Н.П.Горбачук

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА СИЛИЦИДОВ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ RSi_{2-x} ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

На основании экспериментально определенных энтальпий дисилицидов лантана, празеодима, неодима, самария, гадолиния, гольмия и эрбия проведен расчет энтальпий, энтропий плавления и температурных зависимостей теплоемкости в интервале 298.15— $T_{\rm пл}$ для дисилицидов церия, прометия, тербия, диспрозия, тулия, иттербия и лютеция.

ВВЕДЕНИЕ. Анализ современного состояния уровня использования соединений редкоземельных металлов (РЗМ) с кремнием [1-4] показывает, что уникальное сочетание физических и физико-химических свойств силицидов создает надежную основу для их применения в химической и металлургической областях промышленности, в микроэлектронике, полупроводниковой и оптической технике. Обоснованный выбор составов сплавов требует знания природы физико-химического взаимодействия компонентов в широких температурных интервалах, характера их поведения в условиях эксплуатации, особенно при повышенных температурах. Такую информацию предоставляют диаграммы состояния и термодинамические характеристики соединений и сплавов.

В настоящей работе проведен расчет высокотемпературных теплоемкостей и энтальпий плавления для ряда дисилицидов редкоземельных металлов, неисследованных экспериментально.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.

Характеристика соединений. Дисилициды P3M не являются фазами постоянного состава. Большинство из них имеют область гомогенности, составляющую не более 2 % [5]. Они имеют структурные типы α -ThSi₂, α -GdSi₂, AlB₂ и характеризуются наличием дефицита атомов кремния в кристаллической решетке и поэтому описываются формулой RSi_{2-x}. В этих структурах атомы P3M образуют координационные многогранники вокруг атомов неметалла в виде тригональных призм, заполняющих пространство без пропусков [6]. Причина дефектности кристаллических решеток в соединениях RSi_{2-x} объясняется несоответствием числа валентных элек-

© Н.П.Горбачук, 2012

тронов числу валентных связей типа Si-Si, что препятствует наиболее плотному заполнению пространства. На каждый атом неметалла с четырьмя валентными электронами приходятся только три валентные связи типа Si-Si. Баланс достигается путем образования вакантных узлов в подрешетке, составленной из атомов кремния [7]. Смена структурного типа в изоформульных рядах соединений RSi_{2-х} объясняется влиянием размерного фактора [8]. Уменьшение атомных радиусов РЗМ с нормальной валентностью (+3) при возрастании порядкового номера металла приводит к увеличению отношения атомных радиусов r_{Si}/r_R и сокращению межатомных расстояний R-R и Si-Si в кристаллических решетках соединений изоформульного ряда LaSi_{2-x}-LuSi_{2-r}. Вынужденное растяжение (в начале ряда) и сжатие (в конце) валентных связей Si-Si по сравнению с длиной их в решетке кремния возможно только в определенных пределах, за которыми наступает смена структурного типа. В изоформульном ряду дисилицидов RSi_{2-х} при увеличении отношения $r_{\rm Si}/r_{\rm R}$ происходит переход от структуры типа α -ThSi₂ к структуре AlB₂ с перестройкой трехмерного каркаса из атомов Si в систему плоских графитоподобных сеток, что позволяет уменьшить жесткость подрешетки, образованной атомами кремния. Таким образом, структурные типы α -ThSi₂, α -GdSi₂ характерны для дисилицидов РЗМ цериевой и начала иттриевой подгрупп ($r_{\rm Si}/r_{\rm R} = 0.703 - 0.747$), а AlB₂ — для соединений иттриевой и конца цериевой подгрупп (*r*_{Si}/*r*_R =0.724—0.804) [9]. Смена способа образования соединений RSi_{2-х} происходит при определенном соотношении термической стабильности компонентов $t_{\rm R}/t_{\rm Si}$ (t, ^oC температура плавления компонента) подобно тому, как и смена структурного типа при определенном соотношении атомных радиусов компонентов. С увеличением отношения температур плавления t_R/t_{Si} температура плавления соединений состава $RSi_{2-x}(x \approx 0.2-0.33)$ сначала возрастает, а затем падает, и при этом конгруэнтный тип плавления сменяется инконгруэнтным (в интервале значений $t_R/t_{Si} = 0.725-0.929$).

