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IE. V. KARNAUKH

DISTRIBUTION OF SOME FUNCTIONALS FOR A LÉVY PROCESS

WITH MATRIX-EXPONENTIAL JUMPS OF THE SAME SIGN

This paper provides a framework for investigations in fluctuation theory for Lévy pro-

cesses with matrix-exponential jumps. We present a matrix form of the components

of the infinitely divisible factorization. Using this representation we establish gener-
alizations of some results known for compound Poisson processes with exponential

jumps in one direction and generally distributed jumps in the other direction.

Lévy processes have many applications in practice as a base model in risk theory,
queuing and financial mathematics. Many problems can be connected to the fluctuation
theory, in which the factorization method plays a crucial role (see, for instance, [1]).

The most studied class of Lévy processes is the class of semi-continuous processes (with
Lévy measure supported on a half-axis). One of the factorization components for the
semi-continuous processes is entirely defined by the real root of the cumulant equation
(or more specifically, by the right-inverse of the cumulant function).

This result can be generalized for Lévy processes with matrix-exponential upward
(or downward) jumps (see [2, 3] and references therein). For such processes one of
the factorization components is a rational function with finite number of poles, which
are the (possibly complex) roots of the cumulant equation. Using the properties of
matrix-exponential distribution we can invert the component to find the distribution of
corresponding killed extremum. The convolution of the distribution of this extremum
and the integral transform of the Lévy measure defines the moment generating function
of other extremum.

We use the relations for the factorization components to obtain in closed form the
moment generating function of occupation time of a half-line (for semi-continuous case
we refer to [4] and for some other cases to [5]). Further generalization could be done for
meromorphic Lévy processes with the main difference that the factorization components
have infinitely many poles (see [6]).

1. Matrix-exponential distribution

The class of matrix-exponential (ME) distributions is the generalization of exponential
distribution and it comprises the phase-type distributions. The ME class can be defined
as a class of distributions with a rational moment generating function (see [7]). The
properties of ME distributions allow us to find in the closed form some generalizations
of the results known for Lévy processes with exponential jumps.

A nonnegative random variable has a ME(d) distribution (d ≥ 1), if its cumulative
distribution function is as follows

F (x) =

{
1 + βeRxR−1t x > 0;

0 x ≤ 0,
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where β is a 1× d vector, R is a non singular d× d matrix, t is a d× 1 vector, and each
possibly have complex entries. The triple (β,R, t) is called a representation of the ME
distribution. Note that, the same distribution may have several representations. If the
cumulative function of a ME distribution can be represented as F (x) = 1−αeTxe, x > 0,
where α is a probability vector and T is the intensity matrix of a Markov chain, e =

(0, . . . , 0, 1)
>

, then the ME distribution is called phase-type distribution. For details and
general results on matrix-exponential distributions we refer to [8].

For x > 0 a ME distribution has density f (x) = βeRxt, which can be rewritten as
(see [2] and [3]):

f (x) =

m∑
i=1

Pi (x) e−rix,

where Pi (x) are polynomials of degree ki, <[rm] ≥ . . . ≥ <[r2] > r1 > 0 and
∑m
i=1 ki +

m = d.
If p0 = 1 + βR−1t 6= 0, then the ME distribution has nonzero mass at zero, and the

moment generating function has the form∫ ∞
0

erxdF (x) = p0 − β (rI + R)
−1

t, <[r] = 0.

To find a representation of the distribution with known moment generating function
we can follow the approach given in [7]. Denote the vectors ρ = (ρd, . . . , ρ1) , (ρ, 1) =

(ρd, . . . , ρ1, 1), hd (r) =
(
1, r, . . . , rd

)>
. If the Laplace transform of f (x) has the form

(1)

∫ ∞
0

e−rxf (x) dx =
β1r

d−1 + β2r
d−2 + . . .+ βd

rd + ρ1rd−1 + . . .+ ρd−1r + ρd
=

βhd−1 (r)

(ρ, 1) hd (r)
,

then the corresponding density is f (x) = βeRxe, x > 0, where β = (βd, . . . , β1) , e =

(0, . . . , 0, 1)
>
, and R =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−ρd −ρd−1 . . . −ρ1

 =

(
0 I
−ρ

)
.

