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V. V. FOMICHOV

A NOTE ON WEAK CONVERGENCE OF THE n-POINT MOTIONS

OF HARRIS FLOWS

In this note we extend the main results of [2] and [8], which concern the weak con-
vergence of the n-point motions of smooth Harris flows to those of the Arratia flow,

to the case when the covariance functions of these Harris flows converge pointwise to

a covariance function whose support is of zero Lebesgue measure.

The main aim of this note is to generalize the results of [2] and [8] concerning the
weak convergence of the n-point motions of Harris flows.

We begin by recalling the definition of a Harris flow (e. g., see [3, Definition 1.2]).

Definition 1. A random field {x(u, t), u ∈ R, t > 0} is called a Harris flow with
covariance function Γ if it satisfies the following conditions:

(i) for any u ∈ R the stochastic process {x(u, t), t > 0} is a Brownian motion with
respect to the common filtration (Ft := σ{x(v, s), v ∈ R, 0 6 s 6 t})t>0 such
that x(u, 0) = u;

(ii) for any u, v ∈ R, if u 6 v, then x(u, t) 6 x(v, t) for all t > 0;
(iii) for any u, v ∈ R the joint quadratic variation of the martingales {x(u, t), t > 0}

and {x(v, t), t > 0} is given by

〈x(u, ·), x(v, ·)〉t =

t∫
0

Γ(x(u, s)− x(v, s)) ds, t > 0.

Note that the function Γ is necessarily non-negative definite and, in particular, sym-
metric. Besides, without loss of generality we always assume that

Γ(0) = 1,

so that the one-point motions of Harris flows we consider are standard Brownian motions.
The existence of random fields satisfying the above conditions (i), (ii) and (iii) under

mild assumptions on the covariance function was proved in [4].
A Harris flow with covariance function Γ = 1I{0} is called the Arratia flow (here

1IA(z) ≡ 1I{z ∈ A} stands for the indicator function of the set A). It is one of the
first examples of Harris flows and was initially constructed in [1] as the weak limit of a
family of coalescing simple random walks. Throughout this paper the Arratia flow will
be denoted by {x0(u, t), u ∈ R, t > 0}.

It is convenient to construct Harris flows with a smooth covariance function as solutions
of stochastic differential or integral equations. To be more precise, let us consider the
following stochastic integral equation:

(1) x(u, t) = u+

t∫
0

∫
R

ϕ(x(u, s)− q)W (dq, ds), t > 0,

2010 Mathematics Subject Classification. 60G60, 60B12, 60H20.
Key words and phrases. Harris flows, Brownian stochastic flows, n-point motions, weak convergence.

4



WEAK CONVERGENCE OF HARRIS FLOWS 5

where u ∈ R plays the role of a parameter, W is a Wiener sheet on R× [0; +∞) and the
function ϕ ∈ C∞0 (R, [0; +∞)) (i. e. infinitely differentiable and with compact support)
is symmetric and has a unit L2-norm.

It is known [2] that under these conditions on the function ϕ this equation has a
unique strong solution for every u ∈ R and the random field {x(u, t), u ∈ R, t > 0} is a
Harris flow with covariance function Γ given by

Γ(z) :=

∫
R

ϕ(z + q)ϕ(q) dq, z ∈ R.

Now we can formulate the main results of [2] and [8]. Although these results were
proved for the case of the finite time interval [0; 1], their proofs remain valid for the more
general case of the infinite time interval [0; +∞) and it is in this form that we formulate
them below.

Theorem 2. [2, Theorem 3] For ε > 0 define

(2) ϕε(q) :=
1√
ε
ϕ
(q
ε

)
, q ∈ R,

and let {xε(u, t), u ∈ R, t > 0} be the Harris flow formed by the solutions of the
stochastic integral equation (1) with ϕε instead of ϕ. Then for any n ∈ N and for any
u1, . . . , un ∈ R the weak convergence

(xε(u1, ·), . . . , xε(un, ·))
w−→ (x0(u1, ·), . . . , x0(un, ·)), ε→ 0+,

takes place in the space C([0; +∞),Rn).

Note that in this case for the covariance function Γε of the Harris flow xε we have

∀ z ∈ R : Γε(z) −→ 1I{0}(z), ε→ 0+,

and also

(3) ϕ2
ε −→ δ0, ε→ 0+,

in the sense of generalized functions (here and below δa stands for the delta function at
point a ∈ R).

