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G. M. MOLYBOGA

AN ANALOGUE OF THE BERRY-ESSEEN THEOREM FOR
FUNCTIONALS OF WEAKLY ERGODIC MARKOV PROCESSES

An upper bound is obtained for the rate of convergence in central limit theorem for

3/2
functionals of weakly ergodic Markov processes that has the rate O (lnnl/in) ) The

approach is based on the one proposed in [1, 2].

1. INTRODUCTION

In this paper we study the rate of convergence in the Central Limit Theorem (CLT) for
particular class of dependent random variables. This problem naturally arises in various
areas; just to mention one we refer to the analysis of asymptotic properties of statistical
estimators in [3], [4], [5], and [6]. In what follows, we consider the random sequence of
the form

1 n
(1.1) Y, = %kzzlgk,

where the sequence {£;} has the form &, = A(X}) with a given function A and some
(time-homogeneous) Markov process X.

By analogy with the classical Berry-Esseen theorem for i.i.d. sequences, one naturally
expects to have the rate of convergence in a CLT equal to O(1/4/n) in models with
dependence, as well. For stationary sequences with a-mixing properties, such a rate (up
to some slowly increasing function) was obtained in [7] by means of a proper version
of the Stein method. The Stein method was also used, combined with the Malliavin
calculus, in [8] where the rate O(1/4/n) was obtained for normally distributed Markov
processes. The same rate was obtained in [9] for general stationary Markov processes
which possess Ls-spectral gap property.

In our studies, we are mainly interested in the Markov processes which has the intrinsic
memory property, which mean that for any  # y the transition probabilities Py (z, -) and
Py (y, ) are mutually singular for any & > 1. The excellent example of a process with such
an effect is given in [10] in the framework of stochastic differential delay equations. This
effect occurs quite typically when the Markov process has a complicated state space,
e.g. in models which involve SDDEs, SPDEs, equations with fractional noises, etc.,
hence the analysis of the related limit theorems is a natural problem. We note that, for
the Markov processes with intrinsic memory, the stabilization (i.e. convergence of the
transition probabilities to the invariant distribution) is not possible in the total variation
distance, but is still possible in a weaker sense; we refer to the detailed exposition of
this effect and further references to [11]. Markov processes which exhibit stabilization
in a weaker sense than the convergence in the total variation distance, are called weakly
ergodic.

For Markov processes with intrinsic memory the methods developed in [7] — [9] are
hardly applicable. The Stein method actually exploits the property of the law of the
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bridge of the process X to be stabilized when the starting point and the end point
tend to Foo. The “intrinsic memory” feature actually means that the entire previous
trajectory can be uniquely determined given a unique value of the process, and in this
case the “weak stabilization” the law of the bridge is not possible. This makes a large
difference with the weak stabilization of the law of the process with a fixed starting point,
and makes it apparently impossible to use the Stein method in such a framework. The
weak spectral method, developed in [9], is based on Keller-Liverani perturbation theorem
and exploits essentially the spectral gap property of the Ls-semigroup associated with
the process. Such a property is slightly stronger than the a-mixing property, and fails for
the processes with intrinsic memory. Vaguely speaking, for such a process the semigroup
may exhibit a convergence to an equilibrium on some functions g which has an additional
regularity properties (e.g. Lemma 4.1 below), but such a convergence can not be uniform
in g € Ly. Such a uniformity is crucial in the approach developed in [9], thus we can not
apply it here.

For weakly ergodic Markov processes one possible way to provide the CLT is to use
the “individual” (or “weak”) stabilization property explained above and use the standard
martingale CLT [12]; we refer to [13] for details. The rate of convergence was not studied
n [13], but the general bound for such a rate in the framework of the martingale CLT
was established in [14], and one can check that in the case under the consideration this
bound will have the form O(1/n'/®). A more direct approach, which provides the CLT for
weakly ergodic processes, which is a modification of the “corrector term” approach from
in [15], was developed in [1]; see also [11]. In the current paper we analyze the bound for
the rate of convergence which can be obtained within the corrector term approach. We

will obtain the rate O (lnm(")

77’1/4
available in simpler settings ([7, 9]), but at the same time is better than the general
martingale CLT rate O(n~1/8) from [14].

