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A. V. RUDENKO

SOME UNIFORM ESTIMATES FOR THE TRANSITION DENSITY

OF A BROWNIAN MOTION ON A CARNOT GROUP AND THEIR

APPLICATION TO LOCAL TIMES

For a specific Brownian motion on a Carnot group several estimates for its transition

density are established, which are uniform w.r.t. external parameter. These estimates
can be used for studying functionals of any Brownian motion on a Carnot group. As

an application we show the existence of the renormalized local time for the increments

of Levy area. This result has a lot in common with the well-known existence of the
renormalized self-intersection local time for two-dimensional Brownian motion.

1. Introduction

For any stochastic process X(t), t ∈ [0, 1] in Rd it is possible to define its functional,
known as local time (at zero), by taking a limit of

Lε =

1∫
0

fε(X(t))dt

in L2(Ω) as ε→ 0+, where fε(x) = (2πε)−d/2e−
|x|2
2ε approximates δ-measure at zero. It

is well-known that if X is a d-dimensional Brownian motion then the limit exists only
for d = 1. Similarly self-intersection local time can be defined as a limit of

γε =

1∫
0

1∫
0

fε(X(t)−X(s))dtds

and again it exists in L2 only for d = 1 if X is a d-dimensional Brownian motion. How-
ever, it is well-known that in the case d = 2 the trajectory of Brownian motion has
self-intersections almost surely (and in fact multiple self-intersections, see [4]). This fact
suggests that there may be some meaningful functionals describing self-intersections even
though self-intersection local time does not exists. Such functional, named renormalized
self-intersection local time, can be obtained if we replace γε with “renormalized” γε−Eγε
in the definition of self-intersection local time (for proof and more details see [11] and
references therein). This remarkable fact is known to be important for describing the
behaviour of the trajectory of two-dimensional Brownian motion. In particular renor-
malized self-intersection local time appears in the asymptotics of the area of the small
neighbourhood of the trajectory of two-dimensional Brownian motion (see [10]).

But renormalized self-intersection local time does not exist for Brownian motion in
any higher dimensions (results confirming this can be found in [7] or [13]). Let us take
a fractional Brownian motion with Hurst parameter H as another example. It follows
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from results in [13] (see Theorem 6.2 in [13]) that renormalized version of self-intersection
local time exists in L2 for fractional Brownian motion and its self-intersection local time
does not exist in L2 at the same time if and only if H ∈ [ 1

d ,
3
2d ) and d > 2.

It was suggested (see [7] and references therein) that it is possible to obtain addi-
tional information about local times utilizing Ito-Wiener expansion, which can be built
for any square integrable functional of Brownian motion. More generally if the process
is Gaussian or a functional of Gaussian, then Ito-Wiener expansion on a Gaussian space
(separable Hilbert space with Gaussian measure) can be used to study local times. Addi-
tionally local time can be redefined to be a limit of approximations in Sobolev-Watanabe
spaces (Sobolev spaces on Gaussian space). There are handful of papers devoted to this
topic, but we only mention [7] and [13] (see bibliography in the latter paper for more
references).

Unfortunately the introduction of Sobolev-Watanabe spaces does not allow us to define
local time or self-intersection local time for Brownian motion in dimension 3 or greater
(even with renormalization). However in [3] another space of functionals on Gaussian
space were introduced with the help of special “smoothing” operators. It turned out
that the renormalized local time for Brownian motion in any dimension exists in such
spaces. Moreover in [14] it was shown that the same is true for any diffusion built as
a solution of stochastic differential equation with smooth coefficients under the condi-
tion of non-degeneracy of the corresponding diffusion matrix. In other words, diffusions
satisfying this condition have, roughly speaking, similar behaviour with regard to local
time existence. But there are a lot of diffusions that do not satisfy the condition of
non-degeneracy of their diffusion matrix, which behaviour is quite different. One class of
such processes is called Brownian motions on a Lie group (the corresponding definition
can be found in [8]).

In this paper we are going to develop several ideas, which can be useful in the in-
vestigation of local times (and self-intersection local times) for a Brownian motion on a
Carnot group (as defined in [2] a Carnot group is a special case of a Lie group on Rd).
In particular we show some upper bounds for transition densities of a specific Brownian
motion on a Carnot group, which can be used to estimate expectations of local time
approximations, such as Lε. As an application, we establish the existence in L2 of the
renormalized local time of a Levy area of the increments of standard two-dimensional
Brownian motion.

We define Levy area of the increments of two-dimensional Brownian motion as a two-
parameter one-dimensional process:

(1) Bs,t(W ) =

t∫
s

(W 1
u −W 1

s )dW 2
u −

t∫
s

(W 2
u −W 2

s )dW 1
u

where (W 1
t ,W

2
t ) is a two-dimensional Brownian motion. We introduce a definition of local

time for the Levy area of increments of two-dimensional Brownian motion by replacing
X(t) − X(s) with Bs,t in the definition of self-intersection local time. The role of self-
intersections of X is now taken by zeroes of Bs,t. We will show that this local time does
not exist in L2 but its renormalized version does. As we will see Bs,t can also be defined
as a coordinate of the increments of a specific Brownian motion on a Carnot group, if
subtraction is considered w.r.t. group operation. Therefore bounds for the transition
density of a Brownian motion on a Carnot group are applicable.

It is worth noting why we have chosen to consider Brownian motions on a Carnot
group. The most important reason is that its behaviour can approximate in some sense
the local behaviour of a solution of a large class of stochastic differential equations with
smooth coefficients. This approximation was discovered in [12], where hypoelliptic dif-
ferential operators in the form of sum of squares of smooth vector fields plus a first-order
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term were considered. The authors studied the regularity of such operators comparing
them to the operators of the same kind, built as a sum of squares of vector fields from
some graded Lie algebra. But any Brownian motion on a Carnot group is a Markov
process, such that the generator of its semigroup has the same form as approximating
operators used in [12] (because any Carnot group is a Lie group on whole Euclidean
space, which Lie algebra is stratified and therefore graded). See also [6] for a different
approach and a different proof of such approximation. Additionally, as discussed in [1],
Brownian motion on Carnot group is an important object in the theory of stochastic
flows.

Let us briefly describe the main ideas of this paper. To show the existence of renormal-
ized local time we need to have a good representation for ELε1Lε2−ELε1ELε2 , where Lε
are local time approximations. In [13] one such representation was shown for Gaussian
processes (using Ito-Wiener expansion). We are going to use ideas of [14] because any
Brownian motion on a Carnot group is also a solution of a stochastic differential equation.
We consider two stochastic processes Y r1 , Y

r
2 instead of one process X. Each Y ri on its

own is equal in distribution to X, but both together depend smoothly on an external pa-
rameter r ∈ [0, 1], such that for r = 0 the processes Y r1 , Y

r
2 are independent and for r = 1

they are identical. It means that we can write down the difference ELε1Lε2 −ELε1ELε2
as an integral on the parameter r using the joint density of the processes Y r1 , Y

r
2 :

ELε1Lε2 − ELε1ELε2 =

=

1∫
0

1∫
0

(Efε1(X(s))fε2(X(t))− Efε1(X(s))Efε2(X(t)))dsdt

Efε1(X(s))fε2(X(t))− Efε1(X(s))Efε2(X(t)) =

= Efε1(Y 1
1 (s))fε2(Y 1

2 (t))− Efε1(Y 0
1 (s))fε2(Y 0

2 (t))) =

=

1∫
0

d

dr
Efε1(Y r1 (s))fε2(Y r2 (t))dr

If X is a Brownian motion on a Carnot group then we can choose (Y r1 , Y
r
2 ) such that it

is also a Brownian motion on a Carnot group and the derivative w.r.t. r of its density
can be represented using the derivative w.r.t. r of the corresponding generator.

The coefficients of the stochastic differential equation for a Brownian motion on a
Carnot group are such that the corresponding diffusion matrix is, generally speaking, de-
generate (however the Hormander condition is always satisfied, therefore the smooth tran-
sition density exists), therefore the approach of [14], where we had the non-degeneracy of
the diffusion matrix, is not directly applicable. To replicate the argument from [14] we
have to establish some estimates for the transition density of a specific Brownian motion
on a Carnot group that are uniform w.r.t. external parameter. Fortunately we are able
to obtain such estimates from the uniform parabolic Harnack inequality shown in [16],
which can be derived from the “uniform” version of Hormander condition.

It is easy to see that the representation of L2-norm of Lε−ELε shown above contains
some multiple integrals of the derivatives of the joint density of Y r1 , Y

r
2 . We can use upper

bounds for the joint density directly to find some estimates of such integrals, but they
appear to be too weak and not suitable for our purposes. Fortunately, as we discovered
in a similar situation in [14], there is a way to produce more accurate estimates for such
integrals. We can “move” the derivatives (first order differential operators) inside the
integral and apply the upper bounds for the density in a several different ways, which
improves overall estimate. This can be done using integration by parts and expressing
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the derivatives of the transition density w.r.t. starting point in terms of the derivatives
w.r.t. ending point and vice versa. The latter is well-known and easy for Gaussian
density, since in this case the transition density is a function of the difference between
the starting point and the ending point. In the general situation of [14] we had to estimate
additional terms appearing after “moving” the derivatives. The transition density of a
Brownian motion on a Carnot group is a function of the difference w.r.t. Carnot group
addition between the starting point and the ending point. We are able to show that this
allows us to “move” the derivatives and improve our estimates.

In the second section we describe our main objects and recall some well-known facts
about the transition density of a Brownian motion on a Carnot group. Then we introduce
a uniform Hormander condition and show how to obtain it for a specific Brownian motion
on a Carnot group with the dependency on an external parameter. After that we establish
uniform estimates for the density of a Brownian motion on a Carnot group. In the next
section we describe how to obtain sharp estimates for the integrals of the derivatives of
the density of a Brownian motion on Carnot group. And in the last section we prove
the existence of renormalized local time for the Levy area of the increments of two-
dimensional Brownian motion.

2. Brownian motion on a Carnot group

Below we give a short description of the notion of Carnot group, Brownian motion
on a Carnot group and related objects. For more details about Carnot groups we refer
to [2]. Brownian motion on a Lie group was introduced in [8].

First we recall a definition of Carnot group from [2].