In [8] it was shown that the assertion of this theorem still holds true even if ϕ2
ε

converges to a generalized function distinct from δ0.

Theorem 3. [8, p. 1538] For ε > 0 define

ϕε(q) :=

√
α√
ε
ϕ

(
q − a1
ε

)
+

√
β√
ε
ϕ

(
q − a2
ε

)
, q ∈ R,

where 0 < α, β < 1, α + β = 1, and a1 < a2, and let {xε(u, t), u ∈ R, t > 0} be the
Harris flow formed by the solutions of the stochastic integral equation (1) with ϕε instead
of ϕ. Then for any n ∈ N and for any u1, . . . , un ∈ R the weak convergence

(xε(u1, ·), . . . , xε(un, ·))
w−→ (x0(u1, ·), . . . , x0(un, ·)), ε→ 0+,

takes place in the space C([0; +∞),Rn).

Note that in this case for the covariance function Γε of the Harris flow xε we have

∀ z ∈ R : Γε(z) −→
√
αβ · 1I{−b}(z) + 1I{0}(z) +

√
αβ · 1I{+b}(z), ε→ 0+,

where b := a2 − a1, and also

(4) ϕ2
ε −→ αδa1 + βδa2 , ε→ 0+,

in the sense of generalized functions.
Here we show that the proof presented in [8] can be extended to the case when the

right-hand side of (4) is replaced by a discrete probability measure on the real line
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satisfying some mild conditions. To be more precise, let ν be an arbitrary finite singular
measure on the real line having at least one atom, i. e. such that

ν2(∆) > 0,

where

ν2 := ν ⊗ ν

and

∆ := {~q = (q1, q2) ∈ R2 | q1 = q2}.

Suppose that the function ϕ considered above is additionally non-decreasing on (−∞; 0]
and is non-increasing on [0; +∞) and that ϕε is defined by (2). Let us set

ψε(z) := cε

∫
R

ϕε(z − q) ν(dq), z ∈ R,

where the constant cε > 0 is chosen to be such that∫
R

ψ2
ε(z) dz = 1.

It is clear that

cε =

∫∫
R2

Φε(q1 − q2) ν2(dq1dq2)

−1/2 ,
where

Φε(z) :=

∫
R

ϕε(z + q)ϕε(q) dq, z ∈ R,

and also

ψε ∈ C∞(R).

For ε > 0 let {xε(u, t), u ∈ R, t > 0} be the Harris flow formed by the solutions of the
stochastic integral equation (1) with ψε instead of ϕ. The covariance functions of these
Harris flows are given by

Γε(z) :=

∫
R

ψε(z + q)ψε(q) dq, z ∈ R.

The main result of this note is the following theorem.

Theorem 4. For any n ∈ N and for any u1, . . . , un ∈ R the weak convergence

(xε(u1, ·), . . . , xε(un, ·))
w−→ (x0(u1, ·), . . . , x0(un, ·)), ε→ 0+,

takes place in the space C([0; +∞),Rn).

Following [8] we divide the proof into several lemmas. We repeat the considerations
of [8], where necessary, as concisely as possible and omit the proofs which are similar to
those of that paper. The main difference lies in the proof of Lemma 10, since the idea
used in the proof of its analogue [8, Lemma 6] cannot be applied to our case. Our proof
of Lemma 10 is based on additional Lemmas 6 and 9.
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Before proceeding to the proof of the main result, however, we prove an analogue of
relations (3) and (4). To formulate it, let ν0 be a discrete probability measure on the
real line defined by

ν0(A) :=

∑
k : ak∈A

(ν({ak}))2∑
k

(ν({ak}))2
, A ∈ B(R),

where {ak, k > 1} are the atoms of the measure ν and B(R) is the Borel σ-field of the
real line.

Proposition 5. For every function f ∈ C∞0 (R) we have

lim
ε→0+

∫
R

f(z)ψ2
ε(z) dz =

∫
R

f(z)ν0(dz).

Proof. By Fubini’s theorem we have

lim
ε→0+

∫
R

f(z)ψ2
ε(z) dz =

= lim
ε→0+

c2ε ∫∫
R2

∫
R

f(z)ϕε(z − q1)ϕε(z − q2) dz

 ν2(dq1dq2)

 .
However, by the dominated convergence theorem

lim
ε→0+

c2ε =

∫∫
R2

(
lim
ε→0+

Φε(q1 − q2)

)
ν2(dq1dq2)

−1 =
1

ν2(∆)
.