In the case when a ME distribution is defined on negative half-axis, we can follow the
similar reasoning. If

(2)

∫ 0

−∞
erxf (x) dx =

βhd−1 (r)

(ρ, 1) hd (r)
,

then f (x) = βeRxe, x < 0, where β = (βd, . . . , β1) , R =

(
0 − I

ρ

)
. If a ME distri-

bution has support on the entire real line, then it is called bilateral matrix-exponential
distribution (see [9]).

2. Extrema and overshoot

Let us suppose that Xt, t ≥ 0 is a Lévy process with cumulant function

k (r) = a′r +
σ2

2
r2 +

∫ ∞
−∞

(
erx − 1− rxI{|x|≤1}

)
Π (dx) ,

where a′ is a real constant, σ > 0, and Π is a non negative measure, defined on R\{0}:∫
R

min
{
x2, 1

}
Π (dx) <∞.

Throughout we impose the restriction that
∫ 1

−1
|x|Π (dx) < ∞, then the cumulant

function can be represented as follows

(3) k (r) = ar +
σ2

2
r2 +

∫ ∞
−∞

(erx − 1) Π (dx) ,
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where a = a′ −
∫ 1

−1
|x|Π (dx) .

Denote by θs an exponential random variable with parameter s > 0: P {θs > t} =
e−st, t > 0, independent of process Xt, and by definition θ0 = ∞. Then Xθs is called a
Lévy process killed at rate s (see [10]). For the moment generating function of Xθs

EerXθs =
s

s− k (r)

the identity of infinitely divisible factorization takes place

EerXθs = EerX
+
θsEerX

−
θs ,< [r] = 0,

where X+
θs

= sup0≤t≤θs Xt, X
−
θs

= inf0≤t≤θs Xt are the supremum and infimum of the
process, respectively, killed at rate s.

In general case the closed formulae for factorization components are not known, so
we should impose additional restrictions on the parameters of the process. Following [3],
we consider Lévy processes that have finite intensity negative (or positive) jumps with
ME distribution, arbitrary positive (negative) jumps, and possibly drift and gaussian
component.

That is, we assume that Π (dx) = λ−
∑m−
i=1 P

−
i (x) ebixdx, x < 0 (or Π (dx) =

λ+

∑m+

i=1 P
+
i (x) e−cixdx, x > 0) where λ± =

∫
R±

Π (dx) < ∞, P±i (x) are the poly-

nomials of degree k±i ,
∑m±
i=1 k

±
i + m± = d±, <[bm− ] ≥ . . . ≥ <[b2] > b1 > 0 and

<[cm+ ] ≥ . . . ≥ <[c2] > c1 > 0. Also we split two cases (for details, see [3]):

(NS)±: σ > 0 or σ = 0,±a > 0,
(S)±: σ = 0,∓a ≥ 0,

where sign ’+’ corresponds to the case when positive jumps have ME distribution while
sign ’–’ corresponds to the case when negative jumps have ME distribution.

Due to [2, 3], in any of the cases (NS)± or (S)± the moment generating function

EerX
±
θs is a rational function and X±θs has a ME distribution. In addition, the cumulant

equation

k (r) = s

has the roots
{
±r±i (s)

}N±
i=1

in half-plane ±<[r] > 0, where N± =

{
d± + 1 (NS)± ,

d± (S)± ,

r+
1 (s) is the unique root on [0, c1] (−r−1 (s) is the unique root on [−b1, 0]). These roots

entirely define the distribution of corresponding extrema.
Write

β−k =
∑

1≤i1<...<ik≤N−

bi1 . . . bik , β
+
k =

∑
1≤i1<...<ik≤N+

ci1 . . . cik ,

ρ±k (s) =
∑

1≤i1<...<ik≤N±

r±i1 (s) . . . r±ik (s) ,

then the distribution of X±θs can be represented by the parameters:

β± =
(
β±d± , . . . , β

±
1

)
,ρ± (s) =

(
ρ±N± (s) , . . . , ρ±1 (s)

)
,R± (s) =

(
0 ±I
∓ρ± (s)

)
.