Definition 1. Lie group G = (Rn, •) is called a Carnot group if

1. G as a Euclidean space can be split into a direct product of Euclidean spaces

Gi of fixed dimensions, say n1, n2, . . . , nk (assuming
∑k
i=1 ni = n), such that the

following linear isomorphism of G (called dilation)

βλ(v1, v2, . . . , vk) = (λv1, λ
2v2, . . . , λ

kvk), vi ∈ Gi

is a group automorphism of G for all positive λ.
2. Let g be a Lie algebra of left-invariant vector fields on G. Fix a coordinate

system x = (x1, . . . , xn) ∈ G such that x∑l−1
i=1 ni+1, . . . , x

∑l
i=1 ni

define a vector

in Gl. Denote as L1, . . . , Ln such left-invariant vector fields on G, i.e. elements
of g, that Li|x=0 = ∂

∂xi
|x=0. Then the smallest Lie subalgebra of g containing

L1, . . . , Ln1 is g.

Note that left-invariance of Li is a commutation with the left-shift

(Lif(y • ·))(x) = (Lif)(y • x).

and that there always exists a unique left-invariant vector field with given value at x = 0.
As shown in [2] such Lie group is also a stratified Lie group. Stratified Lie group is a

Lie group such that

1. it admits stratification – a direct sum decomposition of its Lie algebra g = ⊕ki=1gi,
such that [g1, gi] = gi+1, 1 6 i 6 k − 1 and [g1, gk] = 0,

2. the smallest Lie subalgebra of g containing g1 is g.

We note that dim(gi) = ni and L∑l−1
i=1 ni+1, . . . , L

∑l
i=1 ni

is a basis of gl. If Li ∈ gl we

denote d(Li) = l. We also denote d(G) =
k∑
i=1

ini =
n∑
i=1

d(Li), which is called homogeneous
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dimension of G. We can define a convolution for any measurable non-negative (or square-
integrable) pair of functions f and g on G as

(2) (f ∗G g)(x) =

∫
G

f(y−1 • x)g(y)dy

It is easy to see that this operation is associative but, generally speaking, not commuta-
tive.

We say that a polynomial Q(x) on Rn is a homogeneous polynomial on G of ho-
mogeneous degree d = d(Q) if for all real λ and x ∈ G the following equality holds:
Q(βλ(x)) = λdQ(x). It is well known that every smooth (meaning infinitely differen-
tiable) function that satisfies such relation for a positive integer d is in fact a polynomial
on G. If we take any homogeneous polynomial Q of homogeneous degree d(Q) then
LiQ is a homogeneous polynomial of homogeneous degree d(LiQ) = d(Q)− d(Li). Note
that zero polynomial is a homogeneous polynomial of any degree and it is the unique
homogeneous polynomial of negative degree.

Below we list several well-known facts about Carnot groups, which are helpful in our
investigation.

1. Vector fields Li are homogeneous with homogeneous degree d(Li). If we consider
Li as a function from G to G, then the homogenuity of Li is defined as follows:

βλ(Li(x)) = λd(Li)Li(βλ(x)).

In the operator sense it is equivalent to

(Lif(βλ(·)))(x) = λd(Li)(Lif)(βλ(x)).

2. Vector field Li has the following form

(3) Li =

n∑
j=1

aij(x)
∂

∂xj

in the basis from the definition of G, where the functions aij are polynomials
homogeneous on G of degree d(Lj) − d(Li), and therefore aij does not depend
on xl if d(Ll) > d(Lj) and equal to zero if d(Lj) < d(Li) (see for example p.35
of [2]).

3. The group operation on G can be represented as

(4) (x • y)i = xi + yi +Qi(x, y)

in the basis from the definition of G, where Qi are polynomials homogeneous on
G of degree d(Li), and Qi does not depend on xj , yj if d(Lj) > d(Li) (see for
example Theorem 1.3.15 of [2]).

4. Any map on G of the form x→ x • y, x→ y • x or x→ x−1 preserves Lebesgue
measure.

5. The integral
∫
G

Lif(x)dx is equal to 0, as long as Lif exists and is integrable,

which enables us to integrate by parts with Li.

Denote as X(W ) a strong solution of

(5) dXt =

n1∑
i=1

Li(Xt) ◦ dW i
t ;X(0) = x

where Wt is a n1-dimensional Wiener process and ◦ before dW means that corresponding
stochastic integral w.r.t. W is a Stratonovich integral (see [9]). There is a unique strong
solution since in our chosen basis this system of equations is “triangular” (due to (3))
and can be integrated equation by equation in some order. The solution is a Brownian
motion on a Lie group G in the sense of [8] (see proof of Proposition 1 below).
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The definition of Carnot group provides that L1, . . . , Ln1
satisfy the Hormander con-

dition and therefore (see for example, Theorem 7.4.20 in [15]) there is a density p(t, x, ·)
of Xt(W ) for each t > 0 and X(0) = x, which is smooth in all variables for t > 0. In the
following proposition we gathered several important well-known properties of p.

Denote D = 1
2

n1∑
i=1

L2
i .

Proposition 1. 1. For every continuous f with compact support the function

ψ(t, x) =

∫
Rn

p(t, x, y)f(y)dy

is a solution to the following Cauchy problem

(6) (D − ∂

∂t
)ψ(t, x) = 0, (t, x) ∈ (0,+∞]× Rn;ψ(0+, x) = f(x), x ∈ Rn

Moreover

(D − ∂

∂t
)p(·, ·, y)(t, x) = 0

for all x, y ∈ G and t > 0.
2. There exists a function p̃(t, x) on (t, x) ∈ (0,+∞) × Rn, such that p(t, x, y) =

p̃(t, y−1 • x).
3. For all 0 < s < t we have p̃(t, ·) = p̃(s, ·) ∗G p̃(t− s, ·)
4. For all λ > 0 we have p̃(λ−2t, x) = λd(G)p̃(t, βλ(x))

Proof. Below we state several results from [8] that we need. First of all there exists a
unique Markov process on G with the transition function F such that it is connected
with the operator D by the following formula

(7) Df(x) = lim
t→s+

1

t− s

∫
G

f(y)F (s, x, t, dy)

for any twice continuously differentiable function f (we define the transition function
F (s, x, t, A) as a probability that the process is in the set A at the time t if it started
from x at the time s). Additionally the transition function F is time-homogeneous
and G-invariant. It was also proven that

∫
G

f(y)F (s, x, t, dy) is a solution to a Cauchy

problem (6).
If we apply Ito formula to f(X) we obtain easily that (7) holds if F is the transition

function of X. Therefore the Markov process built for D is in fact coincides with X .
Since the transition function of X is an integral of the transition density (which exists
because of the Hormander condition as we mentioned above), all our properties follow
except for homogenuity w.r.t. dilations (property 4). But it can be proven if we find
stochastic differential equation for a process βλ(X(λ−2t)), use homogenuity of Li, and
notice that resulting equation coincides with (5).

See also Proposition 1.68 on p.56 of [5] for an alternative proof.
�

In the following we will simply write p(t, x) instead of p̃(t, x). Note that the solution
of the Cauchy problem (6) can be written as ψ(t, x) = (p(t, ·) ∗G f)(x) We emphasize
that according to our definitions p(t, x, y) = p(t, y−1 •x) is a density of Xt at y if X0 = x,
which satisfies (D − ∂

∂t )p(·, ·, y) = 0.

Example 1. Suppose that G is a Heisenberg group, or more precisely that we have

(8)
n = 3, k = 2, n1 = 2, n2 = 1

x • y = (x1 + y1, x2 + y2, x3 + y3 + x1y2 − x2y1)
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It is well-known that such operation defines a Carnot group on R3 and that vector fields
Li are as follows:

L1 =
∂

∂x1
− x2

∂

∂x3

L2 =
∂

∂x2
+ x1

∂

∂x3

L3 =
∂

∂x3

Solving (5) we can see that p(t, x−1) is a joint density of (W 1
t ,W

2
t , B0,t(W )). There-

fore density of Bs,t is an integral of p and if we can estimate p then we can estimate
expectations of functions of Bs,t.

Now we are going to construct another Brownian motion on a Carnot group, that
depends on a parameter r ∈ [0, 1]. Let {W1,r,s, s > 0} and {W2,r,t, t > 0} be two
n1-dimensional Brownian motions, that are jointly Gaussian, such that covariation ma-
trix between vectors W1,r,s and W2,r,t equal to rmin(s, t)I. It turns out that Y rt =
(Xt(W1,r), Xt(W2,r)) is a Brownian motion on the Carnot group G×G (it follows from
the proof of Proposition 2 below). We use the same notation • for group operation on
G×G: if x1, y1, x2, y2 ∈ G and z1 = (x1, y1), z2 = (x2, y2) ∈ G×G then

z1 • z2 = (x1 • x2, y1 • y2)

Although Y is essentially different from X defined on G×G for r 6= 0 (if r = 0 then
Y is the same as X defined on the Carnot group G ×G), it has similar properties. Let
pr(t, x, ·) be a density of Y rt for each t > 0 and Y r0 = x. Denote

Dr =
1

2

n1∑
i=1

(Lxi )2 +
1

2

n1∑
i=1

(Lyi )2 + r

n1∑
i=1

Lxi L
y
i .

If we define

V ri =

√
1 + r

2
(Lxi + Lyi ), V ri+n1

=

√
1− r
2

(Lxi − L
y
i )

for i = 1, . . . , n1 then Dr =
2n1∑
i=1

(V ri )2. Note that {V ri , i = 0, . . . , 2n1} is a set of smooth

vector fields, satisfying the Hormander condition for r ∈ (0, 1).

Proposition 2. All statements in Proposition 1 remains true for any r ∈ (0, 1) if G, D
and p are replaced by G×G, Dr and pr respectively.

Proof. By the definition Y rs is a solution of two copies of the equation (5) withWt replaced
by W1,r,t and W2,r,t respectively. Applying Ito formula to f(Y rt ) (see Theorem 17.18
in [9]) we can find an equivalent of (7) for Y r(t) with D replaced by Dr. Therefore the
proof of Proposition 1 is applicable with G, D and p replaced by G × G, Dr and pr
respectively. �

The most important consequence of the above is that pr(t, y
−1 • x) is a density of Yt

at y if Y0 = x, and it satisfies (Dr − ∂
∂t )pr(t, y

−1 • ·) = 0.

