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A. A. DOROGOVTSEV AND O. L. IZYUMTSEVA

ON SELF-INTERSECTION LOCAL TIMES FOR GENERALIZED
BROWNIAN BRIDGES AND THE DISTANCE BETWEEN STEP
FUNCTIONS

In the paper k-multiple self-intersection local time for planar Gaussian integrators
generated by linear operator with nontrivial kernel is studied. In this case additional
singularities arise in its formal Fourier-Wiener transform. In case k = 2 the set of
singularities is the finite number of points. In case k > 2 it contains intervals and
hyperplanes. In the first and the second cases using two different approaches related
on structure of set of singularities we show that "new” singularities do not imply
on the convergence of integral corresponding to the formal Fourier-Wiener transform
and regularization consist of compensation of impact of diagonals as for the Wiener
process.

1. INTRODUCTION

In present article we study a self-intersection local time (SILT) for planar Gaussian
integrators

(1) x(t) = ((A]I[O;t]vfl)ﬂ (AH[O;t]7£2))7 le [07 1]

Here A is a continuous linear operator in Ly([0;1]), &1, &2 are two independent Gaussian
white noises in the same space [1, 2]. Gaussian integrators firstly appeared in works of
A.A.Dorogovtsev [3, 4] in connection with an anticipating stochastic integration. Note
that if A is an identity formula (1) defines a planar Wiener process. For A = I — P, where
P is a projection onto 1ljy,;) the process z is a planar Brownian bridge. One can check
that planar fractional Brownian motion with Hurst parameter o > % has representation
(1) with integral operator A defined by kernel K (t1,t3) = (tz — t1)** ?1lgy,54,} (see [5]
for the proof). k-multiple SILT for the process z is formally defined as

k—1
(2) e = | ] do(@(tizr) —a(t:))dr,
Ak =1
where A = {0 <t; < ... <t <1}, do is a delta-function at the point zero. It is well
known [6-8] that (2) can not be defined as the limit of approximating family

k-1
2= [ T] feGattn) - aleoyi
Ak =1
. 2|2 . .
with f.(z) = ﬁe‘ == , z € R%, ¢ > 0 even in the case of planar Wiener process w.
Different approaches to a renormalization of T} where described in [6-8]. The application

of renormalized self-intersection local time for planar Wiener process is considered in
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[9]. Most related to our work is Rosen renormalization [7]. Consider it more precisely.
J.Rosen introduced the following renormalization

k-1
te= [ TTUwtn) - we)d
Ak =1
where {n} = n — En and proved the convergence in mean square of random variables
R, ase— 0.

The renormalization of SILT for planar Gaussian processes which do not have Markov
property is systematically studied in works of the authors [10-13]. The white noise tools
allow to ignore Wiener properties and reduce the consideration of finite dimensional
distributions of small increments to the studying of geometry of Gram determinants con-
structed by increments of Hilbert valued function generating the process and projections
on its linear spans. For the description of functionals from &;1,&; we use the Fourier—
Wiener transform. It is known that any square integrable random variable o which is
measurable with respect to white noises &1, &> is uniquely defined by its Fourier—Wiener
transform [14]. In the paper we use the following definition.

Definition 1.
T(a) = Eaelh:€)+(h2,82 —%(th|\2""\|hz|\2)7 hi, he € L2([0; 1])
is said to be the Fourier—Wiener transform of random variable «.

By calculating
ETgke(hh&)-i'(hmEz —2(IR1 1P+ h2]1?)

and formally passing to the limit as ¢ — 0 one can get the formal Fourier—Wiener
transform of random variable T}7 which is described by expression

1 1 2 2 —
(3) / e~ H P 4Py hall®) g
A, @m)FIG(Ag(t), -, Ag(ti-1))
where G(Ag(t1),...,Ag(tk—1)) is the Gram determinant constructed from increments
of function g(t) = Allj,y and P, ., is a projection onto linear span generated by