Under additional conditions the moment generating function of X∓θs we can determine in
terms of integral transforms of the Lévy measure:

Π
+

(x) =

∫ ∞
x

Π (dx) , x > 0; Π
−

(x) =

∫ x

−∞
Π (dx) , x < 0; Π̃± (r) =

∫
R±

erxΠ
±

(x) dx.

The following statement is essentially based on the results given in [2] and [3].
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Theorem 2.1. If for Lévy process Xt one of the cases (NS)− or (S)− holds, then

(4) P ′− (s, x) =
∂

∂x
P
{
X−θs < x

}
= q− (s) eR−(s)xe, x < 0,

where

(5) q− (s) =


ρ−d−+1(s)

β−d−

(
β−, 1

)
(NS)− ,

ρ−d−
(s)

β−d−

(
β− − ρ− (s)

)
(S)− .

Moreover, in case (S)−: p− (s) = P
{
X−θs = 0

}
6= 0 and p− (s) =

ρ−d−
(s)

β−d−
=
(∏d−

i=1
r−i (s)

bi

)
.

If additionally DX1 <∞,EX+
θs
<∞, the moment generating function of X+

θs
could be

represented as
(6)

EerX
+
θs =

(
1− r

s

(
A−∗ (s) + EerX

−
θs Π̃+ (r)− q− (s) (rI + R− (s))

−1
Π̃+ (−R− (s)) e

))−1

,

A−∗ (s) =

{
σ2

2
∂
∂yP

{
X−θs < y

}∣∣∣
y=0

σ > 0,

P
{
X−θs = 0

}
max {0, a} σ = 0,

=


σ2

2

ρ−d−+1(s)

β−d−
(NS)− ,

a
ρ−d−

(s)

β−d−
(S)− .

Denote the first passage time by τ+
x = inf {t > 0 : Xt > x}, then the distribution of dis-

counted overshoot Xτ+
x
− x, x > 0, is defined by

(7) E
[
e−sτ

+
x , Xτ+

x
− x ∈ dv, τ+

x <∞
]

= s−1A−∗ (s)
∂

∂x
P
{
X+
θs
< x

}
δ (v) dv+

s−1

∫ x

0

(
p− (s) Π (dv + y) +

∫ ∞
y

Π (dv + z) q− (s) eR−(s)(y−z)edz

)
P
{
X+
θs
∈ x− dy

}
,

where δ(v) is the Dirac delta function.

Proof. If one of the cases (NS)− or (S)− holds, then according to [3] the moment gen-

erating function of X−θs can be defined by the relation

(8) EerX
−
θs =

∏N−
i=1 r

−
i (s)∏d−

i=1 bi

∏d−
i=1 (r + bi)∏N−

i=1

(
r + r−i (s)

) .
Using notation given above we can rewrite this relation as
(9)

EerX
−
θs =

ρ−N− (s)

β−d−

(
β−, 1

)
hd− (r)(

ρ− (s) , 1
)
hN− (r)

=


ρ−d−+1(s)

β−d−

(β−,1)hd− (r)

(ρ−(s),1)hd−+1(r)
(NS)− ,

ρ−d−
(s)

β−d−

(
1 +

(β−−ρ−(s))hd−−1(r)

(ρ−(s),1)hd− (r)

)
(S)− .

which allows for inversion in r, so we get (4) and (5).
Under conditions of the theorem (see [5, Corollary 2.2]):