3. Uniform Hormander condition

We have already mentioned that {V ri , i = 0, . . . , 2n1} satisfy the Hormander condition
for r ∈ (0, 1). But they depend continuously on r and in the limit as r → 1+ we get
degeneration (for r = 1 we have V ri+n1

= 0 and the Hormander condition is not satisfied).
Therefore a lot of care should be taken in order to obtain estimates for pr that are uniform
w.r.t r ∈ (0, 1).



SOME UNIFORM ESTIMATES FOR TRANSITION DENSITY . . . 69

Such estimates can be found under the uniform Hormander condition (w.r.t. external
parameter), that was proposed in [16]. Under this condition the authors proved a uniform
parabolic Harnack inequality. We are going to introduce a change of variables that makes
Hormander condition uniform on r. As a result we will be able to show a variant of
uniform parabolic Harnack inequality for pr which can be used to prove several uniform
estimates for pr.

Define a pair new variables as u = x+y
2 , v = x−y

2
√

1−r . The corresponding change

of variables applies to any differential operator in a standart way. A new operator
D̃r is related to the old as follows D̃rf(u, v) = Drf(u(x, y), v(x, y)). Such operation

commutes with sum and multiplication of operators and therefore D̃r =
2n1∑
i=1

(Ṽ ri )2, where

Ṽ ri f(u, v) = V ri f(u(x, y), v(x, y)). After applying change of variables to the derivatives
w.r.t. x, y we obtain that operator ∂

∂xi
changes into

1

2

∂

∂ui
+

1

2
√

1− r
∂

∂vi
,

and operator ∂
∂yi

changes into

1

2

∂

∂ui
− 1

2
√

1− r
∂

∂vi

Therefore denoting Lxi =
n∑
j=1

aij(x) ∂
∂xj

we can find for i = 1, . . . , n1

Ṽ ri =

√
1 + r

4

n∑
j=1

(aij(u+ v
√

1− r) + aij(u− v
√

1− r)) ∂

∂uj
+

+

√
1 + r

4
√

1− r

n∑
j=1

(aij(u+ v
√

1− r)− aij(u− v
√

1− r)) ∂

∂vj
,

Ṽ ri+n1
=

√
1− r
4

n∑
j=1

(aij(u+ v
√

1− r)− aij(u− v
√

1− r)) ∂

∂uj
+

+
1

4

n∑
j=1

(aij(u+ v
√

1− r) + aij(u− v
√

1− r)) ∂

∂vj
.

It is easy to see that in the limit as r → 1+ each Ṽ ri converges to some smooth vector

field. Below we will show that Ṽ ri satisfy Hormander condition uniformly with respect
to r ∈ (0, 1). But first we have to introduce the corresponding definition.

For every multiindex J = (j1, . . . , jk) we denote repeated commutation of vector fields
as VJ = [Vj1 , [Vj2 . . . [Vjk−1

, Vjk ] . . .]]. The following definition is taken from [16] (and
simplified, since we have Rn instead of general n-dimensional manifold).

Definition 2 (N.Th. Varopolous, L. Saloff-Coste, T. Coulhon). Smooth vector fields
Hr
i , i = 1, . . . ,m on Rn defined for some set of parameters r are said to satisfy Hormander

condition uniformly with respect to r, if

1. all the coefficients of Hr
i and all their derivatives are bounded on any compact

uniformly with respect to r,
2. for any x ∈ Rn there exists a set of multiindices J1, . . . , Jn, such that for all r the

matrix M(x) = (Hr
J1

(x), . . . ,Hr
Jn

(x)) is non-degenerate and there exists an open

neighbourhood of x such that the coefficients of matrices M(x) and M−1(x) and
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all their derivatives are bounded in this neighbourhood uniformly with respect to
r.

The following theorem can be found in [16]. It shows that the uniform Hormander
condition provides uniform estimates for solutions of equations similar to (Dr− ∂

∂t )ψ = 0.
Compared to the original we have Rn instead of smooth connected manifold.

Theorem 1 (N.Th. Varopolous, L. Saloff-Coste, T. Coulhon). Suppose that Hr
i , i =

1, . . . ,m are smooth vector fields on Rn satisfying Hormander condition uniformly with
respect to r, hr and Hr

0 is a smooth function and vector field respectively, both bounded

with all derivatives uniformly w.r.t. r on any compact and let Ar =
m∑
i=1

(Hr
i )2 +Hr

0 +hr.

Then for any compact K in Rn, t1 < t2 < t3 < t4, non-negative integer i and multiindex
J = (j1, . . . , jl) there exists a constant C > 0 such that for all values of parameter r, and
every positive function ψ satisfying (Ar − ∂

∂t )ψ = 0 on [t1, t4]× Rn we have:

(9) sup
x∈K
|( ∂
∂t

)i(
∂

∂x
)Jψ(t2, x)| 6 C inf

x∈K
ψ(t3, x)

where ( ∂
∂x )J = ∂

∂xj1
. . . ∂

∂xjl
.

These inequality is called a parabolic Harnack inequality, and, since we also have
uniformity w.r.t. r, we call it a uniform parabolic Harnack inequality. To make use of
this theorem we need to check the uniform Hormander condition for Ṽ ri .

Lemma 1. Vector fields Ṽ ri , i = 1, . . . , 2n1 satisfy Hormander condition uniformly with
respect to r ∈ (0, 1).

Proof. We know that Li, i = 1, . . . , n1 satisfy the Hormander condition, i.e. there exists
a set of multiindices J1, . . . , Jn and smooth functions bij , b

−1
ij for i, j = 1, . . . , n, such

that

LJi =

n∑
j=1

bij
∂

∂xj

∂

∂xi
=

n∑
j=1

b−1
ij LJj

Let us define more multiindices Jn+1, . . . , J2n such that ji+n,1 = ji,1+n1 and ji+n,k = ji,k
for k > 1. The expanded set of multiindices corresponds to some commutators for
operators V ri . Calculating these commutators directly we obtain

V rJi = (1 + r)|Ji|/22−|Ji|(LxJi + LyJi)

and

V rJi+n =
√

1− r(1 + r)(|Ji|−1)/22−|Ji|(LxJi − L
y
Ji

)

for i = 1, . . . , n, where |Ji| is the number of indices in the multiindex Ji. We note that
LxJi , L

y
Ji

can be written as a linear combination of V rJi , V
r
Ji+n

. After doing that we get for

each r ∈ (0, 1)

∂

∂xi
=

n∑
j=1

b−1
ij (x)2|Jj |−1((1 + r)−|Jj |/2V rJj +

1√
1− r

(1 + r)−(|Jj |−1)/2V rJj+n)

∂

∂yi
=

n∑
j=1

b−1
ij (y)2|Jj |−1((1 + r)−|Jj |/2V rJj −

1√
1− r

(1 + r)−(|Jj |−1)/2V rJj+n)
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Changing variables to u = x+y
2 , v = x−y

2
√

1−r (same as above) we can see that

Ṽ rJi =

=

n∑
j=1

(bij(u+ v
√

1− r) + bij(u− v
√

1− r))(1 + r)|Jj |/22−|Jj |−1 ∂

∂uj
+

+
1√

1− r

n∑
j=1

(bij(u+ v
√

1− r)− bij(u− v
√

1− r))(1 + r)|Jj |/22−|Jj |−1 ∂

∂vj
,

Ṽ rJi+n =

=
√

1− r
n∑
j=1

(bij(u+ v
√

1− r)− bij(u− v
√

1− r))(1 + r)(|Jj |−1)/22−|Jj |−1 ∂

∂uj
+

+

n∑
j=1

(bij(u+ v
√

1− r) + bij(u− v
√

1− r))(1 + r)(|Jj |−1)/22−|Jj |−1 ∂

∂vj
,

and

∂

∂ui
=

=

n∑
j=1

(b−1
ij (u+ v

√
1− r) + b−1

ij (u− v
√

1− r)2|Jj |−1(1 + r)−|Jj |/2Ṽ rJj+

+
1√

1− r

n∑
j=1

(b−1
ij (u+ v

√
1− r)− b−1

ij (u− v
√

1− r)2|Jj |−1(1 + r)−(|Jj |−1)/2Ṽ rJj+n

∂

∂vi
=

=
√

1− r
n∑
j=1

(b−1
ij (u+ v

√
1− r)− b−1

ij (u− v
√

1− r)2|Jj |−1(1 + r)−|Jj |/2Ṽ rJj+

+

n∑
j=1

(b−1
ij (u+ v

√
1− r) + b−1

ij (u− v
√

1− r)2|Jj |−1(1 + r)−(|Jj |−1)/2Ṽ rJj+n

We can check that all the coefficients in the above and their derivatives are bounded
on any compact in R2n uniformly with respect to r. Indeed every coefficient satis-
fies this property in an obvious way except those of the form 1√

1−r (f(u + v
√

1− r) −
f(u− v

√
1− r)) (omitting an additional uniformly bounded multiplier), where f is some

smooth function that does not depend on r. But every such expression can be repre-

sented as
1∫
−1

n∑
i=1

vif
′

i (u+ vγ
√

1− r)dγ. Now it is easy to see that this expression and all

of its derivatives w.r.t. u,v are also bounded on any compact uniformly with respect to
r. Therefore we have the desired uniform Hormander condition. �

As a consequence we can establish something similar to a uniform parabolic Harnack
inequality for the solutions of (Dr − ∂

∂t )ψ = 0.

Corollary 1. For any fixed compact K in R2n, 0 < s < t and positive integers a, b and
multiindices J1 = (J11, . . . , J1a), J2 = (J21, . . . , J2b) with values 1, 2, . . . , n there exists a
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constant C > 0 such that the following inequality holds for all r ∈ [0, 1] and every positive
solution ψ of (Dr − ∂

∂t )ψ = 0 on (0,+∞)× R2n

(10) sup
(x,y)∈Kr

|( ∂
∂x

+
∂

∂y
)J1(

∂

∂x
− ∂

∂y
)J2ψ(s, x, y)| 6 C(1− r)−b/2 inf

(x,y)∈Kr
ψ(t, x, y)

where Kr = {(x, y) : (x+y
2 , x−y

2
√

1−r ) ∈ K} and ( ∂
∂x −

∂
∂y )J1 = ( ∂

∂xJ11
− ∂

∂yJ11
) . . . ( ∂

∂xJ1a
−

∂
∂yJ1a

) (( ∂
∂x + ∂

∂y )J2 is defined similarly).