Ag(t1),...,Ag(tg—1). Further in the paper for the linear span generated by elements
q1,- -, qm of La([0;1]) we use notation LS{q,...,qmn}. Note that (3) is divergent integral
since the denominator blow up on the diagonals of Ajy. The renormalization for T}’ is
equivalent to the regularization of divergent integral (3). Such regularization for (3) was
introduced by authors in [10] for A = I'+S, where I, S are identity and compact operators
in L2 ([0;1]), ||S|| < 1. Condition ||S|| < 1 implies a continuous invertibility of operator I+
S. In this case the Gram determinant in (3) turns to zero only on diagonals of A. In [10]
the following regularization was proposed. Let Ag(t1),...,Ag(tx—1) be an orthonormal
system which is obtained from Ag(¢y), ..., Ag(tx—1) via the orthogonalization procedure.
For M C {1,...,k — 1} denote by Pjs the projection onto LS{Ag(t;), i € M}.

Theorem 1. [10] For any h € Ly([0;1]) the following integral

! _ )Ml =3 IPuhl? g7
W /A G(Ag(t1),...,Ag(tr-1)) >, D dt

Mc{1,...,k—1}

CONVETgeES.

One can see that regularization (4) for (3) coincides with Rosen renormalization for
T¥ in case A = I. The aim of present paper is to consider the general case when the
operator which generates the integrator x has a nontrivial kernel. In this case additional
singularities arise in integral (3). We consider the case when dimker A < 4o00. Such
condition leads to the concretization of additional singularities in (3). Namely, for k = 2
one can check that the Gram determinant in the denominator can have the new zeros
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only at the finite number of points. We specify the asymptotics of the denominator in
these points and check the convergence of the integral. For k > 2 the set of singularities
of T(T) has a complicated structure. It contains intervals and hyperplanes. That is why
described approach can not be extended on cases k > 2. For k > 2 the method we use rely
on studying of functional properties of function G(Ag(t1),...,Ag(tk—-1)), t1,...,tx €
Ay, where as it was mentioned above G is the Gram determinant constructed from
increments of function g(t) = Allj,. Condition G(Ag(t1),...,Ag(tr—1)) = 0 as it will
be discussed further implies that step functions belong to ker A. Proving the positivity
of distances between orthogonal complement of subspace of step functions in ker A and
subspaces generated by step functions and indicators ., .1, ¢ = 1,k —1 we obtain
lower estimates for G(Ag(t1),...,Ag(ty—1)) which allow to check the convergence of
integral corresponding to the Fourier—Wiener transform of k-multiple SILT on the domain
off the diagonals for planar Gaussian integrator.

2. DOUBLE SELF-INTERSECTION LOCAL TIME OF GENERALIZED BROWNIAN BRIDGES

In this section we study double SILT for process (1) with A = I + S, where I, S
are identity and compact operators in the space Ly([0;1]). The formal Fourier—Wiener
transform (3) for that case has the following representation

1

(5) T(T5)(h1, he) = ./

2 JAD 27T||(I+S)]I[t1;t2]||2
As it was mentioned in Introduction in case ker I +.5 # {0} the denominator in integral
(5) can have zeros outside of diagonal. We check that “old” regularization [10] for T (T%)
remains valid and new singularities do not influence on the integrability of function
m7 t1,ta € Ao on any subset of As off the diagonal. Let L be a finite-

t1;to

dimensional subspace of Ly([0; 1]). Denote by Er = {1}, € L, t1,ta € Ao, t1 < t2}.

o~ 3 UIPey ey [P+ Py ey 2 |1?) g7

Lemma 1. Set Ey, is finite.

Proof. Suppose that dim L = m. Then set Ej contains at most m linearly independent

elements. Denote by ]I[t%;té], ey ]I[tll;tg] the maximal linearly independent subset of it.
Let ) € LS{Iy1 ), -+, Wye q2p}- Then one can check that u,v € {thtd, .t )
This completes the proof of the lemma. (]

The following two statements related to the behaviour of ||l .|| in small neighbor-
hoods of elements from E7,.

Lemma 2. Let 10,40 be a fized element of Er,. Then the family of functions

Wiy e0) — Mo
1Mty ;07 — Wigou0y |

t1,ts € Ag}

weakly converges to zero in La([0;1]) as t; — 9, to — 3.

