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AN EXTENDED TAUBERIAN THEOREM
FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

Y3AT'AJIBHEHA TAYBEPOBA TEOPEMA
JJIsA METOAY 3BAKEHOI'O CEPEJHBOI'O Ui 3BHAXOI’KEHHSA CYM

We prove a new Tauberian-like theorem that establishes the slow oscillation of a real sequence u = (ur) on the basis of
the weighted mean summability of its generator sequence (V,S‘B (Aw)) and some conditions.

JloBeieHO HOBY TeopeMy Tay0epOBOIO THITY, KA BCTAHOBIIOE MOBUIbHI KOJMBAHHS AiMCHOI MOCTIAOBHOCTI u = (u,) Ha
. . PR . . . 0 .
OCHOBI 3061XKHOCTI ii TeHepyI0901 ITOCIIi JOBHOCTI (Vrf,p) (Auw)) y 3BakeHHX CEpeHiX Ta MEBHUX YMOB.

1. Introduction. Let u = (u,) be a sequence of real numbers. Assume that p = (p,,) is a sequence
of nonnegative numbers with pg > 0 such that

n
Pn:Zpk—M)o as n — oo.
k=0

The nth weighted mean of (u,,) is defined by

1 n
US};(“) = P, Zpkuk~
k=0

A sequence (u,) is said to be summable by the weighted mean method determined by the

sequence p, in short; (/V, p) summable to a finite number s if

. 1 .
nh_{rolo Uﬁlv])j(u) =s. €]
If the limit
lim u, = s ()
n—oo

exists, then (1) also exists. However, the converse is not always true. Notice that (1) may imply
(2) under a certain condition which is called a Tauberian condition. Any theorem which states that
convergence of sequences follows from (N, p) summability method and some Tauberian condition is
said to be a Tauberian theorem.

If p,, = 1 for all nonnegative n, then (IV, p) summability method reduces to Cesaro summability
method.

The difference between w, and its nth weighted mean aﬁl{,))(u) which is called the weighted
Kronecker identity is given by the identity

up — oM (w) = VO (Aw), 3)

n?p

1 n
where VO (Au) := — Pr_1Auy.
n,p( ) Pn Zk:l k—1 k
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P,_
Since L Ao (u) = V% (Au), the Kronecker identity can be written as
Pn

un = VO(Aw) + 3 2 v O Au). )

n?p

Because of the identity (4), the sequence (Vn((;,)(Au)) is called the generator sequence of (uy,).

For each integer m > 0, we define 0" ™) (1) and VX;)(AU) by

(L zpk D) w1,

ol (u) =
Un, m =0,
and
(m 1)
- —Z V Au) m > 1,
7854 (Au) =
V7L(7p)(Au), m =0,
respectively.

P,_
L Au,, and the

The weighted classical control modulo of (uy) is denoted by wgz),( ) = .

weighted general control modulo of integer order m > 1 of (u,,) is defined in [1] by w%%) (u) =

(m=1) (1) m-1
— w7 () — o)  (w)).

If p, = 1 for all nonnegative n, then the weighted classical and general control modulo reduce
to the classical and general control modulo, respectively. The classical and general control modulo
have been used as Tauberian conditions for various summability methods [2-5].

For a sequence u = (u,,), we define

(i (), (o) Bo(222)_).
DPn m Pn m—1 DPn Pn Pn m—1

where (Pn_l A) Up = Uy, and (P n-l A) Uy = P Auy,.
1

Dn Pn Pn
Note that by the definition of the weighted general control modulo,
Pnfl P, n—1
Wi (W) = W) = ofh (W (u)) = == Au, — Vi) (Au) = ——=AV,)(Au)

DPn Pn
and

EAV(O)(AU) _ EAV(l)(Au) — @A v (Aw).
Pn P Pn P 2

A sequence (uy,) is said to be slowly oscillating [6] if

lim limsup max \uk — uy,| = 0. Q)
A—1+ n—oo ’I’L+1<k<[

Denote by S the class of slowly oscillating sequences.
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The weighted de la Vallée Poussin means of (u,,) are defined by
[An]

T7L>,[)\n],p( u) = PP Z DUk
(An] gy n+1

for A > 1 and sufficiently large n, and

7—n<,[>\n] p(1) = Z PrUk

Py = P k=[An]+1

for 0 < A < 1 and sufficiently large n.