Proof. We can apply change of variables as above (u = x+y
2 , v = x−y

2
√

1−r ) to any positive

solution ψ of (Dr− ∂
∂t )ψ = 0. As a result we obtain positive solution ψ̃ of (D̃r− ∂

∂t )ψ̃ = 0.

Then, due to Lemma 1, Theorem 1 provides that for any fixed compact K in R2n,
0 < s < t and multiindices J1, J2 there exists a constant C > 0 such that

sup
(u,v)∈K

|( ∂
∂u

)J1(
∂

∂v
)J2 ψ̃(s, u, v)| 6 C inf

(u,v)∈K
ψ̃(t, u, v)

where constant C does not depend on choice of r and ψ.
Then we change variables back to x, y in the inequality, noting that the derivative ∂

∂ui
transforms to

∂

∂xi
+

∂

∂yi
,

and ∂
∂vi

transforms to
√

1− r( ∂

∂xi
− ∂

∂yi
)

We obtain the inequality (10) and the corollary is proven. �

Note that all the proofs in this section do not use left-invariance or homogeneuity of
Li or any other property related to the Carnot group structure. It means that all the
results in this section are true if L1, . . . , Ln1 is simply a set of smooth vector fields on
Rn satisfying the Hormander condition.

4. Uniform density estimates

We are going to show several estimates for pr, which depend explicitly on r. We
sometimes write pr(t, x, y) instead of pr(t, z) if z = (x, y).

We start with a uniform bound for the derivatives of pr, that plays a key role in the
estimates of the next section. Non-uniform version of this estimate can be obtained from
Theorems IV.4.2 and IV.4.3 of [16] (see also Theorem 3 below).

Theorem 2. For any non-negative integers a, b and any positive number γ > 1 there
exists a constant C > 0, such that for all t > 0, x, y ∈ G, r ∈ (0, 1) and multiindices
J1 = (J11, . . . , J1a), J2 = (J21, . . . , J2b) with values 1, 2, . . . , n we have

(11) |LxJ11 . . . L
x
J1aL

y
J21

. . . LyJ2bpr(t, x, y)| 6 Ct−d/2(1− r)−(a+b)/2pr(γt, x, y)

where d =
a∑
l=0

d(LJ1l) +
b∑
l=0

d(LJ2l).

Proof. We use Corollary 1 for a set of positive solutions ψ(t, x, y) = pr(t, z • x,w • y)
of (Dr − ∂

∂t )ψ = 0, where z, w ∈ G. We choose compact K as [0, 1]2n, s = 1 and
t = γ > 1 and obtain, after combining several estimates with different multiindices and
setting x = y = 0 in supremum and infimum,

|( ∂
∂x

)J1(
∂

∂y
)J2pr(1, z • x,w • y))|x=y=0| 6 C(1− r)−(a+b)/2pr(γ, z, w)

for all r ∈ (0, 1) and z, w ∈ G.
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Let us notice that

RJ1f(x) = (
∂

∂y
)J1f(x • y)|y=0

is a left-invariant differential operator on G, which is equal to ( ∂
∂x )J1 at x = 0. On

the other hand, the product LxJ11 . . . L
x
J1a

is also left-invariant and its value at x = 0

can be represented as a weighted sum of the products of ∂
∂xi

, i = 1, . . . , n (each weight

depends only on the group structure and J1). Therefore this product is a weighted sum

of operators RJ̃1 with several different multiindices J̃1. Note that the number of the

elements in each J̃1 is always less or equal a. Consequently we obtain the following
inequality

|LxJ11 . . . L
x
J1aL

y
J21

. . . LyJ2bpr(1, x, y))| 6 C(1− r)−(a+b)/2pr(γ, x, y)

Now recall that pr(t, x, y) = p(1, βt−1/2(x), βt−1/2(y)) and

Lxi f(βt−1/2(x)) = t−d(Li)/2L
β
t−1/2 (x)

i f(βt−1/2(x)).

After simple transformations we obtain (11). �

It is well-known (see for example [16]) that the density of a Brownian motion on a
Carnot group has Gaussian-like upper and lower bounds. Instead of standart Euclidean
norm those bounds contain the so-called homogeneous norm, which can be defined us-
ing the Carnot-Caratheodory distance that correspond to L1, . . . , Ln1 . The following
definition is taken from [16].

Definition 3. Let CL be a set of absolutely continuous paths ϕ : [0, 1]→ G satisfying

d

dt
ϕ(t) =

n1∑
i=1

ai(t)Li(ϕ(t))

almost everywhere on t ∈ [0, 1] w.r.t. Lebesgue measure for some measurable functions
ai. Then

ρ(x, y) = inf
ϕ∈CL,ϕ(0)=x,ϕ(1)=y

1∫
0

(

n1∑
i=1

a2
i (t))

1/2dt

is called a Carnot-Caratheodory distance that corresponds to L1, . . . , Ln1
.

In our case, when all Li are left-invariant and homogeneous vector fields on the Carnot
group G, ρ is also left-invariant and homogeneous, i.e. ρ(z • x, z • y) = ρ(x, y) and
ρ(βλ(x), βλ(y)) = λρ(x, y). We will denote N(x) = ρ(x, 0), which can be called homoge-
neous norm on G, since it is homogeneous w.r.t. dilations and satisfies triangle inequality
w.r.t addition on G (due to the homogenuity and left-invariance of ρ).

Suppose there is another set of smooth vector fields L̃i, i = 1, . . . , n1, such that

Li =

n1∑
j=1

bijL̃i

with smooth bounded functions bij , and ρ̃ is a Carnot-Caratheodory distance that corre-

spond to L̃i. Let ϕ, ai be as in the definition of ρ and let ϕ̃ and ãi be the corresponding

functions in the definition of ρ̃. Then we can choose ϕ̃ = ϕ with ãj(t) =
n1∑
i=1

bij(ϕ(t))ai(t)
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and therefore

(12) ρ̃(x, y) = inf
ϕ̃∈CL̃,ϕ̃(0)=x,ϕ̃(1)=y

1∫
0

(

n1∑
i=1

ã2
i (t))

1/2dt 6

6 inf
ϕ∈CL,ϕ(0)=x,ϕ(1)=y

1∫
0

(

n1∑
j=1

(

n1∑
i=1

bij(ϕ(t))ai(t))
2)1/2dt 6

6 inf
ϕ∈CL,ϕ(0)=x,ϕ(1)=y

1∫
0

‖B(ϕ(t))‖(
n1∑
i=1

a2
i (t))

1/2dt 6 Cρ(x, y)

for all x, y ∈ G with some constant C > 0, which depends only on the supremum of the
norm of the matrix B = {bij |i, j = 1, . . . , n1}.

Similarly we can define a Carnot-Caratheodory distance ρr(x, y) that correspond to
V r1 , . . . , V

r
2n1

for x, y ∈ G×G and denote Nr(x) = ρr(x, 0), which is also a homogeneous
norm on G×G (in the same sense as above).

Theorem 3. There exist constants C1 > 0, C2 > 0, 0 < γ1 < 1 < γ2 such that for all
x ∈ G, r ∈ (0, 1) and t > 0:

(13) C1Λr(
√
t)−1e−

N2
r (x,y)

2γ1t 6 pr(t, x, y) 6 C2Λr(
√
t)−1e−

N2
r (x,y)

2γ2t

where Λr(a) is a volume of {(x, y) : Nr(x, y) < a}.

Proof. The following result can be found in Theorems IV.4.2 and IV.4.3 of [16]. There
exist constants C1 > 0, C2 > 0, 0 < γ1 < 1 < γ2 such that for all x ∈ G and t > 0:

(14) C1Λ(
√
t)−1e−

N2(x)
2γ1t 6 p(t, x) 6 C2Λ(

√
t)−1e−

N2(x)
2γ2t

where Λ(a) is a volume of {x : N(x) < a}. We notice that constants in the inequality (14)
apparently depend only on the constants appearing in a Harnack inequality for operator
D, as it follows from the proof of Theorems IV.4.2 and IV.4.3 of [16]. Therefore, provided
that we have uniform Harnack inequality, we can obtain uniform version of (14).

As before, we define u = x+y
2 , v = x−y

2
√

1−r and p̃r(t, u, v) = pr(t, x(u, v), y(u, v)).

Denote as G2
r a stratified Lie group, which is an image of G × G under transformation

(x, y) → (u, v). The function p appears in (14) as a heat kernel corresponding to D on
G (in terms of [16], where it is defined as kernel of corresponding semigroup). We know
that pr is a heat kernel corresponding to Dr on G×G and since change of variables does
not change the action of the semigroup (for example the integral of the heat kernel is

still equal to 1), then (1 − r)n/22np̃r is a heat kernel corresponding to D̃r on G2
r (the

multiplier is equal to the Jacobian determinant).

Let Ñr and Λ̃r be the functions analogous to Nr and Λr after change of variables, i.e.
Ñr is a homogeneous norm on G2

r (built using Ṽ r) and Λ̃r(a) = λ({x : Ñr(x) < a}).
Since we have uniform Harnack inequality for D̃r the uniform version of (14) holds for

D̃r on G2
r. It means that we have the following inequality

C1Λ̃r(
√
t)−1e−

Ñ2
r (u,v)

2γ1t 6 (1− r)n/2p̃r(t, u, v) 6 C2Λ̃r(
√
t)−1e−

Ñ2
r (u,v)

2γ2t

with some constants C1 > 0, C2 > 0, 0 < γ1 < 1 < γ2 that do not depend on r. We
notice that, as it is easy to see from the definition of Carnot-Caratheodory distance,
Nr changes to Ñr under the transformation (x, y) → (u, v) (i.e. Ñr(u, v) = Nr(x, y)).
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Moreover we can see that

Λ̃r(a) =

∫
Ñ(u,v)<a

dudv = 2−n(1− r)−n/2
∫

N(x,y)<a

dxdy = 2−n(1− r)−n/2Λr(a)

and consequently, after going back to the variables x, y in the inequality above, we
obtain (13).