Moreover, since for any q1, q2 ∈ R we have∣∣∣∣∣∣
∫
R

f(z)ϕε(z − q1)ϕε(z − q2) dz

∣∣∣∣∣∣ 6 ‖f‖∞ · Φε(q1 − q2) 6 ‖f‖∞ < +∞,

where

‖f‖∞ := max
z∈R
|f(z)| ,

by the same theorem

lim
ε→0+

∫
R

f(z)ϕε(z − q1)ϕε(z − q2) dz = f(q1)1I{q1 = q2}.

It remains to note that

1

ν2(∆)

∫∫
R2

f(q1)1I{q1 = q2} ν2(dq1dq2) =

∫
R

f(z) ν0(dz). �

Now let us set

∆z := {~q = (q1, q2) ∈ R2 | q1 − q2 = z}, z ∈ R.

Then it is easy to see that for every z ∈ R we have

lim
ε→0+

Γε(z) = Γ0(z),

where the function Γ0 is given by

Γ0(z) :=
ν2(∆z)

ν2(∆0)
.
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Moreover, the set

(5) D := {z ∈ R | Γ0(z) > 0}
is countable, since the family {∆z, z ∈ R} is a partition of R2 and ν2(R2) < +∞.

Lemma 6. The following assertions hold true:

lim
|z|→+∞

Γ0(z) = 0,(6)

∀ δ > 0 : sup
|z|>δ

Γ0(z) < 1.(7)

Proof. To prove (6) note that for any ε > 0

0 6 Γ0(z) 6
1

ν2(∆0)

∫∫
R2

Φε(z + q1 − q2) ν2(dq1dq2)

and that by the dominated convergence theorem the last expression converges to zero as
|z| → +∞.

Now suppose that (7) is false, i. e. that there exists some δ0 > 0 such that

(8) sup
|z|>δ0

Γ0(z) = 1.

It means, in particular, that we can find some z1 > δ0 such that

Γ0(z1) >
1

2
.

Since the function Γ0 is non-negative definite and Γ0(0) = 1, we have (e. g., see [6,
p. 22])

∀x, y ∈ R : |Γ0(x)− Γ0(y)| 6 2
√

1− Γ0(x− y),

and, in particular, for any z ∈ R

(9) |Γ0(z1 + z)− Γ0(z1)| 6 2
√

1− Γ0(z).

Using (8) and (9) and the symmetry of Γ0 we can choose z2 > δ0 such that

|Γ0(z1 + z2)− Γ0(z1)| < Γ0(z1)− 1

2

and so

Γ0(z1 + z2) >
1

2
.

Proceeding further in this way we obtain a sequence {zn}∞n=1 such that

zn > δ0, n > 1,

Γ0(z1 + . . .+ zn) >
1

2
,

which contradicts (6). �

Now fix arbitrary n ∈ N and u1, . . . , un ∈ R, u1 < . . . < un, and consider the family

{~xε = (xε(u1, ·), . . . , xε(un, ·)), ε > 0}
of random elements in the space C([0; +∞),Rn) endowed with the distance

ρ(~f,~g) :=

n∑
i=1

∞∑
k=1

1

2k

max
06t6k

|fi(t)− gi(t)|

1 + max
06t6k

|fi(t)− gi(t)|
,

~f = (f1, . . . , fn) ∈ C([0; +∞),Rn),

~g = (g1, . . . , gn) ∈ C([0; +∞),Rn).
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Since all stochastic processes {xε(ui, t), t > 0}, 1 6 i 6 n, are Wiener processes, thus
having the same distribution in the complete separable metric space C([0; +∞),R), using
Prohorov’s theorem one can easily show that the family {~xε, ε > 0} is weakly relatively
compact. Let ~x = (x(u1, ·), . . . , x(un, ·)) be one of its limit points (as ε→ 0+).

Lemma 7. The n-dimensional stochastic process {~x(t), t > 0} is a martingale (with
respect to its own filtration).

