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SYLVIE RŒLLY AND PIERRE VALLOIS

CONVOLUTED BROWNIAN MOTION: A SEMIMARTINGALE

APPROACH

In this paper we analyse semimartingale properties of a class of Gaussian periodic

processes, called convoluted Brownian motions, obtained by convolution between a

deterministic function and a Brownian motion. A classical example in this class
is the periodic Ornstein-Uhlenbeck process. We compute their characteristics and

show that in general, they are never Markovian nor satisfy a time-Markov field prop-
erty. Nevertheless, by enlargement of filtration and/or addition of a one-dimensional

component, one can in some case recover the Markovianity. We treat exhaustively

the case of the bidimensional trigonometric convoluted Brownian motion and the
multidimensional monomial convoluted Brownian motion.

1. Introduction

In this note we focus our attention on a class of processes constructed as the con-
volution between a deterministic - possibly vector-valued - L2-function and a Brownian
motion. More precisely, for a (scalar) function ϕ in L2

(
0, 1
)
, we first define

(1) Xϕ
t :=

∫ t

0

ϕ(t− s) dBs +

∫ 1

t

ϕ(1 + t− s) dBs, t ∈ [0, 1],

where (Bt, t ∈ [0, 1]) is a real-valued Brownian motion. We will call the process Xϕ a
(scalar) convoluted Brownian motion. As example, when ϕ(s) := 1

1−e−λ e
−λs, one

gets the exponential convoluted Brownian motion.
For a given ϕ, some properties of

(
Xϕ
t , t ∈ [0, 1]

)
are immediate: the process Xϕ is

stationary, centered, Gaussian and belongs to the first chaos of B. It is periodic on the
time interval [0, 1] and its law is also time reversal invariant.

One key point of the paper is to study the linear map ϕ 7→ Xϕ. We propose in
Proposition 3.3, for ϕ smooth enough, a decomposition of Xϕ as a dϕ-mixture of simple
Gaussian processes (Z(r, ·))r∈[0,1] which satisfy interesting properties. In particular we
prove that, for any r in [0, 1], Z(r, ·) is itself a convoluted Brownian motion associated
with the indicator function of a suitable interval. It also corresponds to the random
concatenation of Brownian bridges, see Proposition 3.2.

Then, when ϕ is differentiable, the processes Xϕ and Xϕ′ are linked via Equation
(38). This key identity will play an important role in our study. It first permits to
interpret the exponential convoluted Brownian motion as the solution of the stochastic
integral equation (3) and to identify it as the celebrated periodic Ornstein-Uhlenbeck
process. When ϕ is a trigonometric function, due to the proportionality between ϕ′′

and ϕ, one derives that the pair of processes (Xcos, Xsin) is solution of an (autonomous)
bidimensional system of stochastic integral equations, see (43). We also consider the
scalar process X]k := Xϕ, when ϕ is the monomial function s 7→ sk. The process
X]k is not solution of an autonomous stochastic equation but, since the derivative of
a monomial of order k is a monomial of order k − 1, it makes sense to consider X]k
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as the first component of the (k + 1)-dimensional process X]k whose coordinates are
X]k, · · · , X]1, X]0.

Another central and difficult question we address concerns the Markovianity of Xϕ.
One way to test this property is to make explicit a semimartingale decomposition of Xϕ

with respect to a suitable filtration and to show that it solves a nice SDE. Note that in
our framework, if (Ft)t∈[0,1] stands for the natural filtration of (Bt)t∈[0,1], X

ϕ
0 is in fact

F1-measurable and therefore (Xϕ
t )t∈[0,1] cannot be a (Ft)t∈[0,1]-semimartingale. Anyway,

since Xϕ
0 belongs to the first Brownian chaos, thanks to the method of initial enlargement

of filtration, (Bt)t is a semimartingale in the Brownian filtration augmented by σ(Xϕ
0 ),

see Section 2.1 and Lemma 4.1 for details. Consequently (Xϕ
t )t∈[0,1] is a semimartingale

with respect to the enlarged filtration.
This approach can be achieved for the exponential convoluted Brownian motion, see

Section 2. This process is a semimartingale and solves a SDE in an enlarged filtration.
We thus deduce that it is not Markovian but a time-Markov random field, whose bridges
coincide with the ones of the Ornstein-Uhlenbeck process.

We have not been able to carry on with the analysis of Markovianity for a general
convoluted process Xϕ, but we present here some relevant partial results. In Section 4,
we introduce a class of multidimensional convoluted processes XA,φ indexed by a ma-
trix A and a vector φ. As example we treat the bidimensional trigonometric convoluted
Brownian motion (Xcos, Xsin) and the (k+ 1)-dimensional monomial convoluted process
X]k. We compute in Proposition 4.2 the covariance matrix of these stationary Gaussian
processes. Under two additional assumptions (H1) and (H2), XA,φ solves a linear SDE
and is a mixture of its bridges, see Theorem 4.1. Since the trigonometric convoluted
Brownian motion satisfies (H1) and (H2), Theorem 4.1 applies to it. However, the con-
dition (H1) fails to hold for the monomial convoluted Brownian motion. Completing
the vector X]k with a one-dimensional component, we recover the Markov property, see
Section 4.5.1 for details.

The originality of our contribution is based on various representations of convoluted
Brownian motions and the use of initial enlargement of filtrations. This powerful tool
of stochastic calculus permits to analyse them pathwise, to show their semimartingale
decomposition and their (lack of) Markovianity.

2. A new lightening of the periodic Ornstein-Ulhenbeck process

In this section we analyse the special case of the exponential convoluted Brownian
motion, that is the convoluted process Xϕ obtained for ϕ(s) := 1

1−e−λ e
−λs, λ ∈ R. We

denote it by Y . It satisfies by definition

(2) Yt =
1

1− e−λ

∫ t

0

e−λ(t−s)dBs +
1

1− e−λ

∫ 1

t

e−λ(1+t−s)dBs, t ∈ [0, 1].

We will observe in Proposition 2.1 that (Yt, t ∈ [0, 1]) is the periodic Ornstein-Uhlenbeck
process, here shortened as PerOU, known in the literature as the solution of the following
stochastic integral equation with periodic boundary conditions

(3)

 Xt = X0 + Bt − λ
∫ t

0

Xsds, t ∈ [0, 1],

X1 = X0,

where (Bt, t ∈ [0, 1]) is a one-dimensional standard Brownian motion.
Due to the fact that its initial condition involves its final one, the PerOU process is

not adapted to the natural filtration induced by the Brownian motion. Nevertheless, it
has various interesting explicit representations.

In the next Section 2.1 we exhibit its Gaussian properties. In Section 2.2 we propose
a new semimartingale decomposition of Y with respect to an enlarged (grossissement de)
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filtration, to overcome the adaptibility problem. This property permits to identify the
disintegration of the PerOU process along its initial (and final) time marginal in Section
2.3. Finally we discuss in Section 2.4 a non trivial extension of the periodic boundary
condition Y1 = Y0 of the PerOU into the more general one: Y1 = f(Y0) .

2.1. PerOU as convoluted Brownian motion.

Proposition 2.1. The unique solution of (3) is given by

(4) Yt =
e−λ

1− e−λ

∫ 1

0

e−λ(t−s)dBs +

∫ t

0

e−λ(t−s)dBs, t ∈ [0, 1].

with periodic boundary conditions satisfying

(5) Y1 = Y0 =
1

1− e−λ

∫ 1

0

e−λ(1−s)dBs.

Y is a stationary Gaussian process whose covariance function R(h) := Cov(Ys, Ys+h)
satisfies

(6) R(h) =
1

2λ(1− e−λ)

(
e−λ(1−h) + e−λh

)
=

1

2λ

cosh
(
λ(h− 1/2)

)
sinh(λ/2)

.

Since Proposition 2.1 is a particular case of Proposition 2.4 proved below, we do not
prove it separately.

One can find in [8] an application of the Gaussian aspect of the PerOU to filtering
problems.

2.2. PerOU as a semimartingale. One already noticed that the random variable Y0 is
not F0-measurable. Consequently the process Y is not a (Ft)-semimartingale. Anyway,
by (3) and (5), the process (Yt)t solves:

(7) Yt =
e−λ

1− e−λ

∫ 1

0

eλsdBs +Bt − λ
∫ t

0

Ysds, t ∈ [0, 1].

An initial enlargement of filtration will permit to consider Y as solution of a usual SDE.

Proposition 2.2. Let (Gt)t be the filtration obtained by an initial enlargement of (Ft)t

with the random variable

∫ 1

0

eλsdBs. Then, the PerOU process Y solves the SDE

(8) Yt = Y0 + B̃t − λ
∫ t

0

(
Ys +

e−λ(1−s)Ys − Y0

sinh
(
λ(1− s)

) ) ds,
where B̃ is a (Gt)t-Brownian motion independent of Y0.

Therefore equation (8) corresponds to the (Gt)-semimartingale decomposition of the
PerOU process.

