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Bαt does not have a representation with A = I + S. Really, if the operator A in the
representation (2) for the process Bαt , α >

1
2 has the form I + S, then the compactness

of the operator S implies that

lim
t2−t1→0

E(Bαt2 −B
α
t1)2

t2 − t1
= 1

(see [4]). Since for α > 1
2

E(Bαt2 −B
α
t1)2

t2 − t1
= (t2 − t1)2α−1 → 0, t2 − t1 → 0,

then the operator A does not have the form I + S. If A is the multiplication operator
in L2([0; 1]) on the bounded measurable function χ, then the corresponding integrator x
can be considered as a certain Wiener process β with the change of time, i.e.

x(t) = β
(∫ t

0

χ(s)2ds
)
, t ∈ [0; 1].

The present paper consists of two parts. In the first part we investigate the geometry
of one dimensional integrators. Under some condition on the operator A we will prove
the existence of the local time. The existence of the local time for Gaussian processes
is connected with the local nondeterminism property introduced by S. Berman in [8].
This property means that the finite sets of increments of the process have uniformly
nondegenerate distributions. One can expect that the integrator with a continuously
invertible A will have the local nondeterminism property. We will check this statement
in the article. Also we present an explicit formula for the modulus of continuity of Gauss-
ian integrators in terms of the operator A. The second part of the paper is devoted to
the self-intersection local times for planar integrators. We will check that with positive
probability the trajectories of planar integrator have double self-intersections. Also we
will prove the existence of self-intersection local time for planar Gaussian integrator on
∆δ

2 = {0 ≤ t1 ≤ t2 ≤ 0, t2 − t1 ≥ δ}, δ > 0. Finally we investigate the dependence
between the growth of the modulus of continuity of planar integrator and its approxima-
tions of double self-intersection local time. We will prove that the smoother process the
lesser the number of points of self-intersections.

2. The Geometry of trajectories of Gaussian integrators in one
dimension. Local time, local nondeterminism, modulus of continuity

In this section we investigate the connection between the geometry of a covariance
function of Gaussian integrator in one dimension and the existence of its local time. To
do that we use the following two approaches. The first approach belongs to J. Rosen
[9] and is based on the square integrability of the Fourier transform of the occupation
measure. The second approach is related to the Berman local nondeterminism property
[8]. Suppose that x is one dimensional integrator with the representation (2). Consider

its occupation measure µ on R defined by the formula µ(E) =
∫ 1

0
1IE(x(s))ds. Denote by

λn the Lebesgue measure on Rn.

Definition 2.1. If µ� λ1, then the Radon-Nikodym derivative dµ
dλ1

is said to be a local

time of x on [0; 1].

Put α(u) := dµ
dλ1

(u) if it exists. Then

(6)

∫ 1

0

f(x(t))dt =

∫
R
f(u)α(u)du

for all bounded Borel functions f.
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Theorem 2.1. Suppose that the operator A in the representation (2) is continuously
invertible, then x has a local time α on [0; 1] and α ∈ L2(R, dλ1) a.s.

In the paper under a continuously invertible operator in the Hilbert space we mean a
bijective bounded linear operator in the Hilbert space. In this case the Banach theorem
guarantees the existence of continuous A−1.

Proof. To prove the theorem it suffices to check that

E

∫
R
|µ̂(z)|2dz < +∞,

where as usual

µ̂(z) =

∫
R
eizvµ(dv).

It follows from the relation (6) that

E

∫
R
|µ̂(z)|2dz =

= 2

∫
R

∫
∆2

Eeiz(x(t2)−x(t1))d~tdz,

(7)

where d~t = dt1dt2, ∆2 = {0 ≤ t1 ≤ t2 ≤ 1}. The continuous invertibility of A implies
that

(8) E(x(t2)− x(t1))2 = ‖A1I[t1;t2]‖2 ≥ c(t2 − t1), c > 0.

It follows from (8) that (7) less or equal to

2

∫
R

∫
∆2

e−
1
2 cz

2(t2−t1)d~tdz < +∞.

�

Further in this section we discuss the local nondeterminism property for one dimen-
sional integrators. Recall the definition. Let {y(t), t ∈ J} be R-valued zero mean
Gaussian process on an open interval J. Suppose that there exists d > 0 such that

1) E(y(t)− y(s))2 > 0, for all s, t ∈ J : 0 ≤ |t− s| ≤ d;
2) Ey2(t) > 0 for all t ∈ J.
For m ≥ 2, t1, . . . , tm ∈ J, t1 < t2 < . . . < tm put

Vm =
Var((y(tm)− y(tm−1)/y(t1), . . . , y(tm−1))

Var(y(tm)− y(tm−1))
.