The structure of the paper is as follows. Preliminaries are presented in Section 2. In
Section 3 we formulate and prove the main result. The proof is essentially based on an
auxiliary inequality (3.4). This inequality is proved in Section 4.

) , which yet do not achieve the optimal rate O(n~'/2)

2. PRELIMINARIES

Let X be a Polish space, and d be a distance-like function on it; that is, a nonnegative,
symmetric, lower semicontinuous function on X x X such that d(z,z) = 0,z € X,
d(z,y) > 0,z # y,x € X,y € X. For an arbitrary probability measures p,v on X we
define

(2.1) d(p,v) Ed(&,n),

= inf

(&meC(u,v)
where C(u,v) denotes the set of pairs (£,7) of random elements valued in X such as
Law(€) = 1, Law(y) = v.

Let (Q, F,P) be some probability space. Consider a time-homogeneous stationary
Markov process X = {X,,,n > 0} taking values in X. Denote its transition probability
by Py(z,dy). Let FX be the natural filtration of process X.

For some function V : X — R, distance-like function d and real p € (0,1), we say
that the process X satisfies condition M (V,d, p) if X admits a unique invariant measure
7w and the following holds:

(2.2) d(Py(,),7) < V().

(2.3) V3dr < oo.
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In what follows, by C' we denote an arbitrary constant whose value is not specified
and may vary from place to place.

For a real p > 1 and distance-like function d, we denote by Hg, the class of all
functions f : X — R such that:

oy @)= S0
(2.4) [ fllap = w,yepx (d(z,y)) />

For process X that satisfies M (V,d, p) and function f € Hgy, such that fx fdm =0, we
denote by

< 00.

oo

(2.5) Rf(x) = EXf(Xy)

k=0

the potential of f. The series (2.5) converges in the mean-square sense with respect to
m. The proof of this fact can be found in Section 3.3 of [11]. Let us also consider the
following function that is correctly defined under the same assumptions:

(2.6) Rf(@) =Y EXf(Xy)

k=1
3. THE MAIN RESULT

Theorem 3.1. Suppose the following conditions hold:
(1) For some V : X — R, distance-like function d and real p € (0,1) process X
satisfies M(V,d, p);
(2) [x Adr =0, [y |A|*dT < oo;
(3) For some real p > 1: A, A2, RA and ARA belong to Hyyp;
(4) 02 = [y ((A(y))2 + 2A(y)7éA(y)) dr > 0.
Then

n®/2(n)

2l
= n1/4 ’

1 n
3.1 sup |P(— AXE) <2)—d(5)| <C
(3.1) sup [P( 77 3 A < 2) = 2(C)
where ® denotes the distribution function of standard normal distribution.

To illustrate the theorem, we examine the example from [11], Section 2.3:
Consider an SDDE in R of the form:

(32) dXt = —CXtdt + g(Xt_l)th,

where ¢ > 0, W is a one-dimensional Brownian motion and g is a strictly increasing
positive bounded Lipschitz continuous function such that:

(3.3) e > llglliip-

Following the [11], we state that segment process X(t) = {Xits,8 € [-1,0]} €
C(—1,0),t > 0 possesses the Markov property. It was mentioned that:

1X(®) = X' Ollrv =2,
where the pair of processes X (t) and X'(t) started from two different initial points
z,x’ € C(=1,0). Let d(z,y) = ||z — y||2c(,170). Then:

Ed(X,X'") < Ce_(c_HgHi'ip)td(x’x/)



56 G. M. MOLYBOGA

By the It6 formula, because g is bounded one can get:
t t
EX} - X = / [_ 4cEXE+ GgZ(Xs,l)EX,ﬂds < / [— 3cEX2 + C|ds.
0 0

From the comparison principle we get the integrability of EX;'. Following the method-
ology presented in [11], Section 2.3, one can also show that for some z € C(-1,0) :
sup EQCHX(t)H‘é(_1 0y < 00. Then, by Theorem 2.25 from [11] there exists a unique
t>0 ’

invariant measure 7w and the following rate of convergence holds true:

d(Py(x, ), 7(-)) < Ce~e—llallE)t / Il — 2/ |2(da’), £ > 0.
C(=1,0)

Hence, in 2.2 we have p = e~(e=llgllzin) and V(z)=C [ |lz—2'|[>nr(da’). The
C(-1,0)
condition 2.3 can be get from the estimate on sup EI||X(75)||‘é,(71 0
t>0 ’

The proof of Theorem 3.1 is based on two fol_lowing lemmas.