Методика измерений высокотемпературных термодинамических характеристик дисилицидов RSi_{2-x} . Энтальпии дисилицидов RSi_{2-x} некоторых РЗМ измерены нами впервые методом смешения от комнатных температур до температур плавления и жидкой фазы. Методики измерений и обработки результатов подробно описаны в оригинальных работах [10—15]. Аппроксимация экспериментальных точек по энтальпии в интервале температур 298.15 — $T_{пл}$ проведена по уравнению Майера–Келли:

$$H^{\circ}(T) - H^{\circ}(298.15 \text{ K}) =$$

= $AT^{2} + BT + CT^{-1} + D,$ (1)

а выше температур плавления — в соответствии с линейной зависимостью:

$$H^{\circ}(T) - H^{\circ}(298, 15 \text{ K}) = aT + b$$
. (2)

Коэффициенты уравнений (1), (2) определяли методом наименьших квадратов с наложением граничных условий (нулевого значения энтальпии соединения при 298.15 К и величины теплоемкости при той же температуре). Стандартные величины теплоемкости находили из низкотемпературных ее измерений. Дифференцированием уравнения (1) по температуре получали температурную зависимость теплоемкости соединения для температурного интервала 298.15 — $T_{пл}$:

$$C_p(T) = 2AT + B - CT^{-2}$$
. (3)

Коэффициенты уравнений (1)–(3) приведены в табл. 1. Среднеквадратичные отклонения коэффициентов, рассчитанные по методу наименыших квадратов, составили %: 15(A), 2(B), 25(C), 25(D). Температуры плавления дисилицидов определяли как среднее двух температур, соответ-

Таблица 1 Коэффициенты температурных зависимостей энтальпий (Джмоль⁻¹) и теплоемкостей (Дж-моль⁻¹·К⁻¹) силицидов РЗМ

Соединение	$A \cdot 10^3$	В	С	-D	а	-b	Лите- ратура
LaSi	6.900	69.05	397616	22534	140.07	41762	[10]
PrSi _{1.8}	8.784	67.19	12119	20853	139.24	41513	[11]
α -NdSi _{1.8}	1.939	70.85	435444	2258			[12]
β-NdSi _{1.8}	4.600	80.39	900871	27398	145.95	43514	••
α -SmSi ₂	10.373	79.72	1309740	29084			[12]
β -SmSi ₂	8.467	82.95	414251	26875	157.30	46899	,,
α -GdSi _{1.88}	6.409	66.29	331314	21444			[13]
β-GdSi _{1.88}	2.048	78.04	200769	24122	129.59	38637	,,
α-DySi ₂	9.291	74.71	900119	26119			[14]
β-DySi ₂	4.665	83.56	805432	28029	156.71	46724	,,
α-HoSi _{1.67}	2.279	78.80	1625600	29149			[14]
β-HoSi _{1.67}	3.929	78.52	578804	25701	136.54	40709	,,
α -ErSi _{1.67}	6.129	73.66	1481070	27473			[15]
β -ErSi _{1.67}	5.100	76.81	423027	24773	136.41	40671	,,

ствующих последней экспериментальной точке для твердой и первой точке твердо-жидкой или жидкой фаз. В погрешность их определения включена и погрешность измерения температуры оптическим микропирометром (0.8 %). Величины энтальпий плавления дисилицидов находили как разность энтальпий, рассчитанных по уравнениям (1) и (2), в точке плавления (табл. 2). Следует отметить хорошее согласие температур плавления, определенных нами из калориметрических измерений [10, 15], с полученными по данным ДТА (погрешность около 1 %) при изучении фазовых равновесий в двойных системах РЗМ—Si [16—22].