Definition 2.2. [8] A Gaussian process y is said to be a locally nondetermined on J if
for every m ≥ 2

lim
c→0

inf
tm−t1≤c

Vm > 0.

Roughly speaking, the property of local nondeterminism means that small increment
of the process uniformly is not linearly depended on the increments from the ”past”.
The following statement was proved in [8] and demonstrates that such uniform nonde-
generacy of distributions of increments is one of the sufficient conditions for existence
and smoothness of the local time for general Gaussian process.

Theorem 2.2. [8] Let y(t), t ∈ [0;T ], be a zero mean Gaussian process satisfying the
following three conditions:

1) y(0) = 0 a.s.;
2) y is locally nondetermined on (0;T );



ON THE LOCAL TIMES FOR GAUSSIAN INTEGRATORS 15

3) there exist positive real numbers γ, δ and a continuous even function b(t) such that
b(0) = 0, b(t) > 0, t ∈ (0;T ],

lim
h→0

h−γ
∫ h

0

[b(t)]−1−2δdt = 0

and M(y(t)−y(s))2 ≥ b2(t−s), for all s, t ∈ [0;T ]. Then there exists a version α(u, t), u ∈
R, t ∈ [0;T ] of the local time of the the process y which is jointly continuous in (u, t)
and which satisfying the Hölder condition in t uniformly in u, i.e. for every γ′ < γ there
exist positive and finite random variables η′ and η such that

sup
u
|α(u, t+ h)− α(u, t)| ≤ η′|h|γ

′

for all s, t, t+ h ∈ [0;T ] and all |h| < η.

To answer the question does a Gaussian integrator x satisfy conditions 1)–3) of the the-
orem 2.2 we will need the following reformulation of the notion of local nondeterminism.
Denote by G(e1, . . . , en) the Gram determinant constructed by the vectors e1, . . . , en.
Let g ∈ C([0; 1], L2([0; 1])), ∆g(ti) = g(ti+1)− g(ti), i = 1, . . . ,m− 1. It is not difficult
to check that the following statement holds (see [4]).

Lemma 2.1. The Gaussian process y(t) = (g(t), ξ), where ξ is a white noise in L2([0; 1])
is a locally nondetermined on J iff for every m ≥ 2

lim
c→0

inf
tm−t1≤c

G(g(t1),∆g(t2), . . . ,∆g(tm−1))

‖g(t1)‖2‖∆g(t2)‖2 . . . ‖∆g(tm−1)‖2
> 0.

By using the lemma 2.1 let us prove the following statement.

Theorem 2.3. Suppose that the operator A in the representation (2) is continuously
invertible, then there exists a version α(u, t), u ∈ R, t ∈ [0;T ] of the local time for
the integrator (2) which is jointly continuous in (u, t) and which satisfying the Hölder
condition in t uniformly in u, i.e. for every γ′ < 1

2 there exist positive and finite random
variables η′ and η such that

sup
u
|α(u, t+ h)− α(u, t)| ≤ η′|h|γ

′

for all s, t, t+ h ∈ [0;T ] and all |h| < η.

To prove the theorem 2.3 we will need the following statement which is interesting by
itself.

Lemma 2.2. Suppose that A is a continuously invertible operator in the Hilbert space
H. Then for all k ≥ 1 there exists a positive constant c(k) which depends on k such that
for any e1, . . . , ek ∈ H the following relation holds

G(Ae1, . . . , Aek) ≥ c(k)G(e1, . . . , ek).

Proof. For e1, . . . , ek ∈ H let f1, . . . , fk be an orthonormal system which is obtained from
e1, . . . , ek via the Gram-Schmidt orthogonalization procedure. To prove the statement
of lemma it suffices to check that

inf G

(
Af1

‖Af1‖
, . . . ,

Afk
‖Afk‖

)
> 0,

where infimum is taking over all orthonormal systems (f1, . . . , fk). Again by using the
Gram-Schmidt orthogonalization procedure consider the orthogonal system q1, . . . , qk
which is obtained from Af1

‖Af1‖ , . . . ,
Afk
‖Afk‖ , where

qj =
Afj
‖Afj‖

−
j−1∑
i=1

αij
Afi
‖Afi‖
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with some αij .
Let us prove that

inf
(f1,...,fk)

G
( Af1

‖Af1‖
, . . . ,

Afk
‖Afk‖

)
= inf

(f1,...,fk)

k∏
i=1

‖qi‖2 > 0.