�

It is obvious that standard multidimensional Gaussian density multiplied by any poly-
nomial is bounded by a constant multiplied by a density of independent Gaussian vari-
ables with a fixed variance greater than 1. We are going to show the similar fact for p
and pr.

Lemma 2. For any positive integer M there are constants C > 0 and γ > 1, such that
for all r ∈ (0, 1), t > 0, x, y ∈ G and i = 1, . . . , nk we have the following inequalities

(15)
|xMi p(t, x)| 6CtMd(Li)/2p(γt, x)

|xMi pr(t, x, y)| 6CtMd(Li)/2pr(γt, x, y)

Proof. We are going to use the notation and facts from the proof of Theorem 3. It is
shown in [16] that K = {Λ(x) = 1} is a compact. We obtain from (14) that

|xMi p(1, x)| 6 |xMi |C2Λ(1)−1e−
N2(x)
2γ2 6

6 sup
y∈G

(|yMi |e
−N

2(y)
4γ2 )C2Λ(1)−1e−

N2(x)
4γ2 6

6 sup
y∈K

sup
λ∈R+

(|βλ(y)i|Me−
N2(βλ(y))

4γ2 )C2C
−1
1 Λ(

√
2γ2

γ1
)Λ(1)−1p(

2γ2

γ1
, x) =

= sup
y∈K

sup
λ∈R+

(|yi|M (4γ2)d(Li)M/2λd(Li)Me−λ
2

)C2C
−1
1 Λ(

√
2γ2

γ1
)Λ(1)−1p(

2γ2

γ1
, x) 6

6 ψNCp(
2γ2

γ1
, x)

where C is a constant that depend only on C1, C2, γ1, γ2, i,M and

ψN = Λ(

√
2γ2

γ1
)Λ(1)−1 sup

y∈K
|yi|M

is another constant depending on γ1, γ2, i,M and additionally on N . Using homogeneuity
we obtain (15) for p.

To prove it for pr we have to repeat the same argument using uniform bound (13) for
pr (in place of (14)). From above arguments we conclude that (15) holds for pr, but with
additional constant

ψNr =
Λr(
√

2γ2
γ1

)

Λr(1)
sup

Nr(x,y)=1

|xi|M

To finish the proof we need to show that for any i,M and a > 1 both sup
Nr(x,y)=1

|xi|M and

Λr(a)
Λr(1) are bounded uniformly w.r.t r ∈ (0, 1).

We notice that ρr is defined using operators V ri , which are linear combinations of
Lxi , L

y
i with coefficients bounded uniformly w.r.t r ∈ (0, 1). For any fixed r ∈ [0, 1) the

reverse transformation exists. Therefore using the definition of ρr we can prove (as we
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mentioned earlier, see (12)) that N0(z) 6 CNr(z) for all z ∈ G, where C is a fixed
constant that does not depend on r. It means that

sup
Nr(x,y)=1

|xi|M 6 sup
N0(x,y)6C

|xi|M

is bounded uniformly w.r.t r ∈ (0, 1).
From the definition of Λr and since homogeneuity holds for Nr, we see that

Λr(a) =

∫
N(x,y)<a

dxdy =

∫
N(β1/a(x),β1/a(y)))<1

dxdy = a2d(G)

∫
N(x,y)<1

dxdy

As a result, Λr(a)
Λr(1) = a2d(G) does not depend on r and Lemma is proved.

�

The following inequality can be derived from (13) if we find an exact behaviour of Λr.
But it is also possible to obtain it using uniform Harnack inequality and homogeneuity.

Lemma 3. There is a constant C > 0, such that for all r ∈ (0, 1), t > 0 and x, y ∈ G:

(16) pr(t, x, y) 6 Ct−d(G)/2(1− r)−n/2

Proof. We use change of variables as before and apply Theorem 1 to solutions ψ(t, u, v) =

p̃r(t, z • u,w • v) of (D̃r − ∂
∂t )ψ = 0.

We choose compact K as [0, 1]2n, s = 1, t = γ > 1 and |J1| = |J2| = 0 and get

sup
(u,v)∈K

p̃r(1, z • u,w • v)) 6 C inf
(u,v)∈K

p̃r(γ, z • u,w • v) 6

6 C
∫
K

p̃r(γ, z • u,w • v)dudv 6 C
∫

R2n

p̃r(γ, z • u,w • v)dudv

for all r ∈ (0, 1) and z, w ∈ G. Changing variables back and setting x = y = 0 in the
supremum we obtain

pr(1, z, w) 6 C(1− r)−n/2

The result follows by homogeneuity of pr. �

Sometimes there is a need to estimate the supremum of p w.r.t. one fixed coordinate,
using the integral w.r.t. the same coordinate (it appears to be very useful in the proof
of Theorem 4 below).

Lemma 4. There are constants C > 0 and γ > 1, such that for all t > 0, x ∈ G and all
positive integers l satisfying d(Ll) = k (i.e. l is one of the numbers nk−1 + 1, . . . , nk):

(17) p(t, x) 6 Ct−k/2
∫
R

p(γt,R(l, x, w))dw

where R(l, x, w) is a function with values in Rn such that (R(l, x, w))l = w and (R(l, x, w))i =
xi for all i 6= l.

Proof. We can use Harnack inequality, cited above (Theorem 1), since p(t, y • x) is a
solution of (D− ∂

∂t )ψ = 0 on (0,+∞)×Rn with respect to the variables t, x for all y, by
Proposition 1.

Choose [0, 1]n as a compact K. There exist constants C > 0 and γ > 1 such that for
all y

sup
x∈[0,1]n

p(1, y • x) 6 C inf
x∈[0,1]n

p(γ, y • x) 6 C inf
x∈[0,1]n

∫
[0,1]

p(γ, y •R(l, x, w))dw
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After setting x = 0 under supremum and infimum we obtain for all y

p(1, y) 6 C

yl+1∫
yl

p(γ,R(l, y, w))dw 6 C
∫
R

p(γ,R(l, y, w))dw

since y • R(l, 0, w) = R(l, y, w + yl) (note that it is not true if d(Ll) < k) due to the
general form (4) of the group operation on a Carnot group. Lemma is proved, because,
according to Proposition 1, we have homogenuity of p: p(t, x) = p(1, βt−1/2(x)) and
(βt−1/2(x))l = t−k/2xl. �

Note that the integral on the right hand side of (17) is also a density of a Brownian
motion on a Carnot group (it is easy to see from the general form of addition on G that
dropping coordinate l produces another Carnot group one dimension lower, if d(Ll) = k).
Therefore (17) can be iterated.

We can also show a uniform version of (17) using Corollary 1.

Lemma 5. There are constants C > 0 and γ > 1, such that for all t > 0, r ∈ (0, 1),
x ∈ G and all positive integers l satisfying d(Ll) = k:

(18) pr(t, x, y) 6 C(1− r)−1/2t−k/2
∫
R

pr(γt,R(l, x, w), y)dw

Proof. The proof is analogous to the proof of Lemma 4, except that we have to use a
uniform version of Harnack inequality given in Corollary 1. We obtain

sup
(x,y)∈Kr

pr(1, z1 • x, z2 • y) 6 C inf
(x,y)∈Kr

pr(1, z1 • x, z2 • y) 6

6 C inf
(x,y)∈Kr

∫
(R(l,x,w),y)∈Kr

pr(γ, z1 •R(l, x, w), z2 • y)dw∫
(R(l,x,w),y)∈Kr

dw

where Kr = {(x, y) : (x+y
2 , x−y

2
√

1−r ) ∈ [0, 1]n}. Note that
∫

(R(l,0,w),0)∈Kr
dw = 2

√
1− r and

therefore we can finish the proof as in Lemma 4. �

5. Estimates for convolutions of derivatives on a Carnot group

In our investigation we are going to estimate the integrals of the derivatives of pr. For
this we need the ability to “move” the derivatives inside the integrals. We have already
mentioned the possibility of integrating by parts with Li. Now our next step is to find
a formula that will allow us to express the action of Li on the variable x of f(y−1 • x)
using the same action on the variable y. The similar ideas can be found in [5] on p.22
and p.26.

Lemma 6. For any smooth function f : G→ R

Lxi f(y−1 • x) =

n∑
j=1

cij(y
−1 • x)Lyj f(y−1 • x)

Lyi f(y−1 • x) =

n∑
j=1

c̃ij(y
−1 • x)Lxj f(y−1 • x)

where cij, and c̃ij are homogeneous polynomials on G of homogeneous degree d(cij) =

d(c̃ij) = d(Lj)− d(Li), such that
n∑
l=1

cilc̃lj = δij i.e. matrix c̃ij is an inverse of cij.
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Proof. We recall that

Lif(x) =
∂

∂yi
f(x • y)|y=0

Denote as {Ri, i = 1, . . . , n} a set of right-invariant differential operators on G such that

Rif(x) =
∂

∂yi
f(y−1 • x)|y=0

Clearly Ri, as well as Li, forms basis in each tangent space (for Ri it follows from the
fact that Rif(x) = Lig(x−1), where g(x) = f(x−1)). Therefore we can express Ri using
Li and vice versa as follows:

Li =

n∑
j=1

cijRj

Ri =

n∑
j=1

c̃ijLj

Coefficients in such representation are determined uniquely as smooth functions on G.
Uniqueness means that applying dilations can not change coefficients, and therefore both
cij and c̃ij are homogeneous functions and hence homogeneous polynomials of homoge-
neous degree d(Li) − d(Lj) (both Li and Ri are homogeneous of order d(Li) as can be
easily seen from the definition). We also note that obviously c̃ij is an inverse matrix of
cij .

Now we can finish the proof:

Lxi f(y−1 • x) = (Lif)(y−1 • x) =

k∑
j=1

cij(y
−1 • x)(Rjf)(y−1 • x) =

=

k∑
j=1

cij(y
−1 • x)

∂

∂ui
f(u−1 • y−1 • x)|u=0 =

k∑
j=1

cij(y
−1 • x)

∂

∂ui
f((y • u)−1 • x)|u=0 =

=

k∑
j=1

cij(y
−1 • x)Lyi f(y−1 • x)

The second formula can be proved in the same way (or we can recall that c̃ij is an inverse
matrix of cij). �

Using Lemma 6 we are able to show some additional properties of pr.