Proof. Let us check that for any h € Ly([0;1])

iy 1 — 10,
h, [t1:t2] [£3:¢3] , 11,62 € AQ —0
H]I[tl;tz] - ]I[t?:,tg]”

as t; — t9, ty — 3. Denote by
e(t) = Wty 00 — Wponag,

ei(t) = Wiy, pt0seve0), @ = 1,2
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s (he(®)?
() 1P 1? =

then to prove the statement it suffices to check that for any h € L2([0;1])
[P ghll> =0, t1 =17, ts — 5.
Note that e(t) € LS{ei(t), e2(f)}. Consequently,
||Pe(F)hH2 < ||Pel(t‘je2(i)h”2-

Let Os(t) = (t—0;t+0). Then there exists § > 0 such that for any t; € Os(1?), t2 € Os(t3)
e1(t) and ey(f) are orthogonal. It implies that

2
Pel(f)eQ(E) - Z Pei(F)'
i=1

Note that for any h € Lo([0;1]), i = 1,2

(7) P, @hl> =0, ti = t].
Really,
1 2
tiVi;
s (ea®m? (Jind his)ds)
(8) ||Pe1:(t_§hH = 2 (LVE A
PO TR
sl

The Cauchy inequality imply that (8) is less or equal to ttlAvttf h2(s)ds. By continuity of
Lebesgue integral the last expression tends to zero when ¢; — t?. (|

Lemma 3. Let S be a compact operator in La([0;1]) and Wyo,0) € ker I + 5. Then

[( + S)Wpg, 0,
[

— 1, t1 =19, to — 9.
Mge50) = Wegseg) P

Proof. Note that
(L + ) Wpp 012 = I+ S) (W07 — Wigorag)) |-

It implies that
I+ )Wl
[RLT L (A [

(H[tl;tg] - H[t?;tg]v S(H[t1;t2] - H[t%,t%}))

=1-2 +
(Mgt 5050 — Wpgo,07 2
”S(H[tl;tz] - H[t?;tg})HQ
MMt :e0) = Wiegoagy 12
The compactness of operator S and Lemma 2 end the proof. (|

The following statement expands “old” regularization [10] for 7 (7% ) on planar Gauss-
ian integrator generated by noninvertible operator I 4 S, where I,S are identity and
compact operators in Lo ([0;1]).

Theorem 2. For any h € Ly([0;1]) the following integral

1 1 2 —
= e 5Pkl
e zllftt2 — 1l]dt
LAQHI+$HMMN[ ]

CONVETJES.
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Proof. 1t follows from Lemma 1 that set FEye r+s is finite. Suppose that Eyerr1s =

{]I[t%;t%}, ooy Ujgm g} One can conclude from Lemma 3 that for any i = 1,m, € > 0
there exists §; such that for any t; € Os, (t}), ta € Oy, (t3)
(9) ”(I + S)H[tl it2] ||2 (1 —€ H]I [ti5t2] — ]I[tll,t;] 2

Put § = 81 A...Adp,. Consider nonintersecting domains K; = Os(t) x Os(t5) () Az, 1,m.

It follows from [10] that for any h € Lo([0;1])
/ 1

A\UT K (1 + S) U, .17

converges. Therefore to end the proof it suffices to check that

t +5 t +§
dtidt
»/t /; I+S ]I[tl,tz)]” e

[6 QHPfltzhH ]d{

converges. Relation (9) implies that
ti+6 il
dt1dte <
/t /t (I +9) H[tm 112
a4+ ptl4s 1
dt1dte =
23 ti—6 ||]I[t1;t2] - ]I[tl 1]||2

/ dtidts
+
ti—§ t16t1_t2_t1+t2
n /t2+5/ dtidts i
o1 e 5t2—t1—t2+t1
t1-9 dt, dt
+/ / POt i T
s —ti—to+t
/t +5/ dty dts
a to +t, — t1 t1’

where each summand is finite. O

3. K-MULTIPLE SELF-INTERSECTION LOCAL TIME OF GENERALIZED BROWNIAN
BRIDGES

The main object of investigation in this section is k-multiple SILT for planar Gauss-
ian integrators generated by continuous linear operator A in Ls([0;1]) which satisfies
conditions

1) dimker A < +o00

2) The restriction of operator A on orthogonal complement of ker A is continuously
invertible operator.