If it is not so, then there exist the sequence {fn1 , . . . , fnk }n≥1, j = 1, k such that ‖qnj ‖ →
0, n→∞. The invertibility of the operator A implies that∥∥∥ fnj

‖Afnj ‖
−
j−1∑
i=1

αnij
fni
‖Afni ‖

∥∥∥→ 0, n→∞.

But ∥∥∥ fnj
‖Afnj ‖

−
j−1∑
i=1

αnij
fni
‖Afni ‖

∥∥∥ ≥ 1

‖Afnj ‖
≥ c > 0.

The contradiction we get proves the lemma. �

Proof of the theorem 2.3. To prove the lemma let us check that the process x satisfies
conditions 1)–3) of the theorem 2.2. It is obvious that x(0) = 0 a.s. Lemma 2.1 and
lemma 2.2 imply that x is locally nondetermined. Let us check that the process x satisfies
the condition 3) of the theorem 2.2. Let b(t) = c

√
t, c > 0. Pick δ < 1

2 and then γ such

that γ < 1
2 − δ. One can see that

lim
h→0

h−γ
∫ h

0

t−
1
2−δdt =

=
2

1− 2δ
lim
h→0

h
1
2−δ−γ = 0.

�

It must be mentioned that to discuss the local time of the processes one can use
another general definition. Let {fε}, ε > 0 be the family of functions which weakly
converges to delta-function at the point zero as, ε→ 0.

Definition 2.3. If there exists

(9) L2 − lim
ε→0

∫ 1

0

fε(z(t))dt,

then such limit is said to be a local time of the process z at the point zero.

Let µ be an occupation measure of the process z. Suppose that µ� λ1 and α ∈ C(R)
is the Radon-Nikodym derivative. Then it follows from (6) that∫ 1

0

fε(z(t))dt =

∫
R
fε(u)α(u)du→ α(0), ε→ 0.

Let us check does the convergence (9) hold for one dimensional Gaussian integrator x
with a continuous invertible operator A. To do that we will use the following statement
which was proved in [10]. Let (T,Ξ) be a measurable space with the finite measure ν.
Consider a centered Gaussian random field ζ on (T,Ξ). Denote by B(s, t) the covariance
matrix of the vector (ζ(s), ζ(t)). Put Iε =

∫
T
fε(ζ(t))ν(dt).

Theorem 2.4. [10] Suppose that

(10)

∫
T

∫
T

1√
detB(s, t)

ν(ds)ν(dt) <∞,

then the limit of Iε exists in L2(Ω), as ε→ 0.
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Apply the theorem 2.4 to our case. For the process (2) the condition (10) means that∫ 1

0

∫ 1

0

1√
G(A1[0;s], A1[0;t])

dsdt <∞.

Since A is continuously invertible, then

(11)

∫ 1

0

∫ 1

0

1√
G(A1[0;s], A1[0;t])

dsdt ≤ 2c

∫ 1

0

∫ t

0

1√
s(t− s)

dsdt < +∞, c > 0.

The estimation (11) implies the following statement.

Lemma 2.3. Suppose that A in the representation (2) is continuously invertible, then

the limit of
∫ 1

0
fε(x(t))dt exists in L2(Ω).

At the end of this section we describe the modulus of continuity for one dimensional
Gaussian integrators. Let us recall the following definition.

Definition 2.4. [11] The function w : R+ → R+, w(0) = 0 is a uniform m-modulus of
continuity for the random process {y(t), t ∈ [0; 1]} if a.s.

lim
δ→0

sup
t,s∈[0;1]
|t−s|≤δ

|y(t)− y(s)|
w(δ)

< +∞.

To describe a uniform m-modulus of continuity for the process (2) we will need the
following statement which is proved in [11]. Suppose that y(t), t ∈ [0; 1] is a centered
Gaussian process. Denote by

d(s, t) =
√
E(y(t)− y(s))2.

Theorem 2.5. Suppose that for the Gaussian process y there exists strictly increasing
majorant for d, i.e. strictly increasing function ψ with ψ(0) = 0 such that d(s, t) ≤
ψ(|s− t|), then the function

w(δ) = ψ(δ)

√
ln

1

δ
+

∫ δ

0

ψ(u)

u
√

ln 1
u

du

is a uniform m-modulus of continuity for the process y.