Lemma 7. 1. For all t > 0, x, y ∈ G and 0 6 r < 1 the function pr(t, x, y) is jointly
continuous w.r.t. (r, t, x, y).

2. For all t > 0, x, y ∈ G and 0 6 r < 1 the function pr(t, x, y) is continuously
differentiable w.r.t. r and

(19)
d

dr
pr(t, x, y) =

=

t∫
0

∫
R2n

pr(s, (z1)−1 • x, (z2)−1 • y)

n1∑
i=1

Lz1i L
z2
i pr(t− s, z1, z2)dz1dz2ds

3. There exist C > 0 and γ > 1 such that for all t > 0, r ∈ (0, 1) and x, y ∈ G

(20) | d
dr
pr(t, x, y)| 6 C(1− r)−1pr(γt, x, y)
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Proof. Fix 0 6 r < r + δ < 1. Using Ito formula and taking mathematical expectation
we obtain for every smooth bounded function f

Ef(t, Yr,t) = f(0, Yr,0) + E

t∫
0

(Dr +
∂

∂s
)f(s, Yr,s)ds

Suppose that g(t, x) = (pr+δ(t, ·)∗G×Gh)(x) for some continuous function h with compact
support. We know that g is a solution of the following Cauchy problem: (Dr+δ− ∂

∂t )g = 0,
g(0, x) = h(x) (see Proposition 2), but also that g is a smooth bounded function on
(0,+∞)×R2n. Its smoothness is a consequence of Hormander theorem and boundedness
follow from boundedness of h. Moreover the result of the action of any number of Lx1

i , L
x2
i

(where x = (x1, x2), xi ∈ G) on g(t, x) is also a bounded function and can be represented
as the integral of the action of the same operators on pr, for example

Lx1
i g = ((Lx1

i pr+δ)(t, ·) ∗G×G h)

It follows from the left-invariance of Li and estimates from Theorem 2. Note that we
can freely exchange the integral on G×G with any derivatives w.r.t. x1, x2 or t, since
the function pr is smooth and h has a compact support.

Now we can put f(s, x) = g(t − s, x) for s ∈ [0, t]. Setting Yr,0 = x and rewriting
mathematical expectation of Yr,s using its density pr(s, y

−1 • x) we obtain:

∫
R2n

pr(t, y
−1 • x)h(y)dy = g(t, x)+

+

t∫
0

∫
R2n

pr(s, y
−1 • x)(Dr − ∂

∂t
)g(t− s, y)dyds

Note that (Dr − ∂
∂t )g = (Dr −Dr+δ)g. After calculating the difference Dr+δ −Dr and

replacing g with the integral of pr+δ we get

∫
R2n

(pr+δ − pr)(t, y−1 • x)h(y)dy =

= δ

t∫
0

∫
R4n

pr(s, y
−1 • x)

n1∑
i=1

Ly1i L
y2
i pr+δ(t− s, z

−1 • y)h(z)dzdyds

In order to proceed we need to swap the integrals w.r.t. z and s on the right hand side
(the integrals w.r.t. z and y can be swapped freely due to the estimates from Theorem 2),
and this would be possible, if we show that the function under the integral is absolutely
integrable, i.e. that

(21)

t∫
0

∫
R2n

∣∣∣∣∣∣
∫

R2n

pr(s, y
−1 • x)

n1∑
i=1

Ly1i L
y2
i pr+δ(t− s, z

−1 • y)dy

∣∣∣∣∣∣ dzds < +∞
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If we try to estimate the integral w.r.t. y, z directly using Theorem 2 we obtain

∫
R4n

|pr(s, y−1 • x)

n1∑
i=1

Ly1i L
y2
i pr+δ(t− s, z

−1 • y)|dzdy 6

6 C(1− (r + δ))−1(t− s)−1

∫
R4n

pr(s, y
−1 • x)pr+δ(γ(t− s), z−1 • y)dydz =

= C(1− (r + δ))−1(t− s)−1

∫
R2n

pr(s, y
−1 • x)dy =

= C(1− (r + δ))−1(t− s)−1

Unfortunately this estimate is not integrable w.r.t. s and (21) does not follow. This is
why we need Lemma 6 which we apply now to “move” Li on pr:

∫
R2n

pr(s, y
−1 • x)

n1∑
i=1

Ly1i L
y2
i pr+δ(t− s, z

−1 • y)dy =

=

∫
R2n

n1∑
i=1

(

n∑
j=1

c̃ij(y
−1
1 • x1)Lx1

j )(

n∑
j=1

c̃ij(y
−1
2 • x2)Lx2

j )pr(s, y
−1 • x)·

· pr+δ(t− s, z−1 • y)dy

where we used the fact that
∫

R2n

Lif(x)dx = 0 for any smooth f if Lif is integrable. Now

application of Theorem 2 together with Lemma 2 gives us the following estimate

∫
R2n

∣∣∣∣∣∣
∫

R2n

pr(s, y
−1 • x)

n1∑
i=1

Ly1i L
y2
i pr+δ(t− s, z

−1 • y)dy

∣∣∣∣∣∣ dz 6 C(1− r)−1s−1

To see that note that multiplier t(d(Lj)−d(Li))/2 that comes from estimating c̃ijpr using

Lemma 2 compensates multiplier t−d(Lj)/2 that appears from estimating Ljpr using
Theorem 2.

Since the function min(s−1, (t − s)−1) 6 2t−1 is clearly integrable w.r.t. s we ob-
tain (21). Now we can swap the integrals w.r.t. z and s and since h is any continuous
function with compact support we can drop the integral by h(z)dz to get

(pr+δ − pr)(t, z−1 • x) = δ

t∫
0

∫
R2n

pr(s, y
−1 • x)

n1∑
i=1

Ly1i L
y2
i pr+δ(t− s, z

−1 • y)dyds

where y = (y1, y2), yi ∈ G.
We can find an upper bound for the function on the right hand side, using the same

ideas as above, and additionally Lemma 3 (the difference is that there is no integral w.r.t.
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z):∫
R2n

|pr(s, y−1 • x)

n1∑
i=1

Ly1i L
y2
i pr+δ(t− s, z

−1 • y)|dy 6

6 C(1− (r + δ))−1(t− s)−1

∫
R2n

pr(s, y
−1 • x)pr+δ(γ(t− s), z−1 • y)dy 6

6 C̃(1− (r + δ))−n/2−1(t− s)−d(G)/2−1

∫
R2n

pr(s, y
−1 • x)dy =

= C̃(1− (r + δ))−n/2−1(t− s)−d(G)/2−1

Moving Li onto pr(s, y
−1 • x) as before we also obtain∣∣∣∣∣∣

∫
R2n

pr(s, y
−1 • x)

n1∑
i=1

Ly1i L
y2
i pr+δ(t− s, z

−1 • y)dy

∣∣∣∣∣∣ 6 C(1− r)−n/2−1s−d(G)/2−1

Joining estimates together we can see that

t∫
0

∣∣∣∣∣∣
∫

R2n

pr(s, y
−1 • x)

n1∑
i=1

Ly1i L
y2
i pr+δ(t− s, z

−1 • y)dy

∣∣∣∣∣∣ ds 6
6 C(1− r)−n/2−1t−d(G)/2−1

i.e. δ−1(pr+δ − pr)(t, z−1 • x) is bounded uniformly w.r.t. all variables away from t = 0
and r = 1.

Therefore for any r ∈ (0, 1) and t > 0 the function pr is continuous in r uniformly
w.r.t. other variables. It means that pr(t, x, y) is jointly continuous for all t > 0, x, y ∈ G
and 0 6 r < 1 w.r.t. (r, t, x, y), since we already know that it is jointly continuous w.r.t.
(t, x, y).

Now we can apply the same bounds again and use theorem of bounded convergence
to see that δ−1(pr+δ − pr)(t, z−1 •x) converges to the right hand side of (19) as δ → 0+.
It means that pr is differentiable w.r.t. r and we obtain (19). We can estimate the right
hand side of (19) using Lemma 6, Theorem 2 and Lemma 2 again:∫

R2n

|pr(s, y−1 • x)

n1∑
i=1

Ly1i L
y2
i pr(t− s, z

−1 • y)|dy 6

6 C(1− r)−1(t− s)−1

∫
R2n

pr(s, y
−1 • x)pr(γ(t− s), z−1 • y)dy =

= C(1− r)−1(t− s)−1pr(s+ γ(t− s), z−1 • x) 6 C̃(1− r)−1(t− s)−1pr(γt, z
−1 • x)

∣∣∣∣∣∣
∫

R2n

pr(s, y
−1 • x)

n1∑
i=1

Ly1i L
y2
i pr(t− s, z

−1 • y)dy

∣∣∣∣∣∣ 6
6 C(1− r)−1s−1pr(γt, z

−1 • x)

Combining these two inequalities we get (20).
�
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6. Renormalized local time for the Levy area of the increments of
two-dimensional Brownian motion

Theorem 4. Define

(22) γε =

1∫
0

t∫
0

fε(Bs,t)dsdt

where

(23) fε(x) = (2πε)−1/2e−
|x|2
2ε

The family γε is unbounded in L2(Ω), but there exists a limit of γε − Eγε in L2(Ω) as
ε→ 0+.

The main idea of the proof is that Levy area can be described as a coordinate of a
Brownian motion X on a Carnot group G (see (8)). Therefore we can use the density of
X and Y (i.e. p and pr for the case described in (8)) to study expectations of γε.