Let us notice that such class of Gaussian processes contains planar Gaussian integra-
tors generated by I+ .S, where S is a compact operator in Lo ([0;1]). As it was mentioned
in Introduction the set of zeros of function

G(Ag(t1), ..., Ag(tk—1)), t1,...,tx € Ag, k> 2

has a complicated structure. Here as above G(Ag(t1),...,Ag(tg—1)) is a Gram deter-
minant constructed by Ag(t1),...,Ag(tk—1), g(t) = Alljpy. It contains intervals and
hyperplanes. The approach we use in case k > 2 rely on studying geometric properties
of function G(Ag(ty),...,Ag(tk—1)), t1,...,tx € Ag. We will see that condition

G(Ag(t1), ..., Ag(ty-1)) =0
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generates certain sets of step functions. Analyzing the distances between those sets we
obtain lower estimates for G(Ag(t1), ..., Ag(tx—1)) which allow to establish that function

1
G(Ag(t1),...,Ag(tk-1))

is integrable on any A2, where A¢ = {t'€ Ay, tiy1 —t; > 6}, 8 > 0. It inspires to make a
conclusion that “old” renormalization [10] remains true for 7(T}¥) in case k > 2 too. We
did not check that in this section but it will be the object of our further considerations.
The main statement of present section is the following theorem.

) tla -atkEAk

Theorem 3. Suppose that continuous linear operator A in Lo([0;1]) satisfies conditions
1), 2). Then for any § > 0

1
/Ag G(Ag(t1),- .., Ag(tr-1))

To prove the statement we need the following lemma.

dt < +o0.

Lemma 4. Let dimL < +oo, e1,...,e, be an orthonormal basis in L and P be a
projection on L. Then for any g1,...,gr € L2([0;1]) the following relation holds
G(I-P)g1,...,(I—=P)gr) = G(g1,---, Gk, €1, €m).
Proof. Note that
G(I-P)g,....I—=P)gr) =G(({—P)g1,...,(I —P)gk,e1,-..,em).
Put
Cij = ((I_ P)g“(I— P)g] gug] Z ek7gl ek7g]
k=1
then
G((I_P)gl77(I_P)gk) :G((I_P)gl7~'~7(l_P)gkv617~'-aGM) =
Cij 0
(10) =|......... , 1,7 =1,k
0 I
On other hand
(91,91) (91.9k)  (g1,€1) (91,€m)
11 G e Gl e Em) = (gkvgl) (gkagk) (gkuel) (gkaem) )
A Gl gienem) =1 o) L (g 1 0
(em g1) (em,gk) O 1

Multiplying (k + 1)-th column by (g1,e1), ...,

(k + m)-th column by (g1, e,,) and sub-

tracting from 1-th column we get that (11) equals

C11 (917%) (91761) (glaem)
Ck1 (9 9%)  (grse1) (9k»em)
12
(12) 0 (e1,9x) 1 0
0 (em- gr) 0 1
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Multiplying (k + 1)-th column by (g2,e€1),..., (k 4+ m)-th column by (g2, e,,) and sub-
tracting from 2-th column we get that (12) equals

ci a2 .. (91,9%) (g1,e1) .. (g1,6m)
(13) Ck1 Cg2 ... (gkvgk) (gkvel) (gkaem)

0 0 (e1, gx) 1 0

0 0 (em, 9K) 0 1

and so on. Finally we get that (11) equals

(g1,e1) - (91,€m)
(14) cij : :

Multiplying (k=+1)-th row by (g1, e1),. .., (k+m)-th row by (g1, e,,) and subtracting from
1-th row, ..., (k+ 1)-th row by (g, ex), ..., (k+m)-th row by (g, emn) and subtracting
from k-th row we get that (14) equals

which proves the lemma. O

Proof of Theorem 3. Note that if P is a projection onto ker A, then
G(AMpy 51555 Allpyy 1) =

(15) - G(A(I - P)H[tl;t2]7 “e ,A(I - P)]I[tk—li,tk])'
Further we need the following statement which was proved in [12]. O

Lemma 5. [12] Suppose that B is a continuously invertible operator in the Hilbert space
H. Then for all k > 1 there exists a positive constant c(k) which depends on k and B
such that for any q1,...,qx € H the following relation holds