Proof of Proposition 2.2. The initial enlargement (Gt)t of (Ft)t by a random variable ξ
is the smallest filtration satisfying the usual conditions such that Ft is included in Gt
for any t ∈ [0, 1] and G0 = σ(ξ). In our framework, ξ belongs to the first chaos of

(Bt)t since ξ :=
∫ 1

0
eλs dBs. Therefore, applying the result of Théorème I.1.1 in [2],

(B̃t := Bt − Vt, t ∈ [0, 1]) is a standard (Gt)t-Brownian motion independent of ξ, where
the process with bounded variation V is given by

(9) Vt =

∫ t

0

eλs∫ 1

s
e2λudu

(∫ 1

s

eλudBu

)
ds =

∫ t

0

λ

sinh
(
λ(1− s)

)( ∫ 1

s

e−λ(1−u)dBu

)
ds.
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Remark that the stochastic integral between time s and time 1 appearing in the definition
of Vt is indeed Gs-measurable:∫ 1

s

eλudBu = ξ −
∫ s

0

eλudBu.

Now (8) is a direct consequence of (7), (5) and (9). �

2.3. PerOU as a Markov field. The PerOU process is not Markov but satisfies a
time-Markov field property, which we will discuss at the end of this subsection. First, in
Proposition 2.3, we present the disintegration of the PerOU process along its initial (and
final) time marginal, and we identify its bridges.

Proposition 2.3. Denote by ν the Gaussian distribution of Y0 = 1
1−e−λ

∫ 1

0
e−λ(1−s)dBs.

Then, the PerOU process is a ν-mixture of its bridges, that is L(Y ) =

∫
R
L(Y xx)ν(dx),

where the x ↪→ x bridge, denoted by Y xxt , solves the SDE

(10)

 dXt = dB̃t − λXt dt+
λ

sinh
(
λ(1− t)

)(x− e−λ(1−t)Xt

)
dt, t ∈ [0, 1[,

X0 = x.

Therefore the family of bridges (Y xx)x of the PerOU process coincides with those of an
Ornstein-Ulhenbeck process.

Proof. (10) is a direct consequence of (8).
Now, consider the linear SDE with fixed initial condition x (but with free final condi-

tion),

(11)

{
dXt = dB̃t − λXt dt, t ∈ [0, 1],
X0 = x.

Its unique solution XOU,x is the Ornstein-Ulhenbeck process with initial deterministic
condition x, given by

XOU,x
t = xe−λt +

∫ t

0

e−λ(t−s)dBs.

One has

XOU,x
1 − e−λ(1−t)XOU,x

t = xe−λ +

∫ 1

0

e−λ(1−s)dBs − e−λ
(
x+

∫ t

0

e−λsdBs

)
=

∫ 1

t

e−λ(1−s)dBs.

Using (11) and (9), we get

XOU,x
t = x+ B̃t − λ

∫ t

0

XOU,x
s ds+

∫ t

0

λ

sinh
(
λ(1− s)

)(XOU,x
1 − e−λ(1−s)XOU,x

s

)
ds.

This leads to the identification of the process Y xx. as the x ↪→ x bridge of the Ornstein-
Ulhenbeck process XOU,x. �

Thus the PerOU process is a particular mixture of the bridges of the (Markov)
Ornstein-Ulhenbeck process, in other words, it belongs to the reciprocal class of the
Ornstein-Ulhenbeck process. It implies a time-Markov field property, also called recip-
rocal property (formalized by Jamison in [6]) which states that, given the knowledge of
the process at any pair of times s and u (with s ≤ u), the dynamics of the process inside
[s, u] and outside (s, u) are conditionally independent. See [10] for a recent review on the
relationship between the Markov property and the reciprocal one.
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This fact, already mentioned in [1], was proved in [15], via a completely different way.
In the latter paper, the reciprocal class is characterized as the set of solutions of an
integration by part formula on the path space.

2.4. Ornstein-Ulhenbeck process with prescripted time-boundaries. Let us now
relax the periodic boundary conditions of the PerOU imposed in (3) and replace it by

X1 = f(X0) where f is a measurable real-valued map. Consider the process Y̆t (if it
exists) solution of the stochastic integral equation

(12)

 Xt = X0 + Bt − λ
∫ t

0

Xsds, t ∈ [0, 1],

X1 = f(X0).

This class of pinned Ornstein-Ulhenbeck process was treated in [12] under the assumption
called (H1) by the authors, which corresponds to the fact that

(13) x 7→ f(x)− e−λ x is a bijective map.

We now solve (12) under a weaker assumption than (13). First, since t 7→
∫ t

0

Y̆sds is dif-

ferentiable and B admits a finite quadratic variation, one can use the generalised stochas-

tic calculus (see [17]) to get d(Y̆te
λt) = eλtdBt. Therefore Y̆t = Y̆0e

−λt +

∫ t

0

e−λ(t−s)dBs.

Considering the boundary conditions, one obtains

(14) Y̆1 − e−λY̆0 = f(Y̆0)− e−λY̆0 =

∫ 1

0

e−λ(1−s)dBs.

Suppose now that the map defined in (13) is surjective, then there exists a measurable
function g such that

(
f − e−λId

)
◦ g = Id. Therefore one solution to (12) is given by

(15) Y̆t = e−λtg
(∫ 1

0

e−λ(1−s)dBs

)
+

∫ t

0

e−λ(t−s)dBs.

Notice that, in general, it is no more a Gaussian process. Furthermore, the above repre-
sentation of solutions of (12) implies their non-uniqueness as soon as the map (13) fails
to be injective.

Take:

f(x) := e−λx+ x1I]−∞,1[(x) + (2− x)1I[1,2](x) + (x− 2)1I[2,+∞[(x).

Then, both functions g1 and g2 defined by

g1(y) = y1I]−∞,1](y) + (2 + y)1I]1,+∞](y)

and g2(y) = y1I]−∞,0[(y) + (2− y)1I[0,1](y) + (2 + y)1I]1,+∞](y)

solve the identity
(
f − e−λId

)
◦ g = Id, which induces two non identical solutions for

the equation (12). Moreover any random map gε where ε ∈ {1, 2} is a random variable
which is measurable with respect to F1, leads to the following solution to (12):

e−λtgε

(∫ 1

0

e−λ(1−s)dBs

)
+

∫ t

0

e−λ(t−s)dBs.

Let us summarize these results in the following proposition.

Proposition 2.4. Take any measurable function f . If the map defined by x 7→ f(x) −
e−λx is surjective, there exists at least one pinned Ornstein-Ulhenbeck process solution
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to (12). It belongs to the reciprocal class of the Ornstein-Ulhenbeck process since, for all
x and y = f(x), its x ↪→ y bridge satisfies the SDE

(16)

 dXt = dB̃t − λXt dt+
λ

sinh
(
λ(1− t)

)(y − e−λ(1−t)Xt

)
dt, t ∈ [0, 1[,

X0 = x.

as the x ↪→ y bridge of the Ornstein-Ulhenbeck process does.

3. Convoluted Brownian motion

We now go back to the study of more general processes denoted by Xϕ, admitting the
representation (1) which is a kind of convolution between a square integrable determinist
function ϕ – not necessarily of exponential type – and the Brownian motion.

Doing that, we consider processes which are no more in the reciprocal class of the
Ornstein-Ulhenbeck process but still belong to the first Wiener chaos. Moreover we will
see that the constructed processes – among other interesting properties – are stationary
and periodic.

3.1. Definition of the process Xϕ and first properties. For any fixed ϕ ∈ L2
(
0, 1
)
,

let us recall the definition of the process Xϕ.

(17) Xϕ
t :=

∫ t

0

ϕ(t− s) dBs +

∫ 1

t

ϕ(1 + t− s) dBs, t ∈ [0, 1].

The following proposition extends the properties enounced in Proposition 2.1.

Proposition 3.1. (i) The process (Xϕ
t )0≤t≤1 is stationary, centered and Gaussian

with covariance function Rϕ(h) := Cov
(
Xϕ
s , X

ϕ
s+h

)
given by

(18) Rϕ(h) =

∫ h

0

ϕ(1− u)ϕ(h− u)du+

∫ 1−h

0

ϕ(u)ϕ(h+ u)du.

More generally, the covariance between Xψ
s and Xϕ

t for s ≤ t, ψ,ϕ ∈ L2
(
0, 1
)
,

is:

(19)

∫ s

0

ϕ(t−u)ψ(s−u)du+

∫ t

s

ϕ(t−u)ψ(1+s−u)du+

∫ 1

t

ϕ(1+ t−u)ψ(1+s−u)du.

(ii) (Xϕ
t )0≤t≤1 is pathwise periodic and satisfies

(20) Xϕ
0 = Xϕ

1 =

∫ 1

0

ϕ(1− s) dBs.

(iii) (Xϕ
t )0≤t≤1 is invariant under time reversal:

(21)
(
Xϕ

1−t, 0 ≤ t ≤ 1
) (d)

=
(
Xϕ
t , 0 ≤ t ≤ 1

)
.