Lemma 3.1. Under the conditions of Theorem 3.1, the following inequality holds true:

e DAY sz - oM In®(n)

(3.4) e | N

/4
In3/2(n) *

for all natural n and real A such that |\ <

We prove Lemma 3.1 in Section 4.

Lemma 3.2. Suppose F and G are some distribution functions with the same mean.
Suppose ¢ and v be respectively the characteristics functions of F and G. If also 3g =
G',3Im such that |g| < m, then the following holds true:

P @< L [ EA g 2
for all real x and positive T.
Proof of Lemma 3.2 can be found in Section 16.3 of [16].
Proof of Theorem 3.1. Apply Lemma 3.2 with
n 1/4
F= P(% I;A(Xk) <2),G= @(g),T = hlg‘/;(n)
Thus, we have
n 3 3/2
P(- > A(Xe) <2 -0l < T p e )
This completes the proof of Theorem 3.1. O
CAP

We note that in [14] an analogue of the inequality (3.4) is used with 7 in the right
hand side. It is not difficult to show that in this case Lemma 3.2 provides the estimate
on the rate of convergence of order O(n=1/8).

So, the main goal is to get inequality of the form (3.4). The method of corrector term

let us analyze the error more precisely.



BERRY-ESSEEN THEOREM FOR WEAKLY ERGODIC MARKOV PROCESSES 57

4. THE PROOF OF LEMMA 3.1

Let us consider not only Y, = ﬁ k21 A(X}) but the series of random variables

(4.1) vt = Ly )
n \/ﬁjzl

It is clear that Y,,(1) = Y,,. Representation (4.1) allows us to get a recurrence relation:

n

eiNYn (%) —

From the Taylor expansion for e* with x = \%A(X k), we have:

iAY, (£) iIAY, (E=1) i IAY, (E=1) A’ 2 iAY, (E=1) 1
(4.2) enin) = el +ﬁA(X;C)e T —%A (Xp)e =) e (R),

where
IAPAXE)?
6nvn
4.1. Corrector term. Following the methodology explained in [11], we introduce the

corrector term:

(4.4) Un(k) = RA(X))ire? (5 > 1.

(4.3) o ()| <

Denote M), = RA(X) + Z A(Xj). It is proved in Section 3.3 of [11] that M is a

martingale. Therefore, E[AkM\]:,f 1] = 0. By definition, AkRA( )= —A(Xk)+ArM.
Let us consider an increment of the corrector term:

(4.5) Un(k) — Un(k — 1) = (RA(X},) — RA(Xj_1))ire*V» (55
F RA(X 1 )id (€M n(55) — eAVn(52)),

Here we can use (4.2) and get:

(4.6) Un(k) — Un(k — 1) = ixe™ 5 ( A(Xy) + ApM)

b 2
(Xm)eNn 522 = 2 42(X, ) 522 1k (- 1)),

FRAX 1 )iN-2A as

vn

Let us ”correct” the decomposition (4.2) by adding the equation (4.6) divided on /n:

. 1 ) k—1 1
47) M) 4 U (k) = ) 4 U (k-1
@) U Uk 1)
1
7}\1)\Yn(n —A(X AL M
+ NG (—A(Xk) + ApM)
2 iIAY, (AL )\72 2 INY, (B
+ 7\/EA(X]€)€ 27’LA (Xk)e
+ ﬁA(Xk—l)i/\(%A(Xk—l)ei)\Yn(kgz)) )
A Z)\ )\2 2 i\Y, ( )
+RAX 1)~ 42X )N T L (1)),

ﬁ2n
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Denote
A

ﬁ<—§2A2<Xm> T 4l (k- 1)),

(4.8) (k) = RA(Xg-1)

Using (4.3), we get:

A[? <|7A3A(Xk71)A(Xk71)2| n |7A3A(Xk71)A(Xk71)3|)
ny/n 2 6 '