(10) EerX
+
θs =

(
1− s−1r

(
A−∗ (s) +

∫ ∞
0

erx
∫ 0

−∞
Π

+
(x− y) dP− (s, y)

))−1

.
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Using (4) and (5) we get∫ ∞
0

erx
∫ 0

−∞
Π

+
(x− y) dP− (s, y) =

= p− (s) Π̃+ (r) + q− (s) (rI + R− (s))
−1
(

Π̃+ (r)− Π̃+ (−R− (s))
)

e− =

= EerX
−
θs Π̃+ (r)− q− (s) (rI + R− (s))

−1
Π̃+ (−R− (s)) e−,

Substituting the last relation in (10) yields (6).
Using formula (4), relation (7) can be deduce by integration of the Gerber-Shiu mea-

sure (see [6]):

E
[
e−sτ

+
x , x−X+

τ+
x −0
∈ dy, x−Xτ+

x −0 ∈ dz,Xτ+
x
− x ∈ dv, τ+

x <∞
]

=

= s−1P
{
X+
θs
∈ x− dy

}
P
{
−X−θs ∈ dz − v

}
Π (dv + z) , v, z > 0, 0 ≤ y ≤ min {x, z} ,

with respect to y and z and taking into account that E
[
e−sτ

+
x , x−Xτ+

x −0 = 0, τ+
x <∞

]
=

s−1A−∗ (s) ∂
∂xP

{
X+
θs
< x

}
(see [5, (2.55)]). �

Corollary 2.1. If one of the cases (NS)+ or (S)+ holds, then

(11) P ′+ (s, x) =
∂

∂x
P
{
X+
θs
< x

}
= q+ (s) eR+(s)xe, x > 0,

where

(12) q+ (s) =


ρ+d++1(s)

β+
d+

(
β+, 1

)
(NS)+ ,

ρ+d+
(s)

β+
d+

(
β+ − ρ+ (s)

)
(S)+ .

Moreover, in the case (S)+: p+ (s) = P
{
X+
θs

= 0
}
6= 0 and p+ (s) = ρ+

d+
(s) /β+

d+
.

If additionally, DX1 < ∞,EX−θs < ∞, then the moment generating function of X−θs
admits the representation
(13)

EerX
−
θs =

(
1 +

r

s

(
A+
∗ (s) + EerX

+
θs Π̃− (r) + q− (s) (rI + R+ (s))

−1
Π̃− (−R+ (s)) e

))−1

,

where

A+
∗ (s) =


σ2

2

ρ+d++1(s)

β+
d+

(NS)+ ,

a
ρ+d+

(s)

β+
d+

(S)+ .

Proof. To prove relations (11) – (13) we can use (4) – (6) and the fact that if for the
dual process Yt = −Xt one of the cases (NS)− or (S)− holds, then for Xt we have the

case (NS)+ or (S)+ correspondingly, and EerY
+
θs = Ee−rX

−
θs . �

If we have cases (NS)− and (NS)+ ((S)− and (S)+) at the same time, then the Lévy
process Xt has the gaussian part with possibly drift (with zero drift and without gaussian
part, correspondingly) and the jump part is a compound Poisson process with bilateral
matrix-exponential distributed jumps.

Corollary 2.2. If we have the cases (NS)− and (NS)+ at the same time, then

(14)
∂

∂x
P
{
X±θs < x

}
= q± (s) eR±(s)xe,±x > 0,
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where q± (s) =
ρ±d±+1

(s)

β±d±

(
β±, 1

)
.

If we have (S)− and (S)+ simultaneously, then P
{
X±θs = 0

}
= ρ±d± (s) /β±d± and

(15)
∂

∂x
P
{
X±θs < x

}
= q± (s) eR±(s)xe,±x > 0,

where q± (s) =
ρ±d±

(s)

β±d±

(
β± − ρ± (s)

)
.