It also satisfies

(22)
(
Xϕ̂
t , 0 ≤ t ≤ 1

) (d)
=
(
Xϕ
t , 0 ≤ t ≤ 1

)
,

where ϕ̂(t) := ϕ(1− t) denotes the time reversal of the function ϕ.
(iv) The linear map ϕ 7→ Xϕ

t is an isometry from L2
(
0, 1
)

in L2(Ω) for any fixed

t ∈ [0, 1]. Moreover, the linear map ϕ 7→
∫ t

0

Xϕ
u du has a norm bounded by 1.
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Remark 3.1. The reversibility (21) of the process Xϕ holds not only in law but also
pathwise, in the following sense. Xϕ admits the symmetric path representation

Xϕ
t = Iϕ(B)(t) + Iϕ̂(B̂)(1− t), t ∈ [0, 1],(23)

where Iϕ(B)(t) :=

∫ t

0

ϕ(t− s) dBs Iϕ(B) is a stochastic convolution and
(
B̂t := B1−t −

B1, t ∈ [0, 1]
)

is the time reversal of the Brownian motion B. Indeed, for any f ∈ L2
(
0, 1
)
,

(24)

∫ 1

0

f(s)dBs =

∫ 1

0

f̂(s)dB̂s =

∫ 1

0

f(1− s)dB̂s.

Consequently,∫ 1

t

ϕ(1 + t− s)dBs =

∫ 1

0

1{s≥t}ϕ(1 + t− s)dBs =

∫ 1−t

0

ϕ(t+ s)dB̂s

=

∫ 1−t

0

ϕ̂(1− t− s)dB̂s = Iϕ̂(B̂)(1− t)

which leads to (23).

Proof of Proposition 3.1. Since∫ t

0

ϕ(t− s)2ds+

∫ 1

t

ϕ(1 + t− s)2ds =

∫ 1

0

ϕ(s)2ds < +∞

then (17) defines a centered Gaussian process.
Identity (20) is a direct consequence of (17).
Let us calculate Cov

(
Xϕ
t , X

ψ
s

)
for 0 ≤ s ≤ t ≤ 1 and ϕ,ψ ∈ L2

(
0, 1
)
. Using (17), we

easily get:

Cov
(
Xϕ
t , X

ψ
s

)
=

∫ s

0

ψ(s− u)ϕ(t− u)du+

∫ t

s

ψ(1 + s− u)ϕ(t− u)du

+

∫ 1

t

ψ(1 + s− u)ϕ(1 + t− u)du.

We now take ψ = ϕ. Using the change of variables r := s − u in the first integral,
r := u− s in the second and r := 1− u+ s in the third one, we get

Var(Xϕ
t ) =

∫ 1−t+s

0

ϕ(r)ϕ(t− s+ r)dr +

∫ t−s

0

ϕ(1− r)ϕ(t− s− r)dr.

Setting h := t − s, we obtain (18). The time reversibility of Xϕ is a consequence of its
Gaussianity and its stationarity:

Cov(Xϕ
1−t, X

ϕ
1−s) = Rϕ

(
|t− s|

)
= Cov(Xϕ

t , X
ϕ
s ), 0 ≤ s, t ≤ 1.

The identity (22) is a consequence of

(25) Rϕ(1− h) = Rϕ̂(h), h ∈ [0, 1].

Last, as for assertion (iv), the continuity of ϕ 7→
∫ t

0

Xϕ
u du follows from:

E
[( ∫ t

0

Xϕ
u du

)2]
≤ t
∫ t

0

E
[(
Xϕ
u

)2]
du = t2

∫ 1

0

ϕ2(s)ds.

�

Example 3.1.
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• For ϕ(u) = uk, monomial of degree k ∈ N, the corresponding convoluted process,
denoted by X]k, satisfies

(26) X]k
t =

∫ t

0

(t− s)k dBs +

∫ 1

t

(1 + t− s)k dBs.

In particular, for ϕ ≡ 1 (monomial of degree 0) one has X]0
t ≡ B1 which is a constant

process.
• When ϕ = 1I[a,1], a ∈ [0, 1], the corresponding convoluted process denoted by Z(a, ·) is

given by

(27) Z(a, t) =

{
Bt+1−a −Bt if t ∈ [0, a]

Bt−a −Bt +B1 if t ∈ [a, 1].

Qualitative and quantitative analysis of the process Z(a, ·).

For a fixed, t 7→ Z(a, t) is a stationary Gaussian process whose covariance function,
which we denote by Ra, depends on the value of a.

(28) If 0 ≤ a ≤ 1/2, Ra(h) :=

 1− a− h if h ∈ [0, a]
1− 2a if h ∈ [a, 1− a]
h− a if h ∈ [1− a, 1].

(29) If 1/2 ≤ a ≤ 1, Ra(h) :=

 1− a− h if h ∈ [0, 1− a]
0 if h ∈ [1− a, a]
h− a if h ∈ [a, 1].

Let us now study the time-Markov field property of this process, and the structure of its
bridges.

We only analyze the case a ≤ 1/2 (that is a ≤ 1 − a) since the study of the case
a ≥ 1/2 is similar (replace a by 1− a).

Proposition 3.2. Suppose a ≤ 1/2. The process t 7→ Z(a, t) considered on the time
interval [0, 1] is not a time-Markov field, but a concatenation of such ones on each time

intervals [0, a], [a, 1 − a] and [1 − a, 1]. Indeed the bridges of the process
1√
2
Z(a, ·)

between times 0 and a (resp. between a and 1 − a, resp. between 1 − a and 1) are

Brownian bridges. Therefore the conditional law of (
1√
2
Z(a, t), t ∈ [0, 1]) given the four

values Z(a, 0), Z(a, a), Z(a, 1−a), Z(a, 1) is equal to the law of a Brownian motion pinned

at the four instants 0, a, 1− a, 1. With other words, the process (
1√
2
Z(a, t), t ∈ [0, 1]) is

a mixture of concatenation of Brownian bridges.

Proof. Consider a stationary Gaussian process with unit variance on the time interval
]0, T [ and an affine covariance function R. Following [1] Théorème 2.2, (iii) (which
improves and corrects a result presented by Jamison in [6]), one knows that this Gaussian
process is a Markov field on the time interval ]0, T [ if and only if, on this interval, R is
of the form

(30) R(h) = 1− c h with 0 ≤ c ≤ 2

T
.

• Thus, on the time interval ]0, a[, the stationary Gaussian process Z(a, ·) is a Markov
field since the normed Gaussian process

Z̃(t) :=
1√

1− a
Z(a, t) =

1√
1− a

(Bt+1−a −Bt), t ∈]0, a[,
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satisfies the condition (30): c =
1

1− a
≤ 2

a
. See also the remark of Slepian in [18].

Let us compute its bridge between x at time 0 and y at time a (the pinned values
are then x = B1−a and y = B1 −B1−a). We decompose Z(a, ·) as follows:

(31) Z(a, t) = Z1(t) + Z2(t) where

{
Z1(t) := Bt+1−a −B1−a
Z2(t) := B1−a −Bt.

Notice that the process
(
Z1(t), t ∈ [0, a]

)
is a Brownian motion which is independent

from
(
Z2(t), t ∈ [0, a]

)
.

Let
(
Bxyoa (t), t ∈ [0, a]

)
be the x ↪→ y Brownian bridge which starts at x and ends

at y at time a. Recall :

(32) L
(
Bxyoa (t), t ∈ [0, a]

)
= L

(
x+

t

a
(y − x) +Boooa(t), t ∈ [0, a]

)
and

(33) L
(
Boooa(t) + B̃oooa(t), t ∈ [0, a]

)
= L

(√
2Boooa(t), t ∈ [0, a]

)
where Boooa is a Brownian loop on the time interval [0, a] and B̃oooa is an independent
copy of Boooa.

By construction,

L
(
Z1(t), t ∈ [0, a]

∣∣Z1(a) = z
)

= L
(
Bt, t ∈ [0, a]

∣∣B0 = 0, Ba = z
)

= L
( t
a
z +Boooa(t), t ∈ [0, a]

)
.(34)

On the other side, L
(
Z2(t), t ∈ [0, a]

)
= L

(
B1−a−t, t ∈ [0, a]

)
. Thus

L
(
Z2(t); t ∈ [0, a]

∣∣Z2(0) = x, Z2(a) = z
)

= L
(
B1−a−t, t ∈ [0, a]

∣∣B1−a = x,B1−2a = z
)

= L
(
x+

t

a
(z− x) +Boooa(t), t ∈ [0, a]

)
.

Consequently,

L
(
Z(t), t ∈ [0, a]

∣∣Z2(0) = x, Z1(a) = z, Z2(a) = z
)

= L
(
x+

t

a
(z + z− x) +

√
2Ba0↪→0(t); t ∈ [0, a]

)
.

Finally, since Z(0) = Z2(0) and Z(a) = Z1(a) + Z2(a), one obtains:

L
(
Z(t), t ∈ [0, a]

∣∣Z(0) = x, Z(a) = y
)

= L
(
x+

t

a
(y − x) +

√
2Boooa(t); t ∈ [0, a]

)
= L

(√
2B

x√
2

y√
2

oa (t), t ∈ [0, a]
)
.

• On the time interval ]a, 1− a[, the study of the process Z(a, ·) can be reduced to the
study of

(
Z(a, s + a), s ∈]0, 1 − 2a[

)
; therefore it satisfies the Markov field property

if and only if 1 − 2a < a ⇔ a > 1/3. In that case, the condition (30) is always

satisfied: c =
1

1− a
is always smaller than

2

1− 2a
.

Furthermore, we are able to compute explicitly the bridge of
(
Z(a, s+a), s ∈]0, 1−2a[

)
thanks a decomposition as above. Indeed

(35) Z(a, a+ s) = Bs +B1 −Ba+s = Bs +W1−a−s
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where W is a Brownian motion, independent to B. By a similar argumentation as
above, we conclude that the bridges of Z(a, ·+ a) on ]0, 1− 2a[ are Brownian bridges.