From the equation (4.7) and the definition (4.8) it follows that

(4.9) o (k)| <

) 1 . —1 1
(410) elAYW'(%) + %Un(k) = elkYn(kT) + %Un(k — 1)
)\2

2 INY, (E=2)
- 5 (42(xe (Xio1)A(Xi1)e )
A
+ L ALMEN T L pL (k) 4 (k).
\/>
Using the same equations with k replaced by k — 1,k — 2, ..., 1, we get
ix 2 :
eNYn () 4~ — hids , iAYn (L)
(4.11) + fU W) =1+ ﬁ;AgﬂMez
Ao eNYa (55 A
)\2 k—1 )
_ 2 2(x. 5 ) ) eiAYa (451)
- Z ((42(X;) + 2RACX;)A(X;)e )
k—1
+Y (rlG+1) +r2(+1).
j=1
Denote by
k
(4.12) Ry = (rh () + (),
j=2
and
A2 : k—1 )\2 1
4.1 ; AP ( X )M () - S A%(X
(113) ) = 5 A% (X e 5 A — U

the errors presented in (4.11). Since |A| < v/n, we have:
A(RAXK)| + 1)

4.14 3(k)| <
(1.14) [rA ()] < N
for sufficiently large n.
Denote by
(4.15) B(X;) = A%(X;) + 2RA(X,)A(X;).

Taking the expectation at both sides of the equation in (4.11), we get:

n

(4.16)  EeMNn(B) =1 —EZ (Bx )+ E (R + (k).
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4.2. Time delay. In order to analyze the sum in the identity (4.16), we apply the time
k_l . ‘77

delay trick similar to the one used in [11]. We represent the sum ) F {B(Xj)e’)‘Y“(Tl)}
j=1

in the following way:

E

-1

=
3
=

(4.17) E {B(Xj)ei’\Y”(% } =NF [B(Xj)ei/\y"(];l)}
=1 =1
k—1 _ i
+ E [B(Xj)(e”y"(%) _ eAYa ()
j=l(n)
k—1 ‘
+ E [B(Xj)ei’\y"(w)} =: X + 2o + X3,
j=l(n)

where [(n) is some function that will be specified later. Let us estimate the expectation
of each sum of the partition separately.

Since
(4.18) [EB(X,)e™ )| < EIB(X;)| < 2BA%(X;) + E(RA(X;))?,
we have
l(n) o .
(419)  EIY [BOG)EN D] <am) (2B4%(X0) + B(RA(X1))?).

Before analyzing Yo, we give two auxiliary results. The proofs of the subsequent
statements can be found in Section 3.2 of [11].

Lemma 4.1. Suppose g € Hq . Then

(4:20) Eeg(Xe) = [ gl < lallaplV(2)o)
Lemma 4.2. Suppose g € Hq, and fx g*dn < co; Then
(4.21) Cov (9(X1), 9(X;)) | < Cllgllapp*97".

From the Cauchy inequality for the j-th term of Y5, we get:

(@22) E[|BOG) O - e |

i i=1 i i=i(n) 1/2
< (BIBOG) BN (7 — ey (52 ) 1

Using the recurrence relation (4.2) with & replaced by m,m — 1, ...,m — k, we get:

m—1 . 2 2 m—1
i m i mk INA(X M (A(X;) )
e o 5 (A0 EERIN) 7 )
j=m—k j=m—k
From Lemma 4.2, we have:
(4.24) |Cov(A(Xy), A(X))| < C[|Allapp*7P

From (4.23) and the last inequality (4.24), we obtain an upper bound for the second
expectation:
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(4.25)  E[(eM U5 — e (5 2)
MmﬂmmpIMH)WHM&W+D+WWWWEMWMMJ»
n(l — pl/p) ny/n n? '

Finally, for the entire j-th term of X5, we get:

<o

(426) B [|B(X;)(eN 05 — M=) |

1/2
<C<C<) |M(<D)/>
- n ny/n ’
where constant C' does not depend on j. Consider the conditional expectation of the

j-th term of X5 with respect to ]-' i)’

Ji— l(n)

i IAY,, (AL
B|B(B(X,)e™ CZEDIFY )| = B[N 5 BB(X) I FY )]

By the theorem assumptions, A%(z), A(z)RA(z) € Hy,. Hence, it is not hard to prove
that B(x) € Hgp.
So, from Lemma 4.1 with g(z) = B(x), we have