To obtain the m-modulus of continuity for Gaussian integrator we introduce the next
characteristics of the operator A [3]. Denote by Qa,b the multiplication operator on 1I[a;b]

in L2([0; 1]). Put

ϕ(t) := sup
b−a≤t

‖AQa,b‖.

The following example shows that the asymptotic behavior of the function ϕ can be
variously dependent on the structure of the operator A.

Example 2.1. Assume that Pi is a projection on 1I∆i
, where ∆i =

[
1
i+1 ; 1

i

]
, i = 1, 2, . . .

For decreasing to zero sequence {λi, i ≥ 1} put A =
∑∞
i=1 λiPi. Note that A is a compact

operator in L2([0; 1]). For an arbitrary number i∗, z ∈ L2([0; 1]), [a; b] ⊂ [0; 1]

‖AQa,bz‖2 = ‖
∞∑
i=1

λiPi1I[a;b]z‖2 =

=

∞∑
i=1

λ2
i

( ∫
∆i∩[a;b]

z(s)ds
)2

|∆i|
=
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=

i∗−1∑
i=1

λ2
i

( ∫
∆i∩[a;b]

z(s)ds
)2

|∆i|
+

∞∑
i=i∗

λ2
i

( ∫
∆i∩[a;b]

z(s)ds
)2

|∆i|
≤

(12) ≤ (b− a) max
i=1,i∗

λ2
i

|∆i|
‖z‖2 + λ2

i∗‖z‖
2

(the last estimate is obtained by applying the Cauchy inequality in the first and the
second summands). The relation (12) implies that

(13) ϕ(t)2 ≤ inf
i∗

[
λ2
i∗ + t max

i=1,i∗

λ2
i

|∆i|

]
.

Suppose that λi = 1
i . Let us check that in this case

(14) lim
t→0

ϕ(t)√
t
≤
√

2,

(15) lim
t→0

ϕ(t)√
t
≥ 1.

Really, it follows from the estimate (13) that

(16) ϕ(t) ≤
√

2t.

Suppose that i0 =
[

1√
t

]
. Consider z = 1I[ 1

i0+1 ; 1
i0

]

√
i0(i0 + 1). One can see that the

following relation holds

(17) ϕ(t) = sup
b−a≤t

‖AQa,bz‖2 ≥
1

i20
.

Estimates (16), (17) imply (14), (15). In the case λi = 1√
i

we have

c1
4
√
t ≤ ϕ(t) ≤ c2 4

√
t, c1, c2 > 0

which confirms the different behavior of the function ϕ comparably to the previous case.
One can see that previously defined distance

d(s, t) = ‖AQs∧t,s∨t1I[s∧t;s∨t]‖ ≤

≤ sup
b−a≤|t−s|

‖AQa,b‖
√
|t− s| = ϕ(|t− s|)

√
|t− s|.

It implies that ϕ(|t− s|)
√
|t− s| is strictly increasing majorant for d(s, t). Applying the

theorem 2.5 we get the following statement

Theorem 2.6. The function

w(δ) = ϕ(δ)

√
δ ln

1

δ
+

∫ δ

0

ϕ(u)√
u ln 1

u

du

is a uniform m-modulus of continuity for the Gaussian integrator.

Example 2.2. For the operators from the previous example we have the next es-

timations. Suppose that ϕ(t) ≤ c
√
t, c > 0. Then w(δ) ≤ c1δ

√
ln 1

δ , c1 > 0. If

ϕ(t) ≤ c 4
√
t, c > 0 then w(δ) ≤ c1δ

3
4

√
ln 1

δ , c1 > 0.
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3. Properties of planar Gaussian integrators

The main object of investigation in this section is planar Gaussian integrator

(18) x(t) = ((A1I[0;t], ξ1), (A1I[0;t], ξ2)), t ∈ [0; 1].

Here A is a continuous linear operator in L2([0; 1]), ξ1, ξ2 are independent Gaussian white
noises in L2([0; 1]). One of our main goals is to construct the self-intersection local time
for the process (18). To investigate the self-intersection local time we have to know that
the process (18) has points of self-intersection. The following statement describes the
geometry of trajectories of planar Gaussian integrators.

Theorem 3.1. Suppose that A in the representation (18) is continuously invertible,
then with positive probability the trajectories of planar Gaussian integrator x have double
self-intersections, i.e. P{∃ t1 6= t2 : x(t1) = x(t2)} > 0.