• On the time interval ]1 − a, 1[, the study of the process Z(a, ·) can be reduced to the
study of

(
Z(a, s+ 1− a), s ∈]0, a[

)
, which disintegrates as

(36) Z(a, 1− a+ s) = B1−2a+s +B1 −B1−a+s = B1−2a+s + W̃a−s

where W̃ is a Brownian motion, independent to B. By a similar argumentation as
above, its bridges are Brownian bridges.

�

Recall that ϕ 7→ Xϕ is a linear map. In case the function ϕ enjoys some mild regularity,
one gets the following useful path representation of Xϕ(t) as dϕ-mixture of the processes
Z(a, t).

Proposition 3.3. Suppose that ϕ is a right-continuous map with bounded variation over
[0, 1]. Then

(37) Xϕ
t = ϕ(0)B1 +

∫ 1

0

Z(r, t) dϕ(r), ∀ t ∈ [0, 1].

Proof. Suppose first that ϕ is of class C1, then dϕ(r) = ϕ′(r)dr and ϕ′ is a continuous
function. We have∫ t

0

(Bt−r −Bt)ϕ′(r)dr =

∫ t

0

ϕ′(t− u)Budu−Bt
(
ϕ(t)− ϕ(0)

)
= −ϕ(0)Bt +

∫ t

0

ϕ(t− u)dBu −Bt
(
ϕ(t)− ϕ(0)

)
= −ϕ(t)Bt +

∫ t

0

ϕ(t− u)dBu.

We proceed similarly with the second integral:∫ 1

t

(B1−r+t −Bt)ϕ′(r)dr =

∫ 1

t

ϕ′(1 + t− u)Budu−Bt
(
ϕ(1)− ϕ(t)

)
= ϕ(t)Bt − ϕ(t)B1 +

∫ 1

t

ϕ(1 + t− u)dBu.

By (17), we deduce∫ t

0

(Bt−r −Bt)ϕ′(r)dr +

∫ 1

t

(B1−r+t −Bt)ϕ′(r)dr = −ϕ(t)B1 +Xϕ
t .

Since ϕ(t) = ϕ(0) +

∫ t

0

ϕ′(r)dr, we get (37).

When the function ϕ is no more of class C1, the representation remains valid as long
as ϕ is of bounded variation over [0, 1], via limiting procedure and the continuity of
ϕ 7→ Xϕ

t . �

With other words the map ϕ 7→ Xϕ admits the following decomposition:

Xϕ = Xϕ(0) +Xϕ−ϕ(0) =< B1δ0 − (Z(·, t))′, ϕ >

where the derivative should be understood in the sense of distributions and < µ,ϕ >
means that the distribution µ acts on the function ϕ.
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3.2. Comparison between the processes Xϕ and Xϕ′ . It is of interest to relate
both processes Xϕ and Xϕ′ when ϕ is differentiable in L2

(
0, 1
)
.

Proposition 3.4. Suppose that the function ϕ belongs to the Cameron-Martin space.
Then

(38) Xϕ
t = Xϕ

0 +
(
ϕ(0)− ϕ(1)

)
Bt +

∫ t

0

Xϕ′

s ds, 0 ≤ t ≤ 1.

Remark 3.2. This proposition will be useful to study the trigonometric and monomial
processes, cf Section 3.3 and Example 3.2 respectively.
Proof of Proposition 3.4.

• Suppose first that ϕ is of class C2.
Then we use as tool the following stochastic Fubini theorem (cf Exercise 5.17, Chap-

ter IV in [16]). Let ψ be in L2
(
[0, 1]2

)
, then

(39)

∫ 1

0

(∫ 1

0

ψ(u, s)dBs

)
du =

∫ 1

0

(∫ 1

0

ψ(u, s)du
)
dBs.

Using (17), we have
∫ t

0
Xϕ′

u du = A1(t) +A2(t) where

A1(t) :=

∫ t

0

(∫ u

0

ϕ′(u− s)dBs
)
du and A2(t) :=

∫ t

0

(∫ 1

u

ϕ′(1 + u− s)dBs
)
du.

Thanks (39),

A1(t) =

∫ t

0

(
ϕ(t− s)− ϕ(0)

)
dBs = −ϕ(0)Bt +

∫ t

0

ϕ(t− s)dBs.

We proceed similarly with A2(t).

A2(t) =

∫ 1

0

(∫ s∧t

0

ϕ′(1 + u− s)du
)
dBs

=

∫ t

0

(
ϕ(1)− ϕ(1− s)

)
dBs +

∫ 1

t

(
ϕ(1 + t− s)− ϕ(1− s)

)
dBs

= ϕ(1)Bt −
∫ 1

0

ϕ(1− s)dBs +

∫ 1

t

ϕ(1 + t− s)dBs.

Consequently,∫ t

0

Xϕ′

u du =
(
ϕ(1)− ϕ(0)

)
Bt −

∫ 1

0

ϕ(1− s)dBs +

∫ t

0

ϕ(t− s)dBs

+

∫ 1

t

ϕ(1 + t− s)dBs.

The result follows from (17) and (20).
• Suppose now that ϕ belongs to the Cameron-Martin space, that is ϕ is differentiable

and the two functions ϕ and ϕ′ are elements of L2
(
0, 1
)
. Let (ψn)n≥1 be a sequence of

functions of class C1 defined on [0, 1] and converging to ϕ′ in L2
(
0, 1
)
. Define ϕn(x) :=

ϕ(0) +
∫ x

0
ψn(u)du, ∀ x ∈ [0, 1]. Since ϕ′ is integrable, ϕ(x) := ϕ(0) +

∫ x
0
ϕ′(u)du.

Consequently,

sup
0≤x≤1

∣∣ϕn(x)− ϕ(x)
∣∣ ≤ ∫ 1

0

|ψn(u)− ϕ′(u)|du.

Since ϕn is of class C2, then

Xϕn
t = Xϕn

0 +
(
ϕn(0)− ϕn(1)

)
Bt +

∫ t

0

X
ϕ′n
s ds, 0 ≤ t ≤ 1.
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By assertion 4. of Proposition 3.1, each term converges in L2(Ω) as n grows, which
implies (38).

�

Example 3.2. (1) Take ϕ(u) =
1

1− e−λ
e−λu as in Section 2. Then ϕ′ = −λϕ. Accord-

ing to Proposition 3.4, since ϕ(0)− ϕ(1) = 1, the process Y = Xϕ satisfies

Yt = Y0 +Bt − λ
∫ t

0

Yu du

and we recover the equation (3). Reciprocally, suppose that the process Xϕ satisfies

Xϕ′ = −λXϕ for some regular function ϕ. This identity is equivalent to Xϕ′+λϕ = 0.
Then, the isometry property proved in Proposition 3.1 implies that the function ϕ
itself solves the differential equation ϕ′+λϕ = 0, which means that it is proportional
to u 7→ e−λu.

This case is the unique one where the integral equation (38) on Xϕ is indeed
autonomous, due to the proportionality between ϕ and ϕ′.

(2) With the notation introduced in Example 3.1, the convoluted process X]k associated
with the monomial of degree k satisfies the non-autonomous integral equation

(40) X]k
t = X]k

0 −Bt + k

∫ t

0

X](k−1)
s ds.

To obtain an autonomous equation, one has to consider the Rk+1-valued process
X]k whose coordinates are X]k, · · · , X]1, X]0, which then satisfies the linear integral
system

(41) X]k
t = X]k

0 −Bt


1
...
1
0

+

∫ t

0

AX]k
s ds,

where the (k + 1)× (k + 1) matrix A is given by


0 k 0 . . . 0
0 0 k − 1 . . . 0
...

. . .
. . .

...
0 . . . 0 1
0 . . . 0

.

This more general vector-valued framework will be studied in Section 4.
(3) The random variable (1 − e−λ)Yt defined in the first example can be obtained

as limit in L2(Ω) of the sequence

n∑
k=0

(−λ)k

k!
X]k
t when n tends to infinity. It is

a consequence of Proposition 3.1 and the fact that

n∑
k=0

(−λ)k

k!
X]k = Xψn where

ψn(x) :=

n∑
k=0

(−λx)k

k!
.

(4) In Section 3.3 below, we analyse the trigonometric convoluted Brownian motion,
which is of particular interest.
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3.3. The trigonometric convoluted Brownian motion. Take now for function ϕ a
trigonometric one, either x 7→ cos(λx) or x 7→ sin(λx), where λ is a real number.

(42)


Xcos
t =

∫ t

0

cos
(
λ(t− s)

)
dBs +

∫ 1

t

cos
(
λ(1 + t− s)

)
dBs,

Xsin
t =

∫ t

0

sin
(
λ(t− s)

)
dBs +

∫ 1

t

sin
(
λ(1 + t− s)

)
dBs.

In a more elegant way, one considers the complex-valued process Xλ
t := Xcos

t + iXsin
t

which satisfies

Xλ
t :=

∫ t

0

exp
(
iλ(t− s)

)
dBs +

∫ 1

t

exp
(
iλ(1 + t− s)

)
dBs

=

∫ 1

0

exp
(
iλ(t− s)

)
dBs +

(
exp(iλ)− 1

) ∫ 1

t

exp
(
iλ(t− s)

)
dBs.