G(Bq,...,Baqr) > c(k)G(q1,- -, qx)-
It follows from condition 2) of the theorem and Lemma 5 that (15) greater or equal to
(].6) C(k)G((I — P)]I[tl;tg]a ey (I — P)]I[tk—l;tk])'
Lemma 5 implies that (16) equals G(1, 1,7, - - -, Mg, 52, €15 - - -, €n) for any orthonor-

mal basis {ex, k = 1,n} in ker A. Consequently, to prove the theorem it suffices to check
that for any § > 0

/ dt’
Ai G(H[tl;t2]7~-~;H[tk,1;tk]7€17-~-7en)
To check (17) one have to describe the set

(17) < +o0.

{FG Ai : G(]I[tl;tg]a ey ]I[tk_l;tk],e:[, - 7671) = 0}
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Note thatG(lp,.¢,),- -, L, _15¢,]5€1,- -+, €n) = 0 iff there exist aq,..., a1 such that
a?+... + ai_l > 0 and S, ..., B, which satisfy relation

k—1 n
(18) Z aiH[ti;tiJrl] = Z Bjej'
i=1 =1

Relation (18) implies that if G(, 4,7, U, 15,5 €15- -+, €n) = 0, then step func-
tions belong to ker A. Denote by L the subspace of all step functions in ker A. Suppose
that {fx, k¥ = 1,s} is an orthonormal basis in L. Let e,..., e, be an orthonormal
basis in the orthogonal complement of L in ker A. Note that fi,..., fs,e1,...,€, is an
orthonormal basis in ker A and for any 81,...,8m

Z ﬂj@j 1 L.
j=1

Let us check that for any 6 > 0

—

dt
/Az G(H[tl;tg]a ) H[tk,l;tkbfla s '7fsael7 e 7€m)

To prove (19) we need the following statements.

(19) < +o0.

Lemma 6. Let M be the set of step functions with the amount of jumps less or equal to
a fized number. Then M is a closed set in Lo([0;1]).

Proof. Suppose that M is a set of step functions with the number of jumps less or equal
to n. Let {fx, K > 1} € M and fr — f, k — oo. Check that f € M. Assume that
function f; has jumps in points 0 < t§ < ... < tf;% <1, 0<my <n.If mp =0, then
fr does not have jumps. By considering subsequence one can suppose that my = m and
(th, .. tE) = (t1,...,tm), k — 00, where tg = 0 < t; < ... < t, < 1=t,,1. Denote
by 74 a projection onto La([a;b]). If t; < t;41 for some i = 0,m, then for any «,f
such that ¢t; < a < 8 < t;11 the following convergence holds 7, g fr — 7a,8f, k — oo.
Consequently, f is a constant on any [a; 8] C [¢;;¢;41]. It implies that f is a constant on
[ti, ti+1]. Using the same arguments for any ¢; < ¢;;; we conclude that f € M. O

Lemma 7. There ezists a positive constant ¢ such that the following relation holds
G(]I[tl;tg]a ) ]I[tk,l;tk]a f17 s 7f37617 s aem) Z
2 & G(H[tl;t2]7 ceey ]l[tkfl;tk]a f17 ey f@)
Proof. Note that
G(H[tl;t2]7 LR ]I[tk,l;tk]a f17 e 7f8761a e 7em) o
G(]I[tl;tz]v ey ]I[tk,l;tkb f17 ceey fs)
G(H[t1;t2]7 B H[tkfl;tk]vfla R f8761)) .
G(]I[t1;t2]7 LR} ]I[tkfl;tk]a f17 ) fs)
.G(]I[tutz]) ey ]I[tk—1§tk]’f17 ceey fs, €1, 62) )
G(H[tl;t2]7 SR ]I[tk,l;tkbfla R fs»el)
G(H[tl;t2]7 R ]I[tk,l;tk]afla ) fS7 €15+, em)
G(H[tl;tg]a SR H[tk,l;tkbfla RS fsa €1,--- 7€m71) '