Proof. The Kolmogorov condition implies that every coordinate of the process (18) can
be considered as an element of the space C0([0; 1]), where C0([0; 1]) is the space of all
continuous functions on the interval [0; 1] equal to zero at the point zero. To prove the
theorem it suffices to check that the support of the distribution of one coordinate of the
process x coincides with C0([0; 1]). Really, if f ∈ C1

0 ([0; 1],R2) is a curve which has double
points, then for sufficiently small ε > 0 the functions g such that ‖g−f‖C0([0;1],R2) < ε also

have double points. C1
0 ([0; 1],R2) is the space of all continuously differentiable functions

from [0; 1] to R2 which equal to zero at the point zero. Consequently, the process x
will have double points with positive probability if P{‖x − f‖C0([0;1],R2) < ε} > 0. The
independence of coordinates of the process x implies the following relation

P{‖x− f‖C0([0;1],R2) < ε} = P
{√
‖x1 − f1‖2C0([0;1]) + ‖x2 − f2‖2C0([0;1]) < ε

}
≥

≥ P
{
‖x1 − f1‖2C0([0;1]) <

ε2

2

}
P
{
‖x2 − f2‖2C0([0;1]) <

ε2

2

}
.

It implies that the process x will have double points with positive probability if for any
h ∈ C0([0; 1]), σ > 0

(19) P
{
‖x1 − h‖2C0([0;1]) < σ

}
> 0.

The relation (19) is equivalent to the condition that the support of the distribution
of one coordinate of the process x coincides with C0([0; 1]). Further in the proof one
coordinate of the initial process x is denoted by the same letter x. Define the mapping
F0 : L2([0; 1])→ C0([0; 1]) by the rule

L2([0; 1]) 3 h F07→ (1I[0;t], h).

and the mapping F : L2([0; 1])→ C0([0; 1]) as

(20) L2([0; 1]) 3 h F7→ (A1I[0;t], h) = (1I[0;t], A
∗h) = F0(A∗h).

It is known [12] that F (L2([0; 1])) is the set of admissible shifts for the distribution
of x. Since the closure of the set of admissible shifts of x coincides with the support
of the distribution of x, then it suffices to show that F (L2([0; 1])) = C0([0; 1]). It is
known [12] that F0(L2([0; 1])) is the set of admissible shifts for the Wiener process and

F0(L2([0; 1])) = C0([0; 1]). (20) implies that to prove the theorem we have to check that

A∗(L2([0; 1])) = L2([0; 1])

which is the consequence of continuous invertibility of A. �



20 O. L. IZYUMTSEVA

Since the trajectories of planar Gaussian integrator have double self-intersections one
can consider the self-intersection local time for the process x which is formally defined
as

(21) T x2 =

∫
∆2

δ0(x(t2)− x(t1))d~t,

where δ0 is a delta-function at the point zero. The formal expression (21) registers the
moments of time which the process x spends in infinitesimally small neighborhoods of
its double self-intersection points. One can try to give a precise definition to (21) by
using the following approach. Consider the Gaussian random field defined by formula
X(t1, t2) = x(t2)− x(t1), t1, t2 ∈ ∆2. Define an occupation measure of X as

µ∆2(E) =

∫
∆2

1IE(X(t1, t2))d~t.

Theorem 3.2. Suppose that A in the representation (18) is continuously invertible, then
X has a local time on ∆2 and α(u,∆2) ∈ L2(R2, dλ2).

Proof. To prove the lemma let us check that

E

∫
R2

|µ̂∆2
(z)|2dz < +∞.

Really,

E

∫
R2

|µ̂∆2
2
(z)|2dz =

∫
R2

E

∫
R2

ei(z,v)µ∆2(dv)

∫
R2

e−i(z,u)µ∆2(du)dz =

=

∫
R2

∫
∆2

2

2∏
j=1

Eei(z,x
j(t2)−xj(t1)−xj(t4)+xj(t3))d~tdz =

(22) =

∫
R2

∫
∆2

2

e−
1
2‖z‖

2 Var(x1(t2)−x1(t1)−x1(t4)+x1(t3))d~tdz,

where ∆2
2 = ∆2 ×∆2. Denote by π a permutation of (1, 2, 3, 4). Let

∆2
2(π) = {0 ≤ tπ(1) < tπ(2) < tπ(3) < tπ(4) ≤ 1}.