Let us first analyze one special case.

1- The periodic case, λ ∈ 2πZ.

For λ = 2kπ, k ∈ Z∗, Xλ admits a simple representation.

X2kπ
t =

∫ 1

0

exp
(
i2kπ(t− s)

)
dBs

= exp(i2kπt)

∫ 1

0

exp(−i2kπs) dBs = exp(i2kπt) X2kπ
0 .

This process is degenerated - as the product of a determinist time function by a fixed
random variable - and it is 1/k-periodic: X2kπ

t+ 1
k

= X2kπ
t . Therefore the stationary centered

Gaussian process Xcos, real part of X2kπ (resp. Xsin the imaginary part of X2kπ),
disintegrates as a mixture of two Gaussian random variables:

Xcos
t = cos(2kπt)

∫ 1

0

cos(2kπs) dBs + sin(2kπt)

∫ 1

0

sin(2kπs) dBs.

Moreover the above two stochastic integrals are independent. Thus following [5], p.524
and [6], Theorem p.1627, Xcos (resp. Xsin) is a Markov field on the time interval [0, 1

2k [.
Nevertheless it is not a Markov field on the full time interval [0, 1].

2- The general case, λ 6∈ 2πZ.
When the function ϕ is trigonometric, there is no proportionality between ϕ and ϕ′ but

there is proportionality between ϕ and ϕ′′. Indeed, following (38), the pair of processes
(Xcos, Xsin) satisfies the autonomous system of equations:

(43)


Xcos
t =

∫ 1

0

cos
(
λ(1− s)

)
dBs +

(
1− cosλ

)
Bt − λ

∫ t

0

Xsin
s ds,

Xsin
t =

∫ 1

0

sin
(
λ(1− s)

)
dBs − sinλBt + λ

∫ t

0

Xcos
s ds,

or, equivalently, the complex-valued process Xλ
t satisfies the equation:

(44) Xλ
t =

∫ 1

0

eiλ(1−s)dBs +
(
1− ei λ

)
Bt + λi

∫ t

0

Xλ
s ds.

Notice that
1

1− ei λ
Xλ
t satisfies a similar equation to (3), where the parameter λ is

replaced by −iλ. We have proved the following.
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Proposition 3.5. The processes Xcos and Xsin are centered, stationary, periodic Gauss-
ian processes. Their covariance functions satisfy
(45)

Rcos(h) = sin(λ/2)
2λ

(
cos
(
λ( 3

2 − h)
)

+ cos
(
λ( 1

2 + h)
))

+ h sin
(
λ
2

)
sin
(
λ(h− 1

2 )
)

+ cos(λh)
2

Rsin(h) = − sin(λ/2)
2λ

(
cos
(
λ( 3

2 − h)
)

+ cos
(
λ( 1

2 + h)
))

+ h sin
(
λ
2

)
sin
(
λ(h− 1

2 )
)

+ cos(λh)
2 .

Proof. By (18)

Rcos(h) =

∫ h

0

cos
(
λ(1− u)

)
cos
(
λ(h− u)

)
du+

∫ 1−h

0

cos(λu) cos
(
λ(h+ u)

)
du

=: I1(h) + I2(h).

Using the identity cos a cos b =
cos(a+ b) + cos(a− b)

2
one gets

I1(h) =
1

4λ

(
sin
(
λ(1 + h)

)
− sin

(
λ(1− h)

))
+
h

2
cos
(
λ(1− h)

)
.

In a similar way

I2(h) =
1

4λ

(
sin
(
λ(2− h)

)
− sin(λh)

)
+

1− h
2

cos(λh).

Therefore

Rcos(h) =
1

4λ

(
sin
(
λ(2− h)

)
− sin

(
λ(1− h)

)
+ sin

(
λ(1 + h)

)
− sin(λh)

)
+
h

2

(
cos
(
λ(1− h)

)
− cos(λh)

)
+

cos(λh)

2
.

Using the identities

sin a− sin b = 2 sin
a− b

2
cos

a+ b

2
, cos a− cos b = −2 sin

a− b
2

sin
a+ b

2
,

one obtains the first equality of (45). Let us prove the second equality of (45).

Rsin(h) =

∫ h

0

sin
(
λ(1− u)

)
sin
(
λ(h− u)

)
du+

∫ 1−h

0

sin(λu) sin
(
λ(h+ u)

)
du

=: J1(h) + J2(h)

Using the identity sin a sin b =
cos(a− b)− cos(a+ b)

2
one gets

J1(h) =
h

2
cos
(
λ(1− h)

)
+

1

4λ

(
sin
(
λ(1− h)

)
− sin

(
λ(1 + h)

))
and

J2(h) =
1− h

2
cos(λh) +

1

4λ

(
sin(λh)− sin

(
λ(2− h)

)
)
)
.

Therefore

Rsin(h) =
1

4λ

(
sin
(
λ(1− h)

)
− sin

(
λ(2− h)

)
+ sin(λh)− sin

(
λ(1 + h)

))
+
h

2

(
cos
(
λ(1− h)

)
− cos(λh)

)
+

cos(λh)

2

= − sin(λ/2)

2λ

(
cos
(
λ(

3

2
− h)

)
+ cos

(
λ(

1

2
+ h)

))
+h sin

(λ
2

)
sin
(
λ(h− 1

2
)
)

+
cos(λh)

2
.
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�

As in Section 2, we can prove that the process (Xcos, Xsin) admits a semimartingale
decomposition in a filtration enlarged by its initial condition, and therefore that it is
a Markov field. However, this vector-valued process is a particular case of the convo-
luted processes we will treat in the next section. In particular, we will analyse in more
generality their semimartingale property and their Markovianity.

4. Vector-valued convoluted processes

We extend here the definition (1) of convoluted Brownian motion to the multidimen-
sional case. Let A be a n× n matrix and φ a vector in Rn. We introduce the Rn-valued
process

(46) XA,φ
t :=

∫ t

0

e(t−s)Aφ dBs +

∫ 1

t

e(1+t−s)Aφ dBs, t ∈ [0, 1],

where
(
Bt, t ∈ [0, 1]

)
is as before a standard real-valued Brownian motion.

The vector-valued process (XA,φ
t )t∈[0,1] is centered and Gaussian and we compute

in Proposition 4.2 its covariance matrix. We study in detail the two particular cases of
(Xcos, Xsin) and X]k, see Section 4.2. The process XA,φ is not Markov, but its bridges are
Markov. The proof of this property is based on two steps. First, we prove in Proposition
4.4 that, under conditions (H1), (H2), XA,φ is a semimartingale in an enlarged filtration.
Second, using its explicit canonical decomposition, we are able to show that conditionally

on XA,φ
0 , XA,φ is Markov, see Section 4.4. However the monomial convoluted Brownian

motion X]k does not satisfies (H1). We then prove that adding a component permits to
recover a Markov field property, see Section 4.5.

4.1. General properties. As in (4), the process XA,φ admits indeed another represen-
tation and solves a stochastic linear integral system.

Proposition 4.1. The process XA,φ
t , t ∈ [0, 1], admits the following representation:

(47) XA,φ
t = eA

∫ 1

0

e(t−s)Aφ dBs + (Id− eA)

∫ t

0

e(t−s)Aφ dBs.

In particular it is 1-periodic and

(48) XA,φ
0 = XA,φ

1 =

∫ 1

0

e(1−s)Aφ dBs.

Reciprocally, the unique solution of the integral system

(49) Zt =

∫ 1

0

e(1−s)Aφ dBs + (Id− eA)φBt +

∫ t

0

AZs ds , t ∈ [0, 1].

is the process Z ≡ XA,φ.

Proof. Identities (47) and (48) are consequences of (46). The proof of the second assertion
is omitted since it is a direct generalization of the one presented in Section 2.4. �

Remark 4.1. (1) Equation (49) is not a classical stochastic integral system since the r.v.∫ 1

0

e(1+t−s)Aφ dBs is not F0-measurable.

(2) We recover the two-dimensional process (Xcos, Xsin)∗ defined by (42) setting φ =

(1, 0)∗ and A = λ

(
0 −1
1 0

)
. Indeed, since

(50) etA =

(
cos(λt) − sin(λt)
sin(λt) cos(λt)

)
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then equation (46) and equation (42) are identical.

Clearly the vector-valued process (XA,φ
t )t∈[0,1] is centered and Gaussian. It is therefore

characterized by its covariance matrix done in the proposition below, which will permit
us to develop several examples in the next Section 4.2.

Recall that if Z1 and Z2 are two Rn-valued random vectors, their covariance matrix
is defined by Cov(Z1,Z2) := E

[
Z1Z

∗
2

]
, or equivalently, by

(51) ξ∗1 Cov(Z1,Z2) ξ2 = Cov
(
ξ∗1Z1, ξ

∗
2Z2

)
, ∀ξ1, ξ2 ∈ Rn.

To simplify the notations, we define the function ρ from [0, 1] into the set of n × n-
matrices by

(52) ρ(t) :=

∫ t

0

euAφφ∗euA
∗
du, t ∈ [0, 1].