Как видно из табл. 1, для большинства изученных нами дисилицидов P3M характерен полиморфизм. В $PrSi_{1.8}$ температура полиморфного перехода α -GdSi₂ $\rightarrow \alpha$ -ThSi₂ составляет 308 ± 8 K [23], а по данным [24] дисилицид лантана имеет широкую область гомогенности LaSi_{2.0–1.65} с постепенной деформацией тетрагональной структуры типа α -ThSi₂, характерной для стехиометрического состава LaSi_{2.0}, в ромбическую типа α -GdSi₂. Как показали экспериментальные исследования, полиморфные переходы сопровождаются небольшими энергетическими эффекта-

	· · · ·			
Сили- циды	T _{пл}	$\Delta H_{\Pi\Pi}$	$\Delta S_{\Pi\Pi}$	Лите- ратура
LaSi ₂	1908 ± 34 2003	90.9 ± 3.7	47.68 ± 2.0	[10] [16]
PrSi _{1.8}	1971 ± 40 1985	87.3 ± 3.7	44.3 ± 1.9	[11] [17]
NdSi _{1.8}	$\begin{array}{r} 2001 \pm 35 \\ 2030 \end{array}$	96.2 ± 5.8	48.1 ± 2.9	[12] [18]
SmSi_2	1890 ± 30 1913	90.0 ± 6.8	47.6 ± 1.3	[12] [9]
GdSi _{1.88}	1885 ± 133 1863	73.8 ± 3.5	39.9 ± 1.9	[13] [19]
DySi ₂	$\begin{array}{r} 1728 \pm 40 \\ 1703 \end{array}$	93.3 ± 5.4	54.0 ± 3.1	[14] [20]
HoSi _{1.67}	$1875 \pm 40 \\ 1893$	79.7 ± 5.0	42.5 ± 2.7	[14] [21]
ErSi _{1.67}	1915 ± 40 1893	79.3 ± 4.7	41.4 ± 2.5	[15] [22]

Таблица 2 Температуры (К), энтальпии (кДж·моль⁻¹) и энтропии (Дж·моль⁻¹·K⁻¹) плавления дисилицидов РЗМ

ми (1—4 кДж·моль⁻¹) и незначительными скачками теплоемкости в точке перехода. Анализ температурного хода теплоемкости (3) дисилицидов (табл. 1) показывает монотонный рост ее вплоть до температур плавления. Поэтому изобарная теплоемкость их может быть представлена в виде суммы основных вкладов:

$$C_p(T) = C_{ph} + C_a + C_e + C_{f,M}$$
, (4)

где C_{ph} — фононная в гармоническом приближении; C_a — ангармоническая; C_e — электронная; $C_{f,M}$ — составляющая по Шоттки.

У дисилицидов лантана, гадолиния и лютеция последняя составляющая отсутствует и их теплоемкость может быть представлена тремя первыми вкладами. Таким образом, с учетом близости свойств и подобия изменения физико– химических характеристик [1,2,5–8], определяющих величины первых трех составляющих теплоемкости в уравнении (4), изобарная теплоемкость дисилицидов в области высоких температур может быть представлена в виде суммы некой регулярной части и соответствующего вклада по Шоттки ($C_{f,M}$), обусловленного мультиплетной структурой термов трехвалентных ионов РЗМ. Расчет высокотемпературных термодинамических характеристик дисилицидов РЗМ. Согласно [9] и ряду оригинальных работ [16–22] для всех систем РЗМ–Si цериевой подгруппы характерно образование дефектного по кремнию дисилицида RSi_{1.8}, а для систем иттриевой подгруппы — RSi_{1.67}. Для расчета высокотемпературной теплоемкости экспериментально неисследованных дисилицидов нами предложено уравнение:

$$C_p(T) = C_p(I) \cdot (7 - n/7) + C_p(II) \cdot n/7 + C_{f,M},$$
 (5)