Let us check that the integral (22) is finite in the case ∆2
2(π). The continuous invertibility

of the operator A implies the estimate

Var(x1(t2)− x1(t1)− x1(t4) + x1(t3)) ≥
c(tπ(2) − tπ(1) + tπ(4) − tπ(3)), c > 0

(23)

for t1, t2, t3, t4 ∈ ∆2
2(π). It follows from (23) that (22) is less or equal to

(24)

∫
R2

∫
∆2

2(π)

e−
1
2‖z‖

2c(tπ(2)−tπ(1)+tπ(4)−tπ(3))d~tdz.

Changing variables
tπ(1) = s1

tπ(2) − tπ(1) = s2

tπ(3) − tπ(2) = s3

tπ(4) − tπ(3) = s4

one can see that (24) is bounded by∫
R2

∫ 1

0

∫ 1

0

e−
1
2‖z‖

2c(s2+s4)d~sdz

which is finite. By using the same arguments one can check that (22) is finite over each
∆2

2(π). �
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If α(u,∆2) =
dµ∆2

dλ2
(u) would be continuous at the point zero, then we could associate

T x2 with α(0,∆2). Unfortunately this is not so even in the case of planar Wiener process
[4]. And the reason is to much self-intersections in any neighborhood of the diagonal
of ∆2. But J. Rosen proved in [9] that for any δ > 0 the local time α(u,∆δ

2) of planar
Wiener process is Hölder continuous with respect to u. By using the same arguments
we will check the Hölder continuity with respect to spatial variable of the local time of
planar Gaussian integrator x generated by a continuously invertible operator A.

Theorem 3.3. Suppose that A in the representation (18) is continuously invertible.
Then for any compact K ⊂ R2 we can choose a version α(u,∆δ

2) such that a.s.

sup
u,v∈K

|α(u,∆δ
2)− α(v,∆δ

2)|
‖u− v‖β

< +∞

for any β < 1.

Proof. To prove the theorem it suffices to check that there exists c > 0 such that for any
k ≥ 1, γ < 1, u, v ∈ R2 the following estimate holds

E(α(u,∆δ
2)− α(v,∆δ

2))k ≤ c‖u− v‖kγ .
Really,

E(α(u,∆δ
2)− α(v,∆δ

2))k =

= E
( 1

2π

∫
R2

(e−i(u,z) − e−i(v,z))α̂(z,∆δ
2)dz

)k
=

(25) =
1

(2π)k
E

∫
R2k

k∏
j=1

(e−i(u,zj) − e−i(v,zj))α̂(zj ,∆
δ
2)d~z.

Since

α̂(z,∆δ
2) =

∫
R2

ei(z,p)α(p,∆δ
2)dp =

∫
∆δ

2

ei(z,x(t)−x(s))dsdt,

then (25) equals

(26)
1

(2π)k

∫
R2k

k∏
j=1

(e−i(u,zj) − e−i(v,zj))
∫

∆δk
2

Eei
∑k
j=1(zj ,x(tj)−x(sj))d~sd~td~z,

were ∆δk
2 = ∆δ

2 × . . .×∆δ
2. Note that for any γ < 1

|e−i(u,z) − e−i(v,z)| ≤ ‖z‖γ‖u− v‖γ .
It implies that (26) less or equal to

‖u− v‖kγ
∫
R2k

k∏
j=1

‖zj‖γ
∫

∆δk
2

Eei
∑k
j=1(zj ,x(tj)−x(sj))d~sd~td~z =

(27) = ‖u− v‖kγ
∫
R2k

k∏
j=1

‖zj‖γ
∫

∆δk
2

2∏
l=1

e
− 1

2 Var

(∑k
j=1 z

l
j(x

l(tj)−xl(sj))
)
d~sd~td~z.

Put (τ1, . . . , τ2k) = (s1, t1, . . . , sk, tk). Assume that ∆δk
2 is replaced by ∆δk

2 (π) for some
permutation π of {1, . . . , 2k} since (27) is a sum of integrals over such regions. Let us
define disjoint intervals

Ri = [τπ(i); τπ(i+1)], i = 1, 2k − 1.

Note that

(28) xl(tj)− xl(sj) =
∑

Ri⊆[sj ;tj ]

x̃l(Ri),
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where x̃l(Ri) = xl(τπ(i+1))− xl(τπ(i)), l = 1, 2. Denote by

(29) zli =
∑

j:Ri⊆[sj ;tj ]

zlj , l = 1, 2.