Denote by ‘
IC; = LS{]I[tl;tz]» ) ]I[tk,l;tk]vfla .- '7fsaelv .- ‘761'}7

K= J ki

tEA
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Let r; be a distance from e; to K?, 4 = 1, m. Then to prove the lemma it suffices to check

that for any ¢ = 1,m r; > 0. Suppose that this is not true. Then there exists j = 1,m
such that r; = 0. Let j = m. It implies that there exists the sequence

k—1 s m—1
(S ot + 550+ 3 opa 1)
i=1 j=1 1=1

such that

k—1 s m—1
n n n
Hem — E o H[t?;thﬁ — E B fi — g v 6[” — 0, n — oo.
=1 Jj=1 =1

Therefore, the question is when

k—1 s m—1
ol 1+ Y BT+ D e+ em
i=1 j=1 =1

tends to zero as n — oo 7 Consider possible cases.
1) Suppose that
m—1

ZVlnel"_em

=1

lim
n—oo

< Ho00.

Considering a subsequence assume that for [ = 1I,m — 1 7 — 7;, n — oo. It implies
that

m—1

k—1 s
D@l + DB = = Y wer = em, n > oo
i=1 j=1

=1

Note that Zﬁ;l Yie; + em is not a step function. On other hand

k—1 s
{ Za?]l[t?;t;’;rl] + Zﬂyfja n 2 1}
i=1 j=1

is a sequence of step functions with the number of jumps less or equal to a fixed number.
It follows from Lemma 6 that situation 1) is impossible.
2) Considering a subsequence one can suppose that

m—1
an, = || Z v'er + em|| = o0, n = +oo
=1

and
1 m—1 m—1
a*( Z%"eH-em) — Y per, n— o,
" o=1 =1
where || Zﬁ;l prer|| = 1. Using the same arguments as in case 1) one can get a contra-
diction. 0

Lemma 8. Let 0 < 51 < ... < sy < 1 be the points of jumps of functions f1,..., fs.
Then there exists a positive constant cz which depends on §= (s1,...,sn) such that the
following relation holds

G(]I[t1;t2]> CER) ]I[tk,l;tk]afh .- 'afs) >

(20) Z Cg G(H[tl;tz]7 ey ]I[tkfl;tk]a H[81;82]7 E) ]I[SN71§SN])'
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Proof. Note that for any i =1, s
fi € LS{]I[SJ

iSj41)0 J=1,N— 1}
Let us prove the statement of the lemma by induction. Let d; be a distance from
Wiyt 00 LS{Mp,yitials -+ o5 Wity 15t0]5 f15 -+ -5 fs} and p; be a distance from 1y,

to LS{My,, yitio]s > Wi yst)> Wisyssa]s - -+ Usy_1:sy)f- Then in case k = 2

i+1]

10, . 1 .
Wy, . L f) =d2 > 0P [suisa] o —vionl )
G(Wityi00), frs- -5 fs) 1Z P G(\/82—817 ’\/SN—SN—l)

= Cs G(H[tl;tz]a H[SI;SQ]a ceey H[SN71;SN])'
Assume that (20) holds for k. Then
G(]I[tl;tz]v ceey ]I[tk,l;tkb fl» sty fs) = d% G(]I[tQ;tg]V ceey ]I[tk,l;tk]v fl? sty fs) Z

> ,0% Cs G(H[tz;tg]? B H[tk,l;tk]v H[51;82]7 ) H[SN—HSN}) =
=cs G(Wpyue0)s -+ 5 Wity yitn]s Wsissalr - - o5 Lsn_ison])-

Lemma 9. For an arbitrary 0 < s; < ... < sy <1, § > 0 the following integral
1
AL G(H[tl;t2]7 ceey ]I[tk,l;tkb ]1[81;82]7 ceey ]I[SN,l;sN]

dty ... dt

CONVETJES.
Proof. Denote by
G(]I[tl;tg]v B ]I[tk,l;tk]a ]I[sl:,s;)]a ey ]I[SN_l;sN]) = G({a g)a 56 Ai