Note that, if σ = 0, a ≥ 0, and Π (dx) = λ−b1e
b1xdx for x < 0, then the pro-

cess Xt is called almost lower semi-continuous (for details see [5]) and we have the
case (S)− with d− = 1, hence N− = 1 and the cumulant equation has a unique neg-

ative real root −r−1 (s) > −b1. Hence, by (4) the density of infimum is P ′− (s, x) =
r−1 (s)
b1

(
b1 − r−1 (s)

)
er
−
1 (s)x, x > 0 (cf. [5, (3.110)]).

To find the distribution of absolute supremum X+ = sup0≤t<∞Xt or infimum X− =
inf0≤t<∞Xt we should take into consideration the sign of EX1. If µ = EX1 < 0 (µ > 0),
then the distribution of X+ (X−) is non degenerate and it is defined in terms of the
roots of the cumulant equation for s = 0 (see, for instance, [5]).

If we have one of the cases (NS)± or (S)±, then from [2] it can be seen that for ±µ < 0:

r±i (s) −→
s→0

r±i ,<
[
r±i
]
> 0, i = 1, . . . , N±, and for ∓µ < 0: r±i (s) −→

s→0
r±i ,<

[
r±i
]
> 0,

i = 2, . . . , N±, r±1 (s) −→
s→0

0, s−1r±1 (s) −→
s→0

|µ|. Thus we obtain the next corollary of

Theorem 2.1.

Corollary 2.3. Let one of the cases (NS)− or (S)− hold and µ = EX1 < 0, then

(16) lim
s→0

s−1P ′− (s, x) = q′−e
R−(0)xe, x < 0,

(17) q′− =


∏d−+1
i=2 r−i
|µ|β−d−

(
β−, 1

)
(NS)− ,∏d−

i=2 r
−
i

|µ|β−d−

(
β− − ρ− (0)

)
(S)− .

Moreover, in case (S)−: p′− = lims→0 s
−1p− (s) =

(∏d−
i=2 r

−
i

)
/
(
|µ|
∏d−
i=1 bi

)
.

If additionally DX1 <∞, then the moment generating function of X+ has the form

(18) EerX
+

=

=
(

1− r
(
A′− + p′−Π̃+ (r) + q′− (rI + R− (0))

−1
(

Π̃+ (r) I− Π̃+ (−R− (0))
)

e
))−1

,

A′− = lim
s→0

s−1A−∗ (s) =


σ2

2

∏d−+1

i=2 r−i
|µ|β−d−

(NS)− ,

a
∏d−
i=2 r

−
i

|µ|β−d−
(S)− .

The distribution of the overjump is defined by the relation

(19) P
{
Xτ+

x
− x ∈ dv

}
= A′−

∂

∂x
P
{
X+ < x

}
δ (v) dv+∫ x

0

(
p′−Π (dv + y) +

∫ ∞
y

Π (dv + z) q′−e
R−(0)(y−z)edz

)
P
{
X+ ∈ x− dy

}
.
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3. Occupation time and ladder process

Denote the moment generating function for the time that the process Xt spends in
the interval (x,+∞) until θs by

Dx (s, u) = Ee−u
∫ θs
0

I{Xt>x}dt.

Combining the results of the previous section with the relations for Dx (s, u) given in [5]
yields the following statement.

Theorem 3.1. If one of the cases (NS)− or (S)− (a > 0) holds, then

D0(s, u) =
s

s+ u

ρ−N− (s+ u)

ρ−N− (s)
,

(20) Dx (s, u) =
s

s+ u
×

×

(
1−

ρ−N− (s+ u)

ρ−N− (s)

(
ρ− (s)− ρ− (s+ u)

)
R−1
− (s+ u) eR−(s+u)xe

)
, x < 0.

If one of the cases (NS)+ or (S)+ (a < 0) holds, then

D0(s, u) =
ρ+
N+

(s)

ρ+
N+

(s+ u)
,

(21) Dx (s, u) = 1 +
ρ+
N+

(s)

ρ+
N+

(s+ u)

(
ρ+ (s+ u)− ρ+ (s)

)
R−1

+ (s) eR+(s)xe, x > 0.