It follows from (28) and (29) that

Var
( k∑
j=1

zlj(x
l(tj)− xl(sj)

)
= Var

( 2k−1∑
i=1

zlix̃
l(Ri)

)
=

= Var
( 2k−1∑
i=1

zli(A1I[τπ(i);τπ(i+1)), ξl)
)
≥ c
( 2k−1∑
i=1

‖zli‖2(τπ(i+1) − τπ(i))
)

=

(30) = cVar
( 2k−1∑
i=1

zliw̃
l(Ri)

)
,

where w̃l(Ri) = wl(τπ(i+1))−wl(τπ(i)), l = 1, 2. (30) implies that (27) is less or equal to

(31) ‖u− v‖kγ
∫
R2k

∫
∆δk

2

k∏
j=1

‖zj‖γe−
1
2 cVar

∑k
j=1(zj ,w(tj)−w(sj))d~sd~td~z.

Further we will need the following lemma which was proved in [9].

Lemma 3.1. [9] For any k ≥ 1, γ < 1∫
R2k

∫
∆δk

2

k∏
l=1

‖ul‖γe−
1
2 Var

∑k
j=1(uj ,w(tj)−w(sj))d~sd~td~u < +∞.

The lemma 3.1 implies that there exists c > 0 such that (31) is less or equal to
c‖u − v‖kγ , γ < 1. Therefore, we proved that there exists c > 0 such that for any
k ≥ 1, γ < 1

(32) E(α(u,∆δ
2)− α(v,∆δ

2))k ≤ c‖u− v‖kγ .

To end the proof of the theorem we need the following modification of the Kolmogorov
condition.

Theorem 3.4. (moments and continuity, Kolmogorov, Loeve, Chentsov) [14] Let y be a
process on Rd with values in a complete metric space (S, ρ). Assume for some c, a, b > 0
that

E{ρ(y(s), y(t))}a ≤ c|s− t|d+b, s, t ∈ Rd.
Then y has a continuous version, and the latter is a.s. locally Hölder continuous with

exponent γ for any γ ∈
(

0; ba

)
.

The estimation (32) and the theorem 3.4 end the proof of the theorem. �

The following technical lemma will be useful in the calculation of moments of the local
time of two dimensional integrators. Denote by ∆n = {0 ≤ s1 ≤ . . . ≤ sn ≤ 1}. For
s1, . . . , sn ∈ ∆n, u1, . . . , un ∈ R2 let ps1...sn(u1, . . . , un) be the density of Gaussian vector
(x(s1), . . . , x(sn)) in R2n. Let us check that the following statement holds.

Lemma 3.2. Suppose that A in the representation (18) is continuously invertible. Then
there exist positive constants c1(n), c2 such that the following relation holds

ps1...sn(u1, . . . , un) ≤ c1(n)

s1(s2 − s1) . . . (sn − sn−1)
e
−c2

∑n−1
i=0

‖ui+1−ui‖
2

si+1−si .
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Proof. The independence of the coordinates of our process implies that

ps1...sn(u1, . . . , un) =

2∏
l=1

p̃s1...sn(ul1, . . . , u
l
n),

where

p̃s1...sn(ul1, . . . , u
l
n) =

1√
2πn

1√
G(g(s1), . . . , g(sn))

·e− 1
2 (B−1(g(s1),...,g(sn))ul,ul).

Here g(t) = Ag0(t), g0(t) = 1I[0;t], u
l = (ul1, . . . , u

l
n), B(e1, . . . , en) is the Gramian

matrix constructed by e1, . . . , en, G(e1, . . . , en) is the Gram determinant. Since A is a
continuously invertible operator, then by lemma 2.2 there exists a positive constant c(n)
such that the following estimate holds

(33) G(g(s1), . . . , g(sn)) ≥ c(n)G(g0(s1), . . . , g0(sn)) = c(n)s1(s2−s1) · . . . · (sn−sn−1).

Put c1(n) = 1
c(n) . Let us estimate

(B−1(g(s1), . . . , g(sn))ul, ul), l = 1, 2.

It was proved in [4,5] that in the case

ul = ((h0, g(s1)), . . . , (h0, g(sn))), h0 ∈ L2([0; 1])

the following relation holds

(B−1(g(s1), . . . , g(sn))ul, ul) = ‖Pg(s1)...g(sn)h0‖2,

where Pe1...en is a projection on LS{e1, . . . , en}. If h0 ∈ LS{g(s1), . . . , g(sn)}, then

(B−1(g(s1), . . . , g(sn))ul, ul) = ‖h0‖2.