Proof. The proof of this lemma is identical to that of [8, Lemma 2] and is therefore
omitted. �

Lemma 8. With probability one for any i, j ∈ {1, . . . , n} we have

0 6 〈x(ui, ·), x(uj , ·)〉t − 〈x(ui, ·), x(uj , ·)〉s 6
t∫
s

Γ0(x(ui, r)− x(uj , r)) dr,

0 6 s 6 t < +∞.

Proof. Fix arbitrary i, j ∈ {1, . . . , n}, i 6= j, and in the space C([0; +∞),Rn+1) consider
the random elements

~x(ij)ε = (xε(u1, ·), . . . , xε(un, ·), θ(ij)ε ), ε > 0,

where

θ(ij)ε (t) := 〈xε(ui, ·), xε(uj , ·)〉t , t > 0.

As in the proof of [8, Lemma 3] one can show that the family {~x(ij)ε , ε > 0} is weakly
relatively compact and that, if

~x(ij)εn

w−→ ~x(ij), n→∞,

in the space C([0; +∞),Rn+1) for some sequence {εn}∞n=1 strictly decreasing to zero,
with ~x(ij) := (x(u1, ·), . . . , x(un, ·), θ(ij)), then

θ(ij)(t) = 〈x(ui, ·), x(uj , ·)〉t , t > 0.

Now, since the set

{~f = (f1, . . . , fn+1) ∈ C([0; +∞),Rn+1) | 0 6 fn+1(t)−fn+1(s) 6

t∫
s

hδ(fi(r)−fj(r)) dr},

where 0 6 s 6 t < +∞ and

hδ(z) :=
1

ν2(∆0)

∫∫
R2

Φδ(z + q1 − q2) ν2(dq1dq2), z ∈ R,

with δ > 0, is closed and

Γε(z) = c2ε

∫∫
R2

Φε(z + q1 − q2) ν2(dq1dq2) 6 hδ(z), z ∈ R,

for ε < δ, we obtain that

P

0 6 θ(ij)(t)− θ(ij)(s) 6
t∫
s

hδ(x(ui, r)− x(uj , r)) dr

 >
> lim
n→∞

P

0 6 θ(ij)εn (t)− θ(ij)εn (s) 6

t∫
s

hδ(xεn(ui, r)− xεn(uj , r)) dr

 = 1.
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Thus, for every δ > 0 with probability one

0 6 θ(ij)(t)− θ(ij)(s) 6
t∫
s

hδ(x(ui, r)− x(uj , r)) dr, 0 6 s 6 t < +∞, s, t ∈ Q,

and so with probability one

0 6 θ(ij)(t)− θ(ij)(s) 6
t∫
s

Γ0(x(ui, r)− x(uj , r)) dr, 0 6 s 6 t < +∞.

The lemma is proved. �

Lemma 9. With probability one for any i, j ∈ {1, . . . , n} we have

lim
t→+∞

(x(ui, t)− x(uj , t)) = 0.

Proof. Let us fix arbitrary i, j ∈ {1, . . . , n}, i > j. The proof of the existence of the limit

lim
t→+∞

(x(ui, t)− x(uj , t))

is similar to the proof of [7, Lemma 1]. Namely, we note (e. g., see [5, Theorem 18.4])
that with probability one the following representation takes place:

(10) x(ui, t)− x(uj , t) = (ui − uj) + β(τ(t)), t > 0,

where {β(t), t > 0} is a standard Wiener process (maybe defined on an extended prob-
ability space) and

(11) τ(t) := 〈x(ui, ·)− x(uj , ·)〉t = 2t− 2 〈x(ui, ·), x(uj , ·)〉t , t > 0.

Then

x(ui, t)− x(uj , t) > 0, t > 0,

implies that

τ(t) 6 τ , t > 0,

where

τ := inf{t > 0 | β(t) = −(ui − uj)} < +∞ a. s.

Therefore, there exists the limit

lim
t→+∞

τ(t) =: τ(+∞) 6 τ

and so, due to the continuity of β,

lim
t→+∞

(x(ui, t)− x(uj , t)) = (ui − uj) + β(τ(+∞)).

Now suppose that

τ(+∞) < τ,

i. e.

lim
t→+∞

(x(ui, t)− x(uj , t)) > 0.