где $C_p(I)$, $C_p(II)$ — грамм-мольные теплоемкости LaSi2^Fи GdSi188 или GdSi188 и LuSi167 соответственно для силицидов цериевой и иттриевой подгрупп; *n* =0-7 — порядковый номер РЗМ от La до Gd и от Gd до Lu; $C_{f,M}$ — мультиплетная компонента теплоемкости по Шоттки. Первые два члена уравнения (5) и представляют собой регулярную часть теплоемкости соединения. Значения теплоемкости дисилицидов лантана и гадолиния находили по уравнению (3), величины $C_{f,m}$ взяты из работы [25]. Теплоемкость LuSi_{1.67} не определена экспериментально. Ее оценка проведена нами путем линейной экстраполяции данных по теплоемкости изоструктурных данному соединению дисилицидов HoSi_{1 67} [14] и ErSi_{1 67} [15]. С целью проверки надежности предложенного уравнения (5) для оценки высокотемпературной теплоемкости дисилицидов РЗМ проведено сравнение рассчитанных по нему величин теплоемкости с экспериментально определенными для PrSi_{1.8} [11] и HoSi_{1.67} [14] (табл. 3). Из таблицы видно, что максимальное отклонение расчетных величин теплоемкости от экспериментальных не превышает 9 %. Наблюдаемая разница объясняется в первую очередь неучетом в расчетах по уравнению (5) компоненты составляющей теплоемкости по Шоттки, обусловленной эффектом Штарка. Оценка этой компоненты из данных по низкотемпературным теплоемкостям как разницы между изобарной теплоемкостью дисилицида и рассчитанной по уравнению (5) регулярной части С_п показывает, что она составляет около 4 % для PrSi₁₈ и более 6 % для HoSi_{1.67} от их изобарных теплоемкостей при 298.15 К.

С учетом того, что погрешность определения теплоемкости из данных по энтальпии составляет около 5 %, предложенный способ ее

Таблица 3 Экспериментальные и расчетные (по уравнениям (3) и (5)) значения теплоемкости (Дж·моль⁻¹·K⁻¹) PrSi_{1.8} и HoSi_{1.67}

<i>Т</i> , К	PrSi _{1.8}			HoSil.67		
	(3)	(5)	-δ, %	(3)	(5)	-δ, %
300				62.10	59.71	3.8
400	74.14	67.56	8.8	70.46	64.97	7.8
500	75.92	70.19	7.5	74.57	68.53	8.1
600	77.69	72.68	6.4	77.02	71.54	7.1
700	79.46	75.11	5.5	78.67	74.25	5.6
800	81.22	77.46	4.6	79.90	76.79	3.9
900	82.98	79.72	3.9	80.89	78.60	2.8
1000	84.74	81.90	3.4	81.73	80.30	1.7
1100	86.50	84.00	2.9	82.47	81.92	0.7
1200	88.26	85.96	2.7	87.55	83.50	4.6
1300	90.02	87.85	2.4	88.39	85.03	3.8
1400	91.77	89.64	2.3	89.23	86.55	3.0
1500	93.53	91.33	2.3	90.05	88.04	2.2
1600	95.29	92.91	2.5	90.87	89.52	1.5
1700	97.05	94.43	2.7	91.68	90.98	0.7

Таблица 4

Рассчитанные коэффициенты температурных зависимостей (6) (Дж·моль $^{-1}$ ·К $^{-1}$) дисилицидов РЗМ

Силицид	$A \cdot 10^3$	В	-C
CeSi _{1.8}	13.814	67.63	836383
PmSi _{1.8}	19.224	64.40	526586
TbSi _{1.67}	16.747	63.50	827835
DySi _{1.67}	17.615	62.68	770871
TmSi _{1.67}	17.287	69.76	1683276
YbSi _{1.67}	16.358	73.34	2121964
LuSi _{1.67}	17.100	75.33	2424617

расчета для экспериментальных неисследованных дисилицидов РЗМ можно считать вполне приемлемым. С использованием уравнения (5) рассчитаны теплоемкости для ряда экспериментально неизученных соединений. Расчетные данные в интервале температур 298.15 К— $T_{\rm пл}$ представлены уравнением:

$$C_p(T) = AT + B + CT^{-2}$$
. (6)