Proof. Following [5, Theorem 2.6], for non step-wise processes the next relations are true∫ +∞

−0

erxD′x (s, u) dx+D0(s, u) =
EerX

+
θs

Ee
rX+

θs+u

,

∫ +0

−∞
erxD′x (s, u) dx−D0(s, u) = − s

s+ u

Ee
rX−θs+u

EerX
−
θs

.(22)

If one of the cases (NS)− or (S)− (a > 0) holds, then recalling Theorem 2.1 it follows
that

Ee
rX−θs+u

EerX
−
θs

=
ρ−N− (s+ u)

ρ−N− (s)

(
ρ− (s) , 1

)
hN− (r)(

ρ− (s+ u) , 1
)
hN− (r)

=

=
ρ−N− (s+ u)

ρ−N− (s)

(
1−

(
ρ− (s+ u)− ρ− (s)

)
hN−−1 (r)(

ρ− (s+ u) , 1
)
hN− (r)

)
.

Taking account of formula (22) this gives us the following

D′x (s, u) =
s

s+ u

ρ−N− (s+ u)

ρ−N− (s)

(
ρ− (s+ u)− ρ− (s)

)
eR−(s+u)xe, x < 0,

and combining with limx→−∞Dx (s, u) = s
s+u , we receive (20).

Similarly, in case (NS)+ or (S)+ (a < 0):

Ee−rX
+
θs

Ee
−rX+

θs+u

=
ρ+
N+

(s)

ρ+
N+

(s+ u)

(
1 +

(
ρ+ (s+ u)− ρ+ (s)

)
hN+−1 (r)(

ρ+ (s) , 1
)
hN+

(r)

)
.
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Hence,

D′x (s, u) =
ρ+
N+

(s)

ρ+
N+

(s+ u)

(
ρ+ (s+ u)− ρ+ (s)

)
eR+(s)xe, x > 0,

and taking into account that limx→+∞Dx (s, u) = 1 we deduce (21). �

This statement generalize the representation of Dx (s, u) known for almost semi-
continuous processes given in [5].

Note that, for a non step-wise Lévy process P {Xt = 0} = 0, then by [10, VI, Lemma 15]

for any t ≥ 0 the time it spends in [0,∞) Q0 (t) =
∫ t

0
I {Xv ≥ 0} dv and the instant of

its last supremum gt = sup {v < t : Xv = X+
v } have the same law. Moreover, by [5,

Theorem 2.9] Q0 (t) and the time the maximum is achieved Tt = inf {v > 0 : Xv = X+
v }

also have the same law. Hence, the results of Theorem 3.1 define the moment generating
functions of gθs and Tθs .

Let L (t) be the local time in [0, t] that X+
t − Xt spends at zero and L−1 (t) =

inf {v > 0 : L (v) > t} is the inverse local time (for details, see [10, VI]). Denote by κ (s, r)
the Laplace exponent of the so called ladder process

{
L−1, XL−1

}
:

e−κ(s,r) = E
[
e−sL

−1(1)−rXL−1(1) , 1 < L∞

]
.

According to [10, VI, (1)]:

Ee−rX
+
θs
−ugθs =

κ (s, 0)

κ (s+ u, r)
.

Assuming that the normalization constant of the local time is 1, we can deduce that
κ (s, 0) = Ee−(1−s)gθs . Taking into account that for non step-wise processes Q0 (θs) and
gθs have the same distribution we can write that

(23) κ (s, r) =
D0 (s, 1− s)
Ee−rX

+
θs

.

Hence, using Theorem 2.1 and Theorem 3.1, we can deduce the following statement.

Corollary 3.1. If one of the cases (NS)− or (S)− (a > 0) holds, then

κ (s,−r) =
ρ−N− (1)

ρ−N− (s)
×

×
(
s− r

(
A−∗ (s) + EerX

−
θs Π̃+ (r)− q− (s) (rI + R− (s))

−1
Π̃+ (−R− (s)) e

))
.