Note that
1 1

(27T)k+N 2G( —»)

k—1
=E [] do(w(tj+1) H do(w(sit1) —w(s;)) =
j=1

2
i=1

—E/Rij[léo(w(t- —u alu/R H50

where w is a planar Wiener process. Denote by r1 < ro < ... < rg4n the points
ti,...,tk, S1,...,8n which are ordered by increasing. Put

ety .t
G(T‘i): u, 14 {17 k} )
v, T, €{s1,...,8N}

Then

N
E/}R T] do((ty) —u)du/RQiI;[léo(w(si) — v)dv =

k+N-—-1

:/2 zprl H Driq1— 1 (0(r141) — 0(rp))dudv.
R X

Here py(y) = ﬁqe 2 g €[0;1], y € R% Let us check that the following integral

k+N 1

/A pa(000) T prsson Or1s2) =000
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converges. It suffices to fix some order of {r} and check the integrability on that fixed
subset of Ai. For example, {r} = {0 < t; < 81 < to < t3 < tg < 9 < ...}. One can
check that the following estimates hold.

)

Jlu—v]2

L o7 a3 —sn)

1
1
/ Dip—sy (U —V)dty = — —dt; <
SN

2 Jsy btk — SN

T ru—e)?
<c —e 2 dr =
1 T

+oo 1
= c/ —e "dr <
lu—vii? T

2
_Ju=v]l

: H{ e Jo(llu = vl]),

<¢(Infju— U||H{ Juol? <1}) te
where ¢, ¢ are positive constants and

fo(u)Pdu < +o00
R2

for all p > 0.
2)
1 1 1
Dty —ty_ Odtkz/ ————dty < c Iné
/tliré b=t (0) try+8 2m(te — tr—1)
3)
sN
/ Ptp—sn_s (u - v)pSN*tk (’LL - U)dtk <
sSN-1
2 SN
§67/ (u—v)dty <€ fo(u—v);
SN —SN—-1 Jsy_,
4)

SN
/ Pty —ty_1 (O)pSN—tk (u - U)dtk <
tr—1+0
1
<c=<

SN
5/ Dsn—t, (U —0)dty, <€ fo(u —v).

te—1
Therefore, if s; < t1, then
k+N-1

/{ @) TT presnOrns0) = 0005 <
T =1

< e ps, (v) folu —v)™,
where constant ¢ can depend on § and m equals to a number of pairs s and t in sequence

T1y-e-3Tn-
Ift1 < S1, then
k+N—1
/ P (00) TT Procsn (Orisn) — 0(r))d5 <
{7“} =1
1
<e / D () fo(u — 0)™dty < o) folu — v)™.
0

Consequently,

k+N-—1

/]R /{T}pﬁ“’(m) [T Prosn(6(i1) — 0(r))d5dudv <

=1
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< ¢ Jgaxa Ps, (v) fo(u — v)™dudv
fR’zxz fO fO(U*U)mdudv
where integrals in last estimate converge. O

The following statements related to k-multiple SILT for planar Gaussian integrator
are consequences of Theorem 3.

Theorem 4. Let x be a planar Gaussian integrator generated by continuous linear oper-
ator in Lo([0; 1]) which satisfies conditions 1), 2). Then there exists the Fourier—Wiener
transform of k-multiple SILT of x on domain off the diagonals.

Denote by

/ Hfs z+1 _'r(t ))dt

kzl

Theorem 5. Let x be a planar Gaussian integrator generated by continuous linear op-
erator A in Ls([0;1]) which satisfies conditions 1), 2). Then there exists

T]?&ZLQ—hnglk(s

Proof. To prove the theorem it suffices to check that there exists finite limit of ETY | ;T , 5
as €1,69 — 0.

Note that
ETS v sTe, ks =E / Hfs1 tiy1) — a(t;))dt
k =1
/ T o (ss00) — s, =
Ai] 1
1 o

21 _ dids,
. /AM P2 det(Cry peron + 1(1,22))

where I(g1,e5) is the following matrix

0 130
Here C4,. t,5,...s, is the Gramian matrix constructed from

Al ity Al Al so)5 -+ Al

skl

One can check that (21) less or equal to

/ dtds

AL XAY G(A]I[h 2] A]I[tk 1 tk]7A]I[91 s2] A]I[Sk 1; Gk])

The same arguments as in Theorem 3 lead to the finiteness of the last integral. Now the
dominated convergence theorem finishes the proof. O

(22)
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