(4.27) |B(B(X;)F ) = EBX;)] < |IBllap(V(X;-

; l(n)))l/ppl(n)/p_

Specify I(n) = [In*(n)]. From the inequality (4.27), we get:

k—1

4.98 B | BX )N | pp x| eitYa (2l
J J
=[n2(n)]
k—1
< > BllapE(V (X2 (ay)) /P e /e
=l (n)]

< 1Bllap BV (X)) Vot )
Since p € (0,1), plt(P) In(n)/P tends to zero faster than an arbitrary power function
of n=1. Recall that o2 is equal to EB(Xp). This yields that

k—1 ' ) [In?(n)]-1 '
(4.29) |23 —0? Z Ee”\Yn(ﬁ) — 02 Z Fe
j=1

j=[n2(n))

= O([n*(n)).

Let us denote ¢ (\) = EeiYn(3),
Denote by R2 the sum of all errors that we get under the ”time delay” trick, multiplied
by % By the above

(4.30) =, + i
"=

We stress that there exist constants w, v such as |wi| < w, |v,| <
Let Riptai(k) = E (R,lc + R2 + rz); Then

v[In?(n)]A\?
2n .

)\2 2mn
(4-31) (bn( = Z ¢] + Rtotal(n)~

It can be shown in the usual way that the solution of (4.31) is
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)\2 2 n /\20,2
n + ; Rtotal Rtotal(k' - 1))(1 - m

(432) . =(1- et

4.3. The inequality (3.4). Consider the right hand side of the equation (4.32).

(4.33) | enIn(1=238) _ =257 | < o= 2F (o5 _1) < e tF
- A2g2
4.34 Riotar(k) — Riotar(k — 1))(1 — n—k
(4.34) ;(tu() totat (K = 1))(1 = =)
By the definition,
(435) Rtotal(k) = Pk + Qk7
where
k
A31n(n)
_ 1,2
(4.36) P, = E;l (rj Tt G i )

(4.37) Qr=F AiA?(X)‘ n )f)\—QAz(X)fLU (k) +
. k — m k)€ m 1 n Vg | -

NG

Let us remark that |Qx| < C ﬁ for sufficiently large n. Note also that

k
(4.38) P=> p;
j=1
and
. IA]? In(n)
dp : psl < — .
p: Vi p;l _p< ™G

Using decomposition (4.35) and the Abel transformation, we get:

- )‘202 n—k - /\20—2 n—=k
(4.39) Z (A Riotar)( W) = Z(Akp)(l T Ton )
k=1 k=1
n—1
)\20_2 /\202 )\20.2
_ 1— n—k—l n—1
;:jl(@k 5y )= 5 )T T Qe = Qo(55 )"

It is clear that for all k: AxP and (Qx /\;ZZ) are of order O(%)

We claim the following Lemma.

. 1 A3 .
Lemma 4.3. Suppose a sequence zy, satisfies max |zi| < %, for some positive z;
k=1..n

Then

= No?
1- 22 k| < 1) —24
DICTES RANEIS
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n

Proof. First note that Z 2k ( n2 )"~k can be represented in the following way

n—k(n) 2 9

Ao
4.40 1——)nk
(4.40) = Sy,
k=1
Z A2o2
4.41 R
(1.41) (- 2Ty,
k=n—k(n)+1

where k(n) is some function that will be specified later.
First we show the estimate for (4.40)

n—k(n) 2

20 A20? In(n)|\2z
4.42 R < (1 - k()
(4.42) D R e U
Suppose k(n) = min (%22("),71) From an analogue of the decomposition (4.33), we
have
)\2 2 2k(n
(4.43) (1- %)M") <e

As above, the right hand side of (4.43) tends to zero faster than an arbitrary power
function of n=! as k(n) = "1“ (") - Otherwise, if k(n) = n then the sum (4.40) is equal

to zero. So, it can be bounded by %
To conclude the proof, it remains to note that zlng(% is the estimate for (4.41). O
So, using Lemma 4.3 with z; = AP and z, = Q"QA o’ , we get
2,2 Al
(4.44) 6(n) — e T | < c"n\/ﬁ(”).
This completes the proof of Lemma 3.1. O
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