If Xt is a compound Poisson process with negative drift a < 0, without gaussian part
(σ = 0), and with bilateral ME distributed jumps, then

κ (s, r) =
ρ−d−+1 (1)

ρ−d−+1 (s)

β+
d+

ρ+
d+

(s)

(
1 +

(
ρ+ (s)− β+

)
hd+−1 (r)(

ρ+ (s) , 1
)
hd+ (r)

)
.

The next statement applies Theorem 3.1 and Corollary 2.3 to get a representation
of the moment generating function of the total sojourn time over a level Dx (0, u) =

Ee−u
∫∞
0
I{Xt>x}dt, which in risk theory defines the time in risk zone (for details, see [5]).

Corollary 3.2. If one of the cases (NS)− or (S)− (a > 0) holds and µ = EX1 < 0, then

Ee−u
∫∞
0
I{Xt>0}dt =

|µ|
u

∏N−
i=1 r

−
i (u)∏N−

i=2 r
−
i

,

(24) Ee−u
∫∞
0
I{Xt>x}dt =

|µ|
∏N−
i=1 r

−
i (u)

u
∏N−
i=2 r

−
i

(
ρ− (u)− ρ− (0)

)
R−1
− (u) eR−(u)xe, x < 0.
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The integral transform of the moment generating function of the sojourn time over a
positive level has the next representation

(25)

∫ +∞

−0

erxD′x (0, u) dx+D0(0, u) =
EerX

+

EerX
+
θu

=

=
1− r

u

(
A−∗ (u) + EerX

−
θu Π̃+ (r)− q− (u) (rI + R− (u))

−1
Π̃+ (−R− (u)) e

)
1− r

(
A′− + p′−Π̃+ (r) + q′− (rI + R− (0))

−1
(

Π̃+ (r) I− Π̃+ (−R− (0))
)

e
) .

If for the process Xt: σ = 0, a ≤ 0, negative jumps have a ME distribution and µ < 0,
then

(26) Ee−u
∫∞
0
I{Xt>x}dt = P

{
X+ < x

}
+
p+ (u)

u

(
p− (u)

∫ x

0

Π
+

(x− z)P
{
X+ ∈ dz

}
+

+ q− (u)

∫ ∞
0

Π
+

(y)

∫ x

max{0,x−y}
eR−(u)(x−y−z)P

{
X+ ∈ dz

}
edy

)
.

Proof. Equality (24) follows by taking the limit as s → 0 in (20). Formula (25) is a
straightforward consequence of formulas (6), (18) and (22).

If σ = 0, a ≤ 0, then
{
τ+
0 , Xτ+

0

}
has non degenerate joint distribution. Applying

prelimit generalization of the Pollaczek-Khinchin formula ([5, Theorem 2.4]), we get∫ +∞

−0

erxD′x (s, u) dx+D+0(s, u) =
EerX

+
θs

P
{
X+
θs+u

= 0
} (1− E

[
e
−(s+u)τ+

0 +rX
τ
+
0 , τ+

0 <∞
])

.

Whence D+0(s, u) =
P{X+

θs
=0}

P
{
X+
θs+u

=0
} and for x > 0

Dx (s, u) = P+ (s, x) +

∫ x

0

P
{
X+
θs+u

> 0, Xτ+
0
> x− z

}
dP+ (s, z) .

Due to [5, Corollary 2.3]:

P
{
X+
θs+u

> 0, Xτ+
0
> z
}

=
P
{
X+
θs+u

= 0
}

s+ u

∫ 0

−∞
Π

+
(z − y) dP− (s+ u, y) .