One can note that

((h0, g(s1)), . . . , (h0, g(sn))) = ((A∗h0, g0(s1)), . . . , (A∗h0, g0(sn))).

Since

(A∗h0, g0(s1)) = ul1

(A∗h0, g0(s2)) = ul2

...

(A∗h0, g0(sn)) = uln,

then

(34) A∗h0 =

n−1∑
j=0

g0(sj+1)− g0(sj)

‖g0(sj+1)− g0(sj)‖
(ulj+1 − ulj) + r,

where r ⊥ g0(si), i = 1, n. Let us remark that continuous invertibility of the operator A
implies the existence of A∗−1. (34) implies that

(B−1(g(s1), . . . , g(sn))ul, ul) =

(35) = ‖h0‖2
∥∥∥A∗−1

( n−1∑
j=0

g0(sj+1)− g0(sj)

‖g0(sj+1)− g0(sj)‖
(ulj+1 − ulj) + r

)∥∥∥2

.
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It follows from (33) and (35) that

p̃s1...sn(ul) ≤
√
c1(n)√

s1(s2 − s1) · . . . · (sn − sn−1)
·

· exp
{
− 1

2

∥∥∥A∗−1
( n−1∑
j=0

g0(sj+1)− g0(sj)

‖g0(sj+1)− g0(sj)‖
(ulj+1 − ulj) + r

)∥∥∥2}
≤

≤
√
c1(n)√

s1(s2 − s1) · . . . · (sn − sn−1)
·

· exp
{
− 1

2
c2

(∥∥∥ n−1∑
j=0

g0(sj+1)− g0(sj)

‖g0(sj+1)− g0(sj)‖
(ulj+1 − ulj)

∥∥∥2

+ ‖r‖2
)}
≤

≤
√
c1(n)√

s1(s2 − s1) · . . . · (sn − sn−1)
e
− 1

2 c2
∑n−1
j=0

(ulj+1−u
l
j)2

sj+1−sj .

�

Further we discuss the connection between the growth of modulus of continuity for
two dimensional Gaussian integrators and the growth of its approximations for the self-

intersection local time. Let fε(z) = 1
2π e
− ‖z‖

2

2ε , ε > 0, z ∈ R2. Denote by Φ(t) := ϕ(t)2t.

Lemma 3.3. Suppose that there exists α > 1 such that

(36) Φ(t) ≤ ctα, c > 0,

then there exists c1 > 0 such that

E

∫
∆2

fε(x(t2)− x(t1))d~t ≥ c1ε
1
α−1.

Let us give an example of the integral operator which satisfies the condition (36) of
the lemma 3.3.

Example 3.1. Let A be an integral operator in L2([0; 1]) which is acting by the rule

Af(u2) =

∫ 1

0

1I{u2>u1}f(u1)du1.

Then

AQa,bf(u2) =

∫ 1

0

1I{u2>u1}1I[a;b](u1)f(u1)du1.

One can check that the integral operator AQa,b with the kernel

K(u1, u2) = 1I{u2>u1}1I[a;b](u1)

is the Hilbert–Schmidt operator with ‖AQa,b‖2 =
√

2(b− a). Here ‖ · ‖2 is the Hilbert–

Schmidt norm. Consequently ‖AQa,b‖ ≤
√

2(b− a) and Φ(t) ≤ 2t2. Therefore, the
condition (36) holds with c = 2, α = 2.

Proof of the lemma 3.3.

E

∫
∆2

fε(x(t2)− x(t1))d~t =

=

∫
∆2

1

2π

1

‖AQt1,t21I[t1;t2]‖2 + ε
d~t ≥

≥
∫

∆2

1

2π

1

(supb−a≤t2−t1 ‖AQa,b‖)2(t2 − t1) + ε
d~t =
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(37) =
1

2π

∫
∆2

1

Φ(t2 − t1) + ε
d~t ≥ 1

2π

∫
∆2

1

c(t2 − t1)α + ε
d~t.

Changing variables

t1 = u1,
t2 − t1
ε1/α

= u2

we get that (37) equals

1

2π
ε

1
α−1

∫
{0≤u1≤ε1/αu2+u1≤1}

1

cuα2 + 1
du1du2 ≥ c1ε

1
α−1, c1 > 0.

�
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