Таблица 5

Температуры (К), рассчитанные энтальпии (кДжмоль⁻¹·К⁻¹) и энтропии (Джмоль⁻¹·К⁻¹) плавления дисилицидов РЗМ

Соединение	T _{пл}	$\Delta H_{\Pi\Pi}$	$\Delta S_{\Pi\Pi}$
CeSi _{1.8}	1999 [27]	86	43
PmSi _{1.8}	1973 [*] [9]	90	46
TbSi _{1.67}	1911 [28]	81	42
DySi _{1.67}	1908 [20]	85	45
TmSi _{1.67}	1890**	79**	42
LuSi _{1.67}	1890**	78**	41

* Оценка; ** наша оценка.

Коэффициенты уравнения (6) рассчитаны методом наименьших квадратов и приведены в табл. 4. Среднее относительное отклонение величин теплоемкости, рассчитанных по уравнению (5), от аппроксимированных по (6) составило (%): 0.7 (CeSi_{1.8}), 0.2 (PmSi_{1.8}), 0.7 (TbSi_{1.67}), 0.5 (DySi_{1.67}), 1.1(TmSi_{1.67}), 1.4 (YbSi_{1.67}), 1.6(LuSi_{1.67}). В таблице не приведены коэффициенты зависимости (6) для дисилицида европия ввиду двухвалентного состояния атома металла в этом соединении [26] и существенного различия металлохимических свойств европия от других P3M [9].

Для оценки энтальпий плавления дисилицидов, температурные зависимости энтальпий твердой и жидкой фаз которых не определены, использованы значения энтальпий плавления исследованных соединений. Энтальпия плавления дисилицида рассчитана как сумма взятых в пропорциональном соотношении грам-мольных энтальпий плавления близлежащих соседей по ряду дисилицидов РЗМ (табл. 5). Энтропии плавления рассчитаны на основании полученных величин энтальпий плавления и приведенных в литературе температур плавления. Температуры плавления TmSi_{1.67} и LuSi_{1.67} оценены нами на основании закономерностей изменения температур нонвариантных равновесий для систем РЗМ—Si иттриевой подгруппы, рассмотренных в работе [9]. Энтальпии плавления TmSi_{1.67} и LuSi1 67 рассчитаны путем линейной экстраполяции величин энтальпий плавления HoSi_{1 67} и ErSi_{1 67}. Ввиду подобия металлохимических свойств европия и иттербия с барием, а также способа

образования силицидов в этих системах оценка энтальпий плавления для дисилицидов европия и иттербия не проводилась.

РЕЗЮМЕ. На основі експериментально визначених ентальпій дисиліцидів лантану, празеодиму, неодиму, самарію, гадолінію, гольмію та ербію проведено розрахунок ентальпій і ентропій плавлення та температурних залежностей теплоємності в інтервалі 298.15—*T*_{пл} для дисиліцидів церію, прометею, тербію, диспрозію, тулію, ітербію та лютецію.

SUMMARY. On a basis experimentally obtained enthalpies of lanthanum, praseodymium, neodymium, samarium, gadolinium, holmium and erbium disilicides was calculated melting enthalpy and entropy and tempeture dependences of heat capacity in temperature range 298.15— T_{melt} for cerium, promethium, terbium, dysprosium, thulium, ytterbium and lutetium disilicides.