We are going to investigate the convergence of γε − Eγε by studying

E(γε1 − Eγε1)(γε2 − Eγε2) = Eγε1γε2 − Eγε1Eγε2
This comes down to deriving a suitable representation for

Ef(Bs1,t1(W ))g(Bs2,t2(W ))− Ef(Bs1,t1(W ))Eg(Bs2,t2(W ))

Lemma 8. There exists functions q and qr for r ∈ [0, 1], continuous w.r.t. (s1, t1, s2, t2, x, y)
in all points where s1, t1, s2, t2 are pairwise distinct, satisfying

(24) Ef(Bs1,t1(W ))g(Bs2,t2(W ))− Ef(Bs1,t1(W ))Eg(Bs2,t2(W )) =

=

∫
R

∫
R

q(s1, t1, s2, t2, x, y)f(x)g(y)dxdy

and

(25) Ef(Bs1,t1(W1,r))g(Bs2,t2(W2,r)) =

∫
R

∫
R

qr(s1, t1, s2, t2, x, y)f(x)g(y)dxdy

We have

(26) q = q1 − q0 =

1∫
0

d

dr
qrdr

Suppose that we have p and pr for the case described in (8). The following represen-
tations holds for q and qr:

1. If s1 < t1 < s2 < t2, then q = 0.
2. If s1 < s2 < t1 < t2, then

(27)

q1(s1, t1, s2, t2, x, y) =

∫
R7

p(s2 − s1, z • (u1, u2, x)−1)·

· p(t1 − s2, z)p(t2 − t1, (v1, v2, y)−1 • z)dzdu1du2dv1dv2

q0(s1, t1, s2, t2, x, y) =

∫
R4

p(t1 − s1, (u1, u2, x)−1)·

· p(t2 − s2, (v1, v2, y)−1)du1du2dv1dv2
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There is a constant C > 0, such that for all s1 < s2 < t1 < t2 and x, y ∈ G

(28)
q1(s1, t1, s2, t2, x, y) 6 C

min(s2 − s1, t2 − t1, t1 − s2)

(s2 − s1)(t2 − t1)(t1 − s2)

q0(s1, t1, s2, t2, x, y) 6 C(t1 − s1)−1(t2 − s2)−1

3. If s2 < s1 < t1 < t2, then for r ∈ (0, 1)

(29) qr(s1, t1, s2, t2, x, y) =

=

∫
R10

p(s1 − s2, u
−1)pr(t1 − s1, (z1, z2, y)−1, w−1)·

· p(t2 − t1, (v1, v2, x)−1 • u • w)dudwdv1dv2dz1dz2

The derivative d
dr qr exists and

(30)
d

dr
qr(s1, t1, s2, t2, x, y) =

=

∫
R10

p(s1 − s2, u
−1)

d

dr
pr(t1 − s1, (z1, z2, y)−1, w−1)·

· p(t2 − t1, (v1, v2, x)−1 • u • w)dudwdv1dv2dz1dz2

There is a constant C > 0, such that for all s2 < s1 < t1 < t2, r ∈ (0, 1) and
x, y ∈ G we have

(31) qr(s1, t1, s2, t2, x, y) 6 C(t1 − s1)−1(t2 − t1 +
√

1− r(t1 − s1) + s1 − s2)−1

Proof. Note that both

Xt(W ) = (W 1
t ,W

2
t , B0,t(W ))

and

Yt = (Xt(W1,r), Xt(W2,r))

has independent equally distributed increments w.r.t group addition on G and G × G
respectively, so we can represent joint density of their values at several points in time,
using only p and pr. More precisely we have that Xs,t = (Xs)

−1 • Xt is independent
from all Xu, u 6 s and has the same distribution as Xt−s started at X0 = 0. This is
well-known and also follows from the properties of p stated in Proposition 1. The same is
true for the process Y , because pr has similar properties due to Proposition 2. It is easy
to check that the third coordinate of Xs,t(W ) is Bs,t(W ) (it was defined to be exactly
that) using the explicit form of • from (8).

Formula (26) follows from the definition of q and qr, because for r = 0 the Brownian
motions W1,r and W2,r are independent and for r = 1 they are equal. The second

part (26) is true if the derivative d
dr qr exists for all r ∈ (0, 1) (and qr is continuous on

r ∈ [0, 1]). We will only show it for one of the cases below, since in two other cases qr is
not needed.

If s1 < t1 < s2 < t2 then Xs1,t1(W ) and Xs2,t2(W ) are independent and therefore
Bs1,t1(W ) and Bs2,t2(W ) are independent. It follows that

Ef(Bs1,t1(W ))g(Bs2,t2(W )) = Ef(Bs1,t1(W ))Eg(Bs2,t2(W ))

i.e. q = 0.
Suppose that s1 < s2 < t1 < t2. In this case increments Xs1,s2(W ), Xs2,t1(W ) and

Xt1,t2(W ) can be used to represent

Bs1,t1(W ) = (Xs1,s2(W ) •Xs2,t1(W ))3
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and

Bs2,t2(W ) = (Xs2,t1(W ) •Xt1,t2(W ))3

Using densities of these independent increments to calculate mathematical expectation
and changing variables in the integral to separate the integral by f(x)dx and g(y)dy we
obtain (27):

Ef(Bs1,t1(W ))g(Bs2,t2(W )) =

=

∫
R9

p(s2 − s1, u
−1)p(t1 − s2, z

−1)p(s1 − t1, v−1)f((u • z)3)g((z • v)3)dzdudv =

=

∫
R9

p(s2 − s1, z • u−1)p(t1 − s2, z
−1)p(s1 − t1, v−1 • z)f(u3)g(v3)dzdudv

The representation of q0 is shown similarly.
To show (28) we notice that q0 can be estimated using Lemma 4 to find supremum

w.r.t. x and y:

q0 6 C(t1 − s1)−1(t2 − s2)−1

∫
R6

p(γ(t1 − s1), (u1, u2, u3)−1)

p(γ(t2 − s2), (v1, v2, v3)−1)du1du2du3dv1dv2dv3 =

= C(t1 − s1)−1(t2 − s2)−1

Then we do the same for q1 and obtain

q1 6 C(s2 − s1)−1(t2 − t1)−1

∫
R9

p(s2 − s1, z • (u1, u2, u3)−1)·

· p(t1 − s2, z
−1)p(t2 − t1, (v1, v2, v3)−1 • z)dzdu1du2du3dv1dv2dv3 =

= C(s2 − s1)−1(t2 − t1)−1

But this is not enough, so we use change of variables z → z • (u1, u2, x) and then apply
Lemma 4 again:

q1 =

∫
R7

p(s2 − s1, z)p(t1 − s2, (u1, u2, x)−1 • z−1)·

· p(t2 − t1, (v1, v2, y)−1 • z • (u1, u2, x))dzdu1du2dv1dv2 6

6 C(t2 − t1)−1

∫
R8

p(s2 − s1, z)p(t1 − s2, (u1, u2, x)−1 • z−1)·

· p(t2 − t1, (v1, v2, v3)−1 • z • (u1, u2, x))dzdu1du2dv1dv2dv3 =

= C(t2 − t1)−1

∫
R5

p(s2 − s1, z)p(t1 − s2, (u1, u2, x)−1 • z−1)dzdu1du2 6

6 C̃(t1 − s2)−1(t2 − t1)−1

Similarly with the change of variables z → (v1, v2, y) • z

q1 =

∫
R7

p(s2 − s1, (v1, v2, y) • z • (u1, u2, x)−1)p(t1 − s2, z
−1 • (v1, v2, y)−1)

p(t2 − t1, z)dzdu1du2dv1dv2 6 C(s2 − s1)−1(t1 − s2)−1
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Joining all estimates together gives us (28). We notice that continuity of each q1 and q0

follows from these estimates and continuity of p.
Finally let us assume that s2 < s1 < t1 < t2. To show (29) we note that increments

of Y on (s2, s1), (s1, t1) and (t1, t2) determine Bs1,t1(W1,r) and Bs2,t2(W2,r):

Bs1,t1(W1,r) = (Xs1,t1(W1,r))3

Bs2,t2(W2,r) = (Xs2,s1(W2,r) •Xs1,t1(W2,r) •Xt1,t2(W2,r))3

Therefore we can write the expectation as an integral of densities pr(s1 − s2, ·), pr(t1 −
s1, ·), pr(t2 − t1, ·). We can see that Xs2,s1(W1,r) and Xt1,t2(W1,r) are not needed to
represent Bs1,t1(W1,r) and Bs2,t2(W2,r) and we can integrate the first and the last pr
using ∫

G

pr(t, x
−1, y−1)dx = p(t, y−1)

which is true since p(t, y−1) is a density of Xt(W ) (if X0 = 0) and pr(t, x
−1, y−1) is a

density of Yt(W ) = (Xt(W1,r), Xt(W2,r)). We obtain:

Ef(Bs1,t1(W1,r))g(Bs2,t2(W2,r)) =

=

∫
R18

pr(s1 − s2, x
−1, u−1)pr(t1 − s1, z

−1, w−1)·

· pr(t2 − t1, y−1, v−1)f(z3)g((u • w • v)3)dxdydzdudvdw =

=

∫
R12

p(s1 − s2, u
−1)pr(t1 − s1, z

−1, w−1)·

· p(t2 − t1, v−1)f(z3)g((u • w • v)3)dzdudvdw =

=

∫
R12

p(s1 − s2, u
−1)pr(t1 − s1, z

−1, w−1)·

· p(t2 − t1, v−1 • u • w)f(z3)g(v3)dzdudvdw

Separating the integrals by f(x)dx and g(y)dy leads to (29).
Now we have to prove that the derivative d

dr of qr exists and can be swapped with
all integrals. For this we need to make sure that qr is always finite (where defined, i.e.
for s2 < s1 < t1 < t2), so we have to show (31) first. But then the rest (also including
continuity of q) follows from Lemma 7 since estimate (20) provides the possibility of
passing to the limit under the integral.