Proposition 4.2. The process (XA,φ
t )t∈[0,1] is Gaussian and stationary. Moreover, for

any 0 ≤ s ≤ s+ h ≤ 1, we have:

(53) RA,φ(h) := Cov
(
XA,φ
s ,XA,φ

s+h

)
= ehAρ(1− h) + ρ(h)e(1−h)A∗ .

Proof. Let ξi ∈ Rn, i ∈ {1, 2}. We deduce from (46) that

ξ∗i X
A,φ
t =

∫ t

0

ξie
(t−u)Aφ dBu +

∫ 1

t

ξie
(1+t−u)Aφ dBu, 0 ≤ t ≤ 1.

Therefore

(54) ξ∗i X
A,φ = Xϕi , where ϕi(t) := ξ∗i e

tAφ, t ∈ [0, 1].

Relation (51) implies, for 0 ≤ s ≤ s+ h ≤ 1,

ξ∗1 Cov
(
XA,φ
s ,XA,φ

s+h

)
ξ2 = Cov

(
Xϕ1
s , Xϕ2

s+h

)
.

We now apply (19) with ϕ = ϕ1 and ψ = ϕ2:

Cov
(
Xϕ1
s , Xϕ2

s+h

)
=

∫ s

0

ϕ2(s− u)ϕ1(s+ h− u)du

+

∫ s+h

s

ϕ2(1 + s− u)ϕ1(s+ h− u)du

+

∫ 1

s+h

ϕ2(1 + s− u)ϕ1(1 + s+ h− u)du.

Proceeding as in the proof of Proposition 3.1, we get:

Cov
(
Xϕ1
s , Xϕ2

s+h

)
=

∫ 1−h

0

ϕ2(r)ϕ1(h+ r)dr +

∫ h

0

ϕ2(1− r)ϕ1(h− r)dr.

Using (54) and (51) leads to:

Cov
(
XA,φ
s ,XA,φ

s+h

)
=

∫ 1−h

0

e(h+r)Aφφ∗erA
∗
dr +

∫ h

0

e(h−r)Aφφ∗e(1−r)A∗dr.

The change of variable u := h− r in the second integral gives:

Cov
(
XA,φ
s ,XA,φ

s+h

)
= ehA

(∫ 1−h

0

erAφφ∗erA
∗
dr
)

+
(∫ h

0

erAφφ∗erA
∗
dr
)
e(1−h)A∗ .

�

Remark 4.2. (1) In the case n = 1, A = −λ and φ =
1

1− e−λ
, it is easy to check that

Identity (53) corresponds to (6).
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(2) In the particular case h = 0, then (53) leads to the covariance matrix KA,φ (which

does not depend on t) of the vector XA,φ
t :

KA,φ =

∫ 1

0

euAφφ∗euA
∗
du.

(3) The map RA,φ(·) has the following remarkable structure:

(55) RA,φ(h) = σ(h) + σ(1− h)∗,

where the matrix-valued map σ is defined by

(56) σ(h) := ehAρ(1− h), h ∈ [0, 1].

4.2. Some illustrating examples.

4.2.1. The trigonometric convoluted Brownian motion. We begin with the two-dimen-
sional convoluted process (Xcos, Xsin)∗ defined in (42) through the trigonometric func-
tions sin and cos. We already observed in Remark 4.1 that

(Xcos, Xsin)∗ = XA,e1 with e1 := (1, 0)∗ and A := λ

(
0 −1
1 0

)
.

We also computed in Proposition 3.5 the covariance terms Cov
(
Xcos
s , Xcos

t

)
and Cov

(
Xsin
s ,

Xsin
t

)
. Anyway the formula (53) permits to go further computing the mixed covariance

terms of the form Cov
(
Xcos
s , Xsin

t

)
. Indeed, using (50), one obtains for the explicit com-

putation of the matrix-valued map ρ defined in (52):

ρ(t) =


t

2
+

sin(2λt)

4λ

1− cos(2λt)

4λ

1− cos(2λt)

4λ

t

2
− sin(2λt)

4λ

 .

Then, the matrix σ(h) defined by (56) has the form

σ(h) =

(
σ11(h) σ12(h)
σ21(h) σ22(h)

)
where

σ12(h) := −1− h
2

sin(λh)− 1

4λ
cos
(
λ(2− h)

)
,

σ21(h) :=
1− h

2
sin(λh)− 1

4λ
cos
(
λ(2− h)

)
+

1

4λ
cos(λh).

We thus deduce:

(57) Cov
(
Xcos
s , Xsin

s+h

)
=

{
σ12(h) + σ21(1− h) for h ≥ 0
σ12(1− h) + σ21(h) for h ≤ 0.

4.2.2. The monomial convoluted Brownian motion. We now analyze in more detail the
(k + 1)-dimensional convoluted process X]k := (X]k, · · · , X]1, X]0)∗ defined in (26) as
convolution with monomials of degree lower than k (or, equivalently, defined by the linear
system (41)). We set

(58) ek+1 := (0, · · · , 0, 1)∗ and A :=


0 k 0 . . . 0
0 0 k − 1 . . . 0
...

. . .
. . .

...
0 . . . 0 1
0 . . . 0

 .
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Proposition 4.3. The process X]k coincides with the vector-valued convoluted process
XA,ek+1 where A and ek+1 are defined by (58). Let ρ(t) be the associated (k+1)×(k+1)-
matrix defined by (52). The entries of ρ(t) are monomials in t and satisfy:

(59) ρi,j(t) =
1

2k + 3− (i+ j)
t2k+3−(i+j), 1 ≤ i, j ≤ k + 1, 0 ≤ t ≤ 1.

The covariance matrix R]k of X]k, defined in (53), has as (i, j)-entry the following
polynomial in h of degree 2k + 3− (i+ j):

(60) R]kij (h) =

∫ h

0

sk+1−i(1− h+ s)k+1−jds+

∫ 1

h

(h+ 1− s)k+1−i(1− s)k+1−jds.

Proof. We first prove that X]k satisfies (49) with A and ek+1 as above. Then Proposition
4.1 will imply X]k ≡ XA,ek+1 .

According to (41), it remains to prove that

(61) X]k
1 = eA

∫ 1

0

e(1−s)Aek+1 dBs and (eA − Id)ek+1 = (1, · · · , 1, 0)∗.

a) Since A is nilpotent with index of nilpotency k+ 1, the matrix etA is a polynomial in
t of degree k.

For any i, j ∈ {1, · · · , k+ 1}, it is convenient to introduce the unit matrix Ei,j defined

by Ei,jkl = 1I(i,j)(k, l). We claim that:

(62) etA =

k∑
i=0

k−i∑
j=0

(
k − i
j

)
tjEi+1,i+j+1.

Calling Γ(t) the right hand-side of (62), it is clear that Γ(0) =

k+1∑
i=1

Ei,i = Id.

Since A =

k−1∑
l=0

(k − l)El+1,l+2, relation (62) implies:

AΓ(t) =

k∑
i=0

k−i∑
j=0

k−1∑
l=0

(
k − i
j

)
(k − l)tjEl+1,l+2Ei+1,i+j+1

=

k−1∑
i′=0

k−i′∑
j′=1

(
k − i′

j′

)
j′tj

′−1Ei
′+1,i′+j′+1.

On the other side,

dΓ

dt
(t) =

k∑
i=0

k−i∑
j=1

(
k − i
j

)
jtj−1Ei+1,i+j+1.

Finally,
dΓ

dt
(t) = AΓ(t) and Γ(0) = Id, therefore (62) holds.

b) Let ei := (0, · · · , 0, 1, 0, · · · , 0)∗ be the i-th basis vector of Rk+1. Since Ei,lek+1 =
1I{l=k+1}ei, then

(63) etAek+1 =

k+1∑
i=1

tk+1−iei.

In particular, eAek+1 =

k+1∑
i=1

ei = (1, · · · , 1, 0)∗ + ek+1, which implies (61).
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c) We now prove that the entries of the matrix ρ(t) are monomials in t and satisfy (59).
By (63),

e∗k+1e
uA∗ =

k+1∑
i=1

uk+1−ie∗i ,

which implies

euAek+1e
∗
k+1e

uA∗ =
∑

1≤i,j≤k+1

u2k+2−i−je∗i e
∗
j .

Since eie
∗
j = Ei,j , then euAek+1e

∗
k+1e

uA∗ =
∑

1≤i,j≤k+1

u2k+2−(i+j)Ei,j .

Integrating this identity in u over the interval [0, t] and using (52) gives (59).
We now prove (60). Using (56), (62) and (59), we have:

σij(h) =

k+1∑
l=i

(
k − i+ 1

l − i

)
1

2k + 3− (l + j)
hl−i (1− h)2k+3−(l+j).

For i, j, h fixed, we define the polynomial function gh by

gh(x) :=

k+1∑
l=i

(
k − i+ 1

l − i

)
1

2k + 3− l − j
hl−i x2k+3−(l+j).

Then

g′h(x) =

[ k+1−i∑
m=0

(
k − i+ 1

m

)
hmxk+1−i−m

]
xk+1−j = (h+ x)k+1−ixk+1−j .

Note that gh(0) = 0, since, for any j ≤ k + 1, 2k + 3 − (k + 1 + j) ≥ 1. Therefore

gh(x) =

∫ x

0

(h+ s)k+1−isk+1−jds and

σij(h) = gh(1− h) =

∫ 1−h

0

(h+ s)k+1−isk+1−jds.