If negative jumps have the ME distribution, then

Dx (s, u) = P+ (s, x) +
p+ (s+ u)

s+ u

(
p− (s+ u)

∫ x

0

Π
+

(x− z) dP+ (s, z) +

+ q− (s+ u)

∫ ∞
0

Π
+

(y)

∫ x

max{0,x−y}
eR−(s+u)(x−y−z)edP+ (s, z) dy

)
.

from here as s→ 0 relation (26) follows. �

Note that, for the step-wise (a = 0) almost lower semi-continuous processes formula
(26) is reduced to

Ee−u
∫∞
0
I{Xt>x}dt = P

{
X+ < x

}
+

1

u+ λ

(∫ x

0

Π
+

(x− z)P
{
X+ ∈ dz

}
+

+
(
b1 − r−1 (u)

) ∫ ∞
0

Π
+

(y)

∫ x

max{0,x−y}
er
−
1 (u)(x−y−z)P

{
X+ ∈ dz

}
dy

)
.

If negative (positive) jumps have hyperexponential distribution, that is, if we have
additional condition that bm− > . . . > b2 > b1 > 0 (cm+

> . . . > c2 > c1 > 0), then the
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roots of the cumulant equation
{
−r−i (s)

}N−
i=1

({
r+
i (s)

}N+

i=1

)
are real and distinct (see

[3]), and the matrix exponents in Theorem 3.1 can be simplified.

Corollary 3.3. If one of the cases (NS)− or (S)− (a > 0) holds and bm− > . . . > b1 > 0,
then

D0(s, u) =
s

s+ u

N−∏
i=1

r−i (s+ u)

r−i (s)
,

(27)

Dx (s, u) =
s

s+ u

1 +

N−∑
k=1

∏N−
i=1

(
r−k (s+ u) /r−i (s)− 1

)∏N−
i=1,i6=k

(
r−k (s+ u) /r−i (s+ u)− 1

)er−k (s+u)x

 , x < 0.

For µ < 0

D0(0, u) =
|µ|
u

N−∏
i=2

r−i (u)

r−i
,

(28) Dx (0, u) =
|µ|
u

N−∑
k=1

∏N−
i=2

(
r−k (u) /r−i − 1

)∏N−
i=1,i6=k

(
r−k (u) /r−i (u)− 1

)r−k (u) er
−
k (u)x, x < 0.

If one of the cases (NS)+ or (S)+ (a < 0) holds and cm+ > . . . > c1 > 0, then

D0(s, u) =

N+∏
i=1

r+
i (s)

r+
i (s+ u)

,

(29) Dx (s, u) = 1−
N+∑
k=1

∏N+

i=1

(
1− r+

k (s) /r+
i (s+ u)

)∏N+

i=1,i6=k
(
1− r+

k (s) /r+
i (s)

) e−r+k (s)x , x > 0.

For µ > 0 and x ≥ 0: Dx (0, u) = 0, in other words P
{∫ +∞

0
I {Xt > x} dt = +∞

}
= 1.

Proof. If we have one of the cases (NS)− or (S)− (a > 0) and bm− > . . . > b2 > b1 > 0,

then the roots
{
−r−i (s)

}N−
i=1

are real and distinct, and instead of using formula (20) it is

more convenient to substitute relation (8) in (22) and invert with respect to r. Similarly
for the case (NS)+ or (S)+ (a < 0) and cm+ > . . . > c2 > c1 > 0 we can deduce formula
(29). To get Dx (0, u) in the corresponding cases apply the limit behavior of the roots of
cumulant equation as s → 0. To find the limit as s → 0 in (29) for the case (NS)+ or
(S)+ and for µ > 0 we can use the relation∏N+

i=1

(
1− r+

k (s) /r+
i (s+ u)

)∏N+

i=1,i6=k
(
1− r+

k (s) /r+
i (s)

) −→
s→0

{
1 k = 1,

0 k 6= 1.

�

Note that, using the results of [6], Corollary 3.3 could be generalized for the case of
the so called meromorphic Lévy processes (the cumulant function is holomorphic except
a set of isolated points, the poles of the function), for which N± =∞ in (27)–(29).
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