ЛИТЕРАТУРА

- 1. Самсонов Г.В., Дворина Л.А., Рудь Б.М. Силициды. -М.: Металлургия, 1979.
- 2. Дворина Л.А. // Силициды: получение, свойства, применение. -Киев: Ин-т пробл. материаловедения АН УССР, 1986. -С. 4—28.
- 3. Мьюрарка Ш. Силициды для СБИС. -М.: Мир, 1986.
- Thomas O., Houssay E., Rouault A. et al. // Appl. Surface Sci. -1989. -38, № 1-4. -P. 156—161.
- 5. Буянов Ю.И., Великанова Т.Я., Лузан С.П. и др. // Порошк. металлургия. -1996. -№ 7/8. -С. 99—113.
- 6. Гладышевский Е.И. Кристаллохимия силицидов и германидов. -М.: Металлургия, 1971.
- Буянов Ю.И. // Силициды и их применение в технике. -Киев: Ин-т пробл. материаловедения АН УССР, 1990. -С. 12—17.
- Буянов Ю.И. // Фазовые равновесия, стабильность фаз и метастабильные состояния в металлических системах. -Киев: Ин-т пробл. материаловедения НАН Украины, 1993. -С. 133—143.
- 9. Буянов Ю.И., Великанова Т.Я., Лузан С.П. и др. Особенности взаимодействия редкоземельных ме-

Институт проблем материаловедения им. И.Н.Францевича НАН Украины, Киев таллов с кремнием. -Киев: Ин-т пробл. материаловедения НАН Украины, 1997.

- 10. Болгар А.С., Горбачук Н.П., Блиндер А.В. // Порошк. металлургия. -1994. -№ 3/4. -С. 48—53.
- 11. Горбачук Н.П., Болгар А.С., Блиндер А.В. // Там же. -1997. -№ 9/10. -С. 51—56.
- 12. Горбачук Н.П., Болгар А.С. // Там же. -2000. -№ 11/12. -С. 55—61.
- Болгар А.С., Горбачук Н.П., Блиндер А.В. // Теплофизика высоких температур. -1996. -34, № 4. -С. 541—545.
- 14. Горбачук Н.П., Болгар А.С. // Порошк. металлургия. -2002. -№ 3/4. -С. 70—76.
- 15. Горбачук Н.П., Кириенко С.Н., Сидорко В.Р., Обушенко И.М. // Теплофизика высоких температур. -2007. -45, № 2. -С. 203—207.
- Bulanova M.V., Zheltov P.N., Meleshevich K.A. et al. // J. Alloys Compds. -2001. -329, № 1–2. -P. 214—223.
- Еременко В.Н., Мелешевич К.А., Буянов Ю.И.// Изв. вузов. Цвет. металлургия. -1986. -№ 3. -С. 82—87.
- Еременко В.Н., Мелешевич К.А., Буянов Ю.И., Обушенко И.М. // Докл. АН УССР. Сер. А. -1984. -№ 11. -С. 80—85.
- Еременко В.Н., Мелешевич К.А., Буянов Ю.И., Марценюк П.С. // Укр. хим. журн. -1991. -57, № 10. -С. 1047—1053.
- Еременко В.Н., Мелешевич К.А., Буянов Ю.И., Марценкок П.С. // Там же. -1994. -60, № 8. -С. 544—551.
- 21. Eremenko V.N., Listovnichii V.E., Lusan S.P. et. al. // Ibid. -1995. -219, № 2. -P. 181—184.
- Lusan S.P., Buyanov Yu.I., Martsenyuk P.S. // J. Alloys Comp. -1996. -239, № 1. -C. 77—82.
- 23. Горбачук Н.П., Болгар А.С., Блиндер А.В. Термодинамические свойства силицидов. -Киев: Ин-т пробл. материаловедения НАН Украины, 1995.
- 24. Гладишевський С.Ш., Кулікова А.А. // Доп. АН УРСР. -1965. -№ 11. -С. 1472—1474.
- 25. Крикля А.И. Дис. ... канд. хим. наук. -Киев: Ин-т пробл. материаловедения АН УРСР, 1986.
- 26. Gschnidner K.A. // J. Less-Common. Met. -1969. -17, № 1. -P. 13—24.
- 27. Bulanova M.V., Zheltov P.N., Meleshevich K.A. et al. // J. Alloys Comp. -2002. -345, № 1-2. -P. 110—115.
- Bulanova M.V., Mikolenko A.N., Meleshevich K.A. et al. // Z. Metallkd. -1999. -90, № 3. -P. 216—222.

Поступила 05.12.2011