Finally (60) follows from (55). �

4.3. The semimartingale representation of XA,φ. According to (48), the initial
value of the process XA,φ is given by

(64) XA,φ
0 =

∫ 1

0

h(s)dB(s) where h(s) := e(1−s)Aφ.

Since this Rn-valued random vector is not F0-measurable, generalizing the approach

developed in Section 2.2, we propose to enlarge the filtration (Ft)t with XA,φ
0 to obtain

a semimartingale representation of XA,φ. Our approach is based on Théorème II.1 in
[2], whose statement is recalled below.

Lemma 4.1. Consider the random vector ξ = (ξ1, · · · , ξn)∗ ∈ Rn whose coordinates

satisfy ξi :=

∫ 1

0

hi(s) dBs, hi ∈ L2(0, 1), i ∈ {1, · · · , n} and h the Rn-valued map t 7→

h(t) :=
(
h1(t), · · · , hn(t)

)∗
. Let (Gt)t be the initial enlargement of the filtration (Ft)t

by ξ. Suppose that, for any t ∈ [0, 1[, the matrix H(t) :=

∫ 1

t

h(u)h(u)∗du is invertible.

Then, defining the matrix-valued map G by

(65) G(t, u) := h(t)∗H(t)−1h(u)1I{0≤t≤u≤1},
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one gets that

(66) Wt := −Bt +

∫ t

0

∫ 1

s

G(s, u)dBu ds, 0 ≤ t ≤ 1,

is a (Gt)t-Brownian motion which is independent of ξ.

Proposition 4.4. Suppose that the matrix A and the vector φ satisfy the following
assumptions:
(H1) The matrix eA − Id is invertible
(H2) Span(Akφ, k ∈ N) = Rn.

Let (Gt)t be the filtration obtained from the initial enlargement of the Brownian filtra-

tion by the random vector XA,φ
0 .

(1) Define a real-valued bounded variation process V by

Vt :=

∫ t

0

φ∗e(1−s)A∗H(s)−1(eA − Id)−1
[
e(1−s)AXA,φ

s −XA,φ
0

]
ds.

Then the real-valued process

(67) B̃t := −Bt + Vt

is a (Gt)t-Brownian motion independent from XA,φ
0 .

(2) The vector-valued process XA,φ
t admits the following semimartingale decomposi-

tion:

(68) XA,φ
t = XA,φ

0 − (Id− eA)φ B̃t +

∫ t

0

AXA,φ
s ds+ (Id− eA)φ Vt , t ∈ [0, 1].

We begin with a preliminary result.

Lemma 4.2. Under assumption (H2), the matrix

(69) H(t) :=

∫ 1

t

e(1−s)Aφφ∗e(1−s)A∗ds, t ∈ [0, 1[

is invertible for any t ∈ [0, 1[.

Proof. We prove in fact that H(t) is invertible if and only if Span(Akφ, k ∈ N) = Rn.

Let u ∈ Rn. Then, u∗H(t)u =
∫ 1

t

(
u∗e(1−s)Aφ

)2
ds. Note that u∗H(t)u = 0 if and only if

u∗esAφ = 0, ∀ s ∈ [0, 1− t[. Since u∗esAφ =
∑
k≥0

u∗Akφ
sk

k!
, this is equivalent to

(70) u∗Akφ = 0, ∀ k ∈ N.

It is clear that (70) holds true if and only if Span(Akφ, k ≥ 0) ⊂ u⊥, which completes
the proof. �

Proof of Proposition 4.4. First, according to Lemma 4.2, the matrix H(t) is invertible.

Then, since the random variable XA,φ
0 satisfies (48), its coordinates belong to the first

chaos of B, and we can apply Lemma 4.1: the process Wt := −Bt +

∫ t

0

vs ds is a (Gt)-

Brownian motion which is independent of XA,φ
0 , where vs :=

∫ 1

s

G(s, u) dBu, 0 ≤ s ≤ 1.

According to (65), G(s, u) = φ∗e(1−s)A∗H(s)−1e(1−u)Aφ and then

(71) vs = φ∗e(1−s)A∗H(s)−1

∫ 1

s

e(1−u)Aφ dBu.
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We decompose the above stochastic integral as:

(72)

∫ 1

s

e(1−u)Aφ dBu = XA,φ
0 −

∫ s

0

e(1−u)Aφ dBu,

so that identity (47) can be re-written as:

(73) XA,φ
s = esAXA,φ

0 + (Id− eA)e(s−1)A

∫ s

0

e(1−u)Aφ dBu.

Under the assumption (H1),∫ s

0

e(1−u)Aφ dBu =
(
eA − Id

)−1
[
eAXA,φ

0 − e(1−s)AXA,φ
s

]
,

which implies: ∫ 1

s

e(1−u)Aφ dBu = (eA − Id
)−1
(
e(1−s)AXA,φ

s −XA,φ
0

)
and completes, with (71), the proof of the first assertion.

Back to (49), replacing the Brownian motion B by B̃ + V leads to (68). �

4.4. The bridges of the process XA,φ. As in the one-dimensional case, we are inter-
ested in the disintegration of XA,φ along its initial (and final) time marginal, which leads
to its time-Markov field property.

To that aim, we prove that conditionally on XA,φ
0 = x, the process (XA,φ

t , t ∈ [0, 1]
)

is Markov. More precisely, let us define, for any t ∈ [0, 1], the n× n matrices

Λ0
t := (eA − Id)φφ∗e(1−t)A∗H(t)−1(eA − Id)−1(74)

Λ1
t := A− Λ0

t e
(1−t)A.(75)

In the next theorem we identify the x ↪→ x bridge of XA,φ as a Markov process solution
of an explicit linear stochastic differential system.

Theorem 4.1. Suppose Assumptions (H1) and (H2) are satisfied and denote by ν the

Gaussian law of the random vector XA,φ
0 . Then, XA,φ is a ν-mixture of its bridges, where

the x ↪→ x bridge solves the affine SDE in Rn

(76)

{
dZt = (eA − Id)φ dB̃t + (Λ0

t x + Λ1
tZt) dt, t ∈ [0, 1[,

Z0 = x.

Proof. It is a consequence of the definitions (74) and (75) and of identity (68). �

We thus obtained, under some additional assumptions, a multidimensional generaliza-
tion of Proposition 2.3.

Application to the trigonometric convoluted Brownian motion
According to Remark 4.1, the trigonometric convoluted case corresponds to n = 2,

φ = (1, 0)∗ and A = λ

(
0 −1
1 0

)
.

We now verify that Assumptions (H1) and (H2) are satisfied. Indeed

(Id− eA)−1 =
1

2

(
1 − cot(λ/2)

cot(λ/2) 1

)
and Span(φ,Aφ) = Span((1, 0)∗, λ(0, 1)∗) = R2. Consequently Theorem 4.1 applies. All
the entries of Λ0

t ,Λ
1
t are calculable but we do not go further because the explicit formulas

are complicated.
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4.5. More on the monomial convoluted Brownian motion X]k. The (k + 1)-
dimensional monomial convoluted Brownian motion X]k, whose covariance was calcu-
lated in Section 4.2.2, does not satisfy Assumption (H1): Id− eA is not invertible, when
the matrix A is given by (58). Therefore one can not derive its semimartingale repre-
sentation (resp. the structure of its bridges) as a direct application of Section 4.3 (resp.
Section 4.4). Nevertheless we recover some Markovianity considering this process jointly
with an additional coordinate X̄, constructed as a weighted primitive.

4.5.1. A Markovian enhancement of X]k. In all this section, A denotes the matrix given
by (58).

Proposition 4.5. Consider X̄t :=

∫ t

0

(1 − u)k−1X]1
u du ∈ R and define the process

Zt =:

(
X]k
t

X̄t

)
∈ Rk+2, t ∈ [0, 1]. Conditionally on Z0 =

(
x
0

)
, Z is a Markov process

which solves the affine SDE:

(77)

 dX]k
t = (eA − Id)ek+1 dB̃t +

(
AX]k

t + Λ̃0
t x + Λ̃1

tZt) dt,

dX̄t = (1− t)k−1X]1
t dt,

Z0 = (x, 0)

where Λ̃0
t and Λ̃1

t are the matrices defined by (82).

Before proving Proposition 4.5, we begin with three preliminary results, Lemmas 4.3-
4.5. In the first one, we prove that Id− expA can be, in some sense, weakly inverted.

Lemma 4.3. The matrix C with entries Cij :=
(
k−i+1
j−i+1

)
1I{j≥i}, 1 ≤ i, j ≤ k, is invertible.

Now, fix an element y = (y1, · · · , yk+1)∗ in Rk+1. Then, the equation

(eA − Id) x = y

admits a solution in Rk+1 if and only if yk+1 = 0. In that case the set of solutions is the
1-dimensional vector subspace R× C−1(y1, · · · , yk)∗.

Proof. C is a triangular matrix whose diagonal entries are k − i+ 1, 1 ≤ i ≤ k. They do
not vanish, therefore C is invertible.

We keep the notations introduced in the proof of Proposition 4.3. By (62) we have:

eA − Id =

k∑
i′=1

k∑
j′=i′

(
k − (i′ − 1)

j′ − (i′ − 1)

)
Ei
′,j′+1.