Then there exists δ0 > 0 (depending on ω) such that

x(ui, t)− x(uj , t) > δ0, t > 0.
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So using Lemma 8 (with s = 0) and Lemma 6 we obtain that

τ(t) = 2t− 2 〈x(ui, ·), x(uj , ·)〉t >

> 2t− 2

t∫
0

Γ0(x(ui, s)− x(uj , s)) ds =

= 2

t∫
0

[1− Γ0(x(ui, s)− x(uj , s))] ds >

> 2(1− sup
|z|>δ0

Γ0(z)) · t→ +∞, t→ +∞,

which contradicts the almost sure finiteness of τ . �

Lemma 10. With probability one for any i, j ∈ {1, . . . , n} we have

λ({t > 0 | x(ui, t)− x(uj , t) ∈ D \ {0}}) = 0,

where λ is the one-dimensional Lebesgue measure and D is defined in (5).

Proof. Let us fix i, j ∈ {1, . . . , n}, i > j, and z ∈ (0;ui − uj) and set

σz := sup{t > 0 | x(ui, t)− x(uj , t) > z}.
From Lemma 9 it follows that σz is finite almost surely. Also let τz be the restriction of
the (random) mapping τ : [0; +∞) → [0; +∞) defined in (11) to the set [0;σz] and τ−1z
be its inverse. Then using (10) we get

λ({t > 0 | x(ui, t)− x(uj , t) ∈ D ∩ [z; +∞)}) =

= λ({0 6 t 6 σz | β(τ(t)) ∈ Dij(z)}) = λ(τ−1z (Cij(z))),

where

Dij(z) := D ∩ [z − (ui − uj); +∞)

and

Cij(z) := {t > 0 | β(t) ∈ Dij(z)}.

Moreover, since the stochastic process {x(ui, t) − x(uj , t), t > 0} is a non-negative
(continuous) martingale, we have

rz := inf{x(ui, t)− x(uj , t) | 0 6 t 6 σz} > 0,

and so by Lemma 6

ρz := 1− sup
|z′|>rz

Γ0(z′) > 0.

Thus, we obtain that for any s, t ∈ [0;σz], s < t, we have

2 >
τ(t)− τ(s)

t− s
>

1

t− s

t∫
s

[1− Γ0(x(ui, r)− x(uj , r))] dr > 2ρz.

Therefore, for any s, t ∈ [0; τ(σz)], s < t,

1

2
6
τ−1z (t)− τ−1z (s)

t− s
6

1

2ρz
.

This implies that the function τz is absolutely continuous and so it maps the sets of zero
Lebesgue measure to the sets with the same property. Thus, from

λ(Cij(z)) = 0



12 V. V. FOMICHOV

it follows that

λ({t > 0 | x(ui, t)− x(uj , t) ∈ D ∩ [z; +∞)}) = 0.

Finally, since z ∈ (0;ui−uj) was arbitrary and x(ui, ·)−x(uj , ·) > 0, we can conclude
that

λ({t > 0 | x(ui, t)− x(uj , t) ∈ D \ {0}}) =

= λ

⋃
k>1

{t > 0 | x(ui, t)− x(uj , t) ∈ D ∩ [1/k; +∞)}

 = 0.

The assertion of the lemma now follows trivially. �

To finish the proof of Theorem 4 (obviously, it is enough to consider the case when
u1 < . . . < un) suppose that (x(u1, ·), . . . , x(un, ·)) is one of the weak limits (as ε→ 0+)
of the family {~xε = (xε(u1, ·), . . . , xε(un, ·)), ε > 0}. Then for any i, j ∈ {1, . . . , n},
i > j, the stochastic process {x(ui, t) − x(uj , t), t > 0} is a non-negative martingale
and so does not leave zero after hitting it. Since both x(ui, ·) and x(uj , ·) are standard
Brownian motions, this implies that

〈x(ui, ·), x(uj , ·)〉t >
t∫

0

1I{x(ui, s) = x(uj , s)} ds, t > 0.

However, from Lemma 8 (with s = 0) and Lemma 10 it follows that

〈x(ui, ·), x(uj , ·)〉t 6
t∫

0

1I{x(ui, s) = x(uj , s)} ds, t > 0.

Hence

〈x(ui, ·), x(uj , ·)〉t =

t∫
0

1I{x(ui, s) = x(uj , s)} ds, t > 0.

Thus, we conclude that any weak limit (as ε→ 0+) of the family {~xε, ε > 0} coincides
in distribution with the n-point motion of the Arratia flow, which means that this family
converges weakly to the latter.
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