To prove (31) we use Lemma 4 once again

qr 6 C(t2 − t1)−1

∫
R11

p(s1 − s2, u
−1)pr(t1 − s1, (z1, z2, y)−1, w−1)·

· p(t2 − t1, (v1, v2, v3)−1 • u • w)dudwdv1dv2dv3dz1dz2 =

= C(t2 − t1)−1

∫
R8

p(s1 − s2, u
−1)pr(t1 − s1, (z1, z2, y)−1, w−1)dudwdz1dz2 =

= C(t2 − t1)−1

∫
R3

p(t1 − s1, (z1, z2, y)−1)dz1dz2 6

6 C̃(t2 − t1)−1(t1 − s1)−1
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If we change variables u→ (v1, v2, x) • u • w−1 we can show that

qr =

∫
R10

p(s1 − s2, w • u−1 • (v1, v2, x)−1)pr(t1 − s1, (z1, z2, y)−1, w−1)·

· p(t2 − t1, u)dudwdv1dv2dz1dz2 6

6 C(s1 − s2)−1

∫
R11

p(s1 − s2, w • u−1 • (v1, v2, v3)−1)pr(t1 − s1, (z1, z2, y)−1, w−1)·

· p(t2 − t1, u)dudwdv1dv2dv3dz1dz2 =

= C(s1 − s2)−1

∫
R2

p(t1 − s1, (z1, z2, y)−1)dz1dz2 6 C̃(s1 − s2)−1(t1 − s1)−1

One more version of this estimate can be obtained if we change variables (in the for-
mula (29)) in the following way w → u−1 • (v1, v2, x) • w and use uniform bound (18).
We get

qr =

∫
R10

p(s1 − s2, u
−1)pr(t1 − s1, (z1, z2, y)−1, w−1 • (v1, v2, x)−1 • u)·

· p(t2 − t1, w)dudwdv1dv2dz1dz2 6

6 C(t1−s1)−1(1−r)−1/2

∫
R10

p(s1−s2, u
−1)pr(t1−s1, (z1, z2, y)−1, w−1•(v1, v2, v3)−1•u)·

· p(t2 − t1, w)dudwdv1dv2dv3dz1dz2 =

= C(t1 − s1)−1(1− r)−1/2

∫
R2

p(t1 − s1, (z1, z2, y)−1)dz1dz2 6 C̃(t1 − s1)−2(1− r)−1/2

As a result we obtain

qr 6 C(max(s1 − s2, t2 − t1,
√

1− r(t1 − s1)))−1(t1 − s1)−1 6

6 C̃(t2 − t1 +
√

1− r(t1 − s1) + s1 − s2)−1(t1 − s1)−1

and Lemma is proved. �

Proof of Theorem 4. First we will show that γε is unbounded in L2. It is enough to prove
that Eγε → +∞ as ε→ 0+. We have, by the definition of p, that

Eγε =

1∫
0

t∫
0

∫
R3

fε(x3)p(t− s, x)dxdsdt

We introduce a change of variable x→ βt−s(x) and obtain, using homogeneous properties
of p, that

Eγε =

1∫
0

t∫
0

∫
R3

fε((t− s)x3)p(1, x)dxdsdt =

=

1∫
0

t∫
0

∫
G

(t− s)−1f(t−s)−2ε(x3)p(1, x)dxdsdt
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We know that fε converges to δ0 and since p is smooth we can write

lim
ε→0+

∫
R

fε(x3)p(1, (x1, x2, x3))dx3 = p(1, (x1, x2, 0))

Applying Fatou lemma we get

lim
ε→0+

Eγε >

>

1∫
0

t∫
0

∫
R2

lim
ε→0+

(

∫
R

(t− s)−1f(t−s)−2ε(x3)p(1, x)dx3)dx1dx2dsdt =

=

1∫
0

t∫
0

(t− s)−1dsdt

∫
R2

p(1, (x1, x2, 0))dx1dx2 = +∞

Now we are going to prove the main part of the Theorem 4. To do that it is enough
to show, that Eγε1γε2 − Eγε1Eγε2 converges as (ε1, ε2) → 0+. This statement in turn
can be proved using properties of the kernel K(x, y), x, y ∈ G, defined as follows:

Eγε1γε2 − Eγε1Eγε2 =

∫
G2

fε1(x)fε2(y)K(x, y)dxdy

It is enough to show that K is bounded and continuous function of (x, y).
From the definition of q (see formula (24)) we see that

K(x, y) =

1∫
0

t1∫
0

1∫
0

t2∫
0

q(s1, t1, s2, t2, x, y)ds2dt2ds1dt1

as long as we can change order of the integrals w.r.t. x, y and the integrals w.r.t.
t1, t2, s1, s2. And the latter is true if q is bounded by the integrable function of s1, t1, s2, t2.
It is easy to see that both boundedness and continuity of K also follows (continuity can
be obtained using continuity of q shown in Lemma 8).

So the proof is now reduced to finding an integrable estimate of q. We split the
domain of integration in the integral into six subdomains depending on the order of
s1, s2, t1, t2 (we can ignore sets of zero Lebesgue measure). It is enough to consider only
three subdomains where we have t2 > t1 since the rest can be treated similarly due to
symmetry. Using Lemma 8 we can write a representation for q in each case.

If {0 < s1 < t1 < s2 < t2 < 1} then q = 0, so there is nothing to prove here. Suppose
that {0 < s1 < s2 < t1 < t2 < 1}. We recall the inequality (28) and notice that both

min(s2 − s1, t2 − t1, t1 − s2)

(s2 − s1)(t2 − t1)(t1 − s2)

and
1

(t1 − s1)(t2 − s2)

are integrable over the domain {0 < s1 < s2 < t1 < t2 < 1} and so q is bounded by the
integrable function.

Now we consider the third domain: Q = {0 < s2 < s1 < t1 < t2 < 1}.
Here estimates for q1 and q0 are not enough and we are going to consider qr (this is

why we needed to investigate Yt and pr in the first place). It is enough to find upper
bound for d

dr qr which is integrable over Q× {r ∈ (0, 1)}.



88 A. V. RUDENKO

It follows from (19) and (30) that

d

dr
qr(s1, t1, s2, t2, x, y) =

t1∫
s1

∫
R16

p(s1 − s2, u
−1)·

· pr(t1 − T, a−1 • (z1, z2, y)−1, b−1 • w−1)

n1∑
i=1

LaiL
b
ipr(T − s1, a, b)·

· p(t2 − t1, (v1, v2, x)−1 • u • w)dudwdv1dv2dz1dz2dadbdT

We have already derived some bounds for this representation in order to prove its validity,
but unfortunately having the inequalities (20) and (31) is not enough to find integrable
bound for d

dr qr, since it only gives us the following bound:

(32) | d
dr
qr| 6 C(1− r)−1(t1 − s1)−1(t2 − t1 +

√
1− r(t1 − s1) + s1 − s2)−1

We are going to use Lemma 6 again, taking advantage of the additional integrals in
the representation of qr. We can move Lbi onto p(s1− s2, ·) to find another upper bound:

d

dr
qr(s1, t1, s2, t2, x, y) = −

n1∑
i=1

t1∫
s1

∫
R16

p(s1 − s2, w • u−1 • (v1, v2, x))·

·
n∑
j=1

c̃ij(b
−1 • w−1)Lw

−1

j pr(t1 − T, a−1 • (z1, z2, y)−1, b−1 • w−1)Lai pr(T − s1, a, b)·

· p(t2 − t1, u)dudwdv1dv2dz1dz2dadbdT =

=

n1∑
i=1

n∑
j=1

t1∫
s1

∫
R16

n∑
l=1

c̃jl(w • u−1 • (v1, v2, x))Llp(s1 − s2, w • u−1 • (v1, v2, x))·

· c̃ij(b−1 • w−1)pr(t1 − T, a−1 • (z1, z2, y)−1, b−1 • w−1)Lai pr(T − s1, a, b)·
· p(t2 − t1, u)dudwdv1dv2dz1dz2dadbdT

Note that Lj c̃ij = 0 since it is a homogeneous polynomial of homogeneous degree
−d(Li)/2. It is possible to estimate the integral w.r.t. a, b as in the proof of (20):

|
∫
R6

c̃ij(b
−1 • w−1)pr(t1 − T, a−1 • (z1, z2, y)−1, b−1 • w−1)Lai pr(T − s1, a, b)dadb| 6

6 C(1− r)−1/2(t1 − s1)d(Lj)/2−1pr(γ(t1 − s1), (z1, z2, y)−1, w−1)

where we used that d(Li) = 1 (c̃ij gives multiplier (t1 − T )(d(Lj)−d(Li))/2 6 (t1 −
s1)d(Lj)/2−1/2). After that we apply an analog of Theorem 2 for p (it can be shown in a
same way as for pr with a constant that clearly does not depend on r), then Lemma 2
and Lemma 4 to obtain

| d
dr
qr| 6 C(1− r)−1/2

n∑
j=1

(t1 − s1)d(Lj)/2−1(s1 − s2)−d(Lj)/2−1
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Analogously moving Lbi onto p(t2 − t1, ·) we show that

d

dr
qr(s1, t1, s2, t2, x, y) =

n1∑
i=1

t1∫
s1

∫
R16

p(s1 − s2, u
−1)·

pr(t1 − T, a−1, b−1)LaiL
b
ipr(T − s1, (z1, z2, y)−1 • a,w−1 • b)·

· p(t2 − t1, (v1, v2, x)−1 • u • w)dudwdv1dv2dz1dz2dadbdT =

=

n1∑
i=1

t1∫
s1

∫
R16

p(s1 − s2, u
−1)·

pr(t1 − T, a−1, b−1)

n∑
j=1

cij(w
−1 • b)Lai pr(T − s1, (z1, z2, y)−1 • a,w−1 • b)·

· Ljp(t2 − t1, (v1, v2, x)−1 • u • w)dudwdv1dv2dz1dz2dadbdT

and estimating as before obtain

| d
dr
qr| 6 C(1− r)−1/2

n∑
j=1

(t1 − s1)d(Lj)/2−1(t2 − t1)−d(Lj)/2−1

Joining two last estimates we get

| d
dr
qr| 6 C(1− r)−1/2((t1 − s1)−1/2(t2 − t1 + s1 − s2)−3/2+

+ (t2 − t1 + s1 − s2)−2)

Now if we consider two cases: t2 − t1 + s1 − s2 >
√

1− r(t1 − s1) and the opposite
then in the first case the estimate above can be used to show that

| d
dr
qr| 6 C(1− r)−3/4(t1 − s1)−1/2(t2 − t1 + s1 − s2)−3/2 6

6 C̃(1− r)−3/4(t1 − s1)−1/2(t2 − t1 +
√

1− r(t1 − s1) + s1 − s2)−3/2

and in the second the initial estimate (32) gives us

| d
dr
qr| 6 C(1− r)−3/2(t1 − s1)−2 6

6 C̃(1− r)−3/4(t1 − s1)−1/2(t2 − t1 +
√

1− r(t1 − s1) + s1 − s2)−3/2

As a result we obtain that on the whole Q the following inequality holds

| d
dr
qr| 6 C(1− r)−3/4(t1 − s1)−1/2(t2 − t1 +

√
1− r(t1 − s1) + s1 − s2)−3/2

which is finally integrable w.r.t. s1, s2, t1, t2, r over Q× (0, 1).
�
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