Consequently: (eA − Id) x =

k∑
i′=1

( k∑
j′=i′

Ci′j′xj′+1

)
ei′ , where x = (x1, · · · , xk+1)∗. The

last assertion follows immediately.
�

Lemma 4.4. The first component of the vector

∫ t

0

e(1−u)Aek+1 dBu is given by the

scalar stochastic integral

∫ t

0

(1− u)kdBu.

Proof. We know that etAek+1 =

k+1∑
i=1

tk−(i−1)ei. Consequently, the first component of∫ t

0

e(1−u)Aek+1 dBu is

∫ t

0

(1− u)kdBu. �
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Lemma 4.5. For t ∈ [0, 1], the stochastic integral

∫ t

0

(1−u)kdBu decomposes as follows:

(78)

∫ t

0

(1− u)kdBu = −(1− t)kX]1
t − kX̄t +X]1

0 +
1

k + 1

(
1− (1− t)k+1

)
X]0

0 .

Proof. Integrating by part:

(79)

∫ t

0

(1− u)kdBu = (1− t)kBt + k

∫ t

0

(1− u)k−1Budu.

Then, using Example 3.1 and (40) with k = 1, we write Bt as a linear combination of

X]1
t , X

]1
0 and X]0

0 : Bt = X]1
0 + tX]0

0 −X
]1
t . After easy calculations, we get (78). �

Proof of Proposition 4.5. We revisit the proof of Proposition 4.4, using now Lemma 4.3
instead of Assumption (H1). Relation (73) reads in our framework:

(80) (eA − Id)

∫ s

0

e(1−u)Aek+1 dBu = eA X]k
0 − e(1−s)A X]k

s .

Applying Lemma 4.3, the i-th component of

∫ s

0

e(1−u)Aek+1 dBu is given by(∫ s

0

e(1−u)Aek+1 dBu

)
i

=
(
C−1

(
eA X]k

0 − e(1−s)A X]k
s

))
i−1

, i = 2, · · · , k + 1.

Note that (80) does not determine the first component of

∫ s

0

e(1−u)Aek+1 dBu. But, by

Lemmas 4.4 and 4.5,(∫ s

0

e(1−u)Aek+1 dBu

)
1

= −(1− s)kX]1
s − kX̄s +X]1

0 +
1

k + 1

(
1− (1− s)k+1

)
X]0

0 .

Both identities imply: ∫ s

0

e(1−u)Aek+1 dBu = Γ0
s X]k

0 + Γ1
s Zs

where Γ0
s (resp. Γ1

s) is a deterministic suitable (k+1)×(k+1) matrix (resp. (k+1)×(k+2)
matrix).

Now, remark that Assumption (H2) is satisfied since

Span(Aiek+1, i = 0, · · · , k) = Span(ek+1, ek, · · · , e1) = Rk+1.

Therefore Lemma 4.2 implies that the matrix H(s) is invertible, and the strategy used
in the proof of Proposition 4.4 can be developed in our context. Using (71) and (72), we
deduce that

(81) Bt = −B̃t −
∫ t

0

e∗k+1e
(1−s)A∗H(s)−1

[
(−Id+ Γ0

s)X
]k
0 + Γ1

sZs

]
ds

where the process B̃ is a (Gt)-Brownian motion independent from X]k
0 and (Gt)t is the

filtration obtained with the initial enlargement of the Brownian filtration with the random

vector X]k
0 .

Back to (68), replacing B by the right hand side of (81), one obtains for all t ∈ [0, 1],

X]k
t = X]k

0 + (eA − Id)ek+1 B̃t +

∫ t

0

AX]k
s ds

+

∫ t

0

(eA − Id)ek+1e
∗
k+1e

(1−s)A∗H(s)−1(−Id+ Γ0
s) X]k

0 ds

+

∫ t

0

(eA − Id)ek+1e
∗
k+1e

(1−s)A∗H(s)−1Γ1
s Zs ds.
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Therefore, defining three matrices by

(82)

Γ̃t := (eA − Id)ek+1e
∗
k+1e

(1−s)A∗H(s)−1,

Λ̃0
t := Γ̃t(−Id+ Γ0

t ),

Λ̃1
t := Γ̃tΓ

1
t ,

one gets the affine stochastic differential system (77) satisfied by the process Z = (X]k, X̄)
pinned at time 0 in (x, 0). �

4.5.2. The special case of X]1. In this section, we treat the case k = 1 explicitly. The

R2-valued process X]1 = (X]1, X]0) is associated with the matrix A :=

[
0 1
0 0

]
. Since

its second component is not time-dependent but is equal to the constant r.v. B1 (see
Example 3.1), we are principally interested in the dynamics of X]1. Indeed, the process
X]1 admits the following representation:

(83) X]1
t =

∫ 1

0

Bs ds+ tB1 −Bt, t ∈ [0, 1].

Thus it is the (non independent) sum of its initial condition X]1
0 =

∫ 1

0

Bs ds and a

0 ↪→ 0-Brownian bridge. Indeed, identity (37) applies with ϕ(x) ≡ x and (27) gives:

X]1
t =

∫ t

0

(
Bt−r −Bt +B1

)
dr +

∫ 1

t

(
B1−r+t −Bt

)
dr

=

∫ 1

0

Brdr + tB1 −Bt.

Therefore X]1 is not Markov. Enlarging the filtration with its initial condition
∫ 1

0
Brdr

- as we did in Section 2.2 for the PerOU process - is nevertheless not enough to recover
the Markovianity. However, as seen in the latter section 4.5.1, the right enlargement is

obtained with the 2-dimensional initial random vector X]1
0 = (X]1

0 , B1) =
( ∫ 1

0
Brdr,B1

)
.

Proposition 4.5 shows that once we complete X]1 with its primitive process X̄, we recover
the Markov property. We now determine explicitly the SDE satisfied by the enhancement
of X]1, that is by the (pinned) R3-valued process (X]1, X̄).

Proposition 4.6. The process (X]1, X]0, X̄), pinned at time 0 in (x, y, 0), solves the
following affine stochastic differential system:

(84)

{
dX]1

t = dB̃t + β(t,X]1
t ) dt+ γ(t, X̄t) dt,

dX̄t = X]1
t dt, t ∈ [0, 1],

where β(t, z) := − 2x

1− t
+

3y

(1− t)2
− 4

1− t
z and γ(t, z) := − 6

(1− t)2
z.

Here is B̃ a (Gt)-Brownian motion independent of X]1
0 where (Gt)t is the filtration ob-

tained by the initial enlargement of (Ft)t with the random vector X]1
0 .

Proof. First remark that (83) implies that X]0
0 = 2X̄1 = B1.

We now apply Lemma 4.1 to (ξ1, ξ2)∗ = (X]0
0 , X

]1
0 )∗ taking h1(t) ≡ 1 and h2(t) := 1−t.

Therefore the matrix H is given by:

H11(t) = 1− t, H12(t) = H21(t) =
(1− t)2

2
, H22(t) =

(1− t)3

3
,
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and the matrix G satisfies:

G(t, u) =
12

(1− t)4

(
1 1− t

) (1− t)3

3
− (1− t)2

2

− (1− t)2

2
1− t

( 1
1− u

)
=

1

(1− t)2

(
6(1− u)− 2(1− t)

)
.

Thus ∫ 1

s

G(s, u) dBu =
1

(1− s)2

[
6

∫ 1

s

(1− u)dBu − 2(1− s)(B1 −Bs)
]
.

We reformulate it using first the integration by parts:∫ 1

s

(1− u)dBu = −(1− s)Bs +

∫ 1

0

Budu−
∫ s

0

Budu,

together with the boundary conditions X]1
0 =

∫ 1

0
Bsds = x, X]0

0 = B1 = y. We obtain∫ 1

s

G(s, u) dBu =
−2(y + 2Bs)

1− s
+

6x

(1− s)2
− 6

(1− s)2

∫ s

0

Budu.

Using (83), we get Bt = yt+ x−X]1
t and then

∫ s

0

Bt dt = s2y/2 + sx− X̄s. Therefore

(85)

∫ 1

s

G(s, u) dBu =
2x

1− s
+
(

1− 3

(1− s)2

)
y +

4X]1
s

1− s
+

6

(1− s)2
X̄s.

We can now conclude, using (66), (85) and :

X]1
t = x+ B̃t +

∫ t

0

(
y −

∫ 1

s

G(s, u) dBu
)
ds.

�
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4. C. Donati-Martin, Equations différentielles stochastiques dans R avec conditions aux bords,

Stochastics and Stochastics Reports 35 (1988), 143–173.
5. J. Doob, Stochastic processes, Wiley, 1953.

6. B. Jamison, Reciprocal processes: The stationary gaussian case, Ann. Math. Statist. 41 (1970),
1624–1630.

7. B. Jamison, Reciprocal processes, Z. Warsch. Verw. Geb. 30 (1974), 65–86.

8. H. Kwakernaak, Periodic linear differential stochastic processes, SIAM J. Control Optimization
13 (1975), 400–413.

9. A.J. Krener, R. Frezza and C.B. Levy, Gaussian reciprocal processes and self-adjoint stochastic

differential equations of second order, Stochastics and Stoch. Reports 34 (1991), 29–56.
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