For the definitions of O and o we refer to [7, p. 149].

A number of authors such as Hardy [7], Tietz [8], Tietz and Zeller [9], and Méricz and Rhoades
[10] obtained Tauberian theorems for (IN,p) summability method. Tietz [8], Tietz and Zeller [9]
established Tauberian conditions controlling the oscillatory behavior of sequences for (N, p) summa-
bility method. Méricz and Rhoades [10] obtained necessary and sufficient conditions for (N, p)
summable (u,,) to be convergent. Hardy [7] proved that wr(%(u) = O(1) is a Tauberian condition for
the weighted mean summability method. Recently, Canak and Totur [1] have shown that under some
certain conditions imposed on the sequence p = (p,,) the condition

wil(u) > —C (6)

for some positive constant C' is a Tauberian condition for (N, p) summability method.

Instead of recovering convergence of (u,) out of the existence of (1) and additional condition
imposed on the sequences (u,) and p = (p,), we can obtain more general information on (u,,) by
replacing (N, p) summability of (u,) by (N, p) summability of its generator sequence (Vrg,p) (Au)).

In this paper, we shall prove the followmg extended Tauberian theorem.

Theorem 1. Let

= 0(n). @)
Pn ()
. : . n My
For a real sequence u = (uy,) let there exist a nonnegative sequence M = (M,,) with Zkﬂ v €
€ S such that
Wi (u) > —Ma, ®)
. P[)\n] - Py
limsup ( ———— | limsup 7, g pM) =0(1), A— 17, 9)
and
. P — Py _
limsup ( ——— | limsup 7> nlp (M)=o0(1), AX—1". (10)
n—00 P[)\n] n— 00

If(V,S)p)(Au)) is (N,p) summable to s, then u = (uy,) is slowly oscillating.
If we take p,, = 1 for all n, we have Theorem 2.1 in [11].
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2. Auxiliary results. For the proof of Theorem 1 we shall need the following lemmas.
Lemma 1 [1]. Let v = (vy,) be a sequence of real numbers.
(1) For A > 1 and sufficiently large n,

[An]
P 1
) _ [An] 1) (D _
Un = 0 p(0) Ppn) — Pn (U[An],p(v) Un,p(“)) Pl — - §n+:lpk(vk Un)

where [An| denotes the integer part of An.
(1) For 0 < A < 1 and sufficiently large n,

P 1
Un — Unl,%(”l)) = % (O’&%(U) — U[(;3L]7p(1))) + ﬁ Z pk('l)n — 'Uk).
n [An] n [An] k=[An]+1

The next lemma represents the difference between the weighted de la Vallée Poussin means and
the weighted means of sequence (vy,).

Lemma 2. Letv = (v,) be a sequence of real numbers.

(i) For A > 1 and sufficiently large n,

P (1)
Tl (0) ~ 7 () = o GRROR O

(i) For 0 < X\ < 1 and sufficiently large n,
P,
[An] 1
Ti[An]’p(’U) — onlg,(v) = PP P <a£&%(fu) — o[()ﬂ)m]’p(v))

Proof. (i) From the definition of the weighted de la Vallée Poussin means of (v,,) we have, for
A>1,

[An] [An]

1 1 n
> — gy, — E ). — E 1) . —
o) Pon) = P jzn;qpﬂ] P — P j:op]v] j:op]v] -
1 1 W () —
Pxn) — Pn ( 7] p () = P vp(”)> -
P[)\n] U(l) P, @ (v

P
=M _ b (O _ oM
CORS ey GURORLHIO)

which proves Lemma 2 (i).

(ii) From the definition of the weighted de la Vallée Poussin means of (v,,) we have, for 0 < A <
<1,

(An]

1 n
< = ——— . R —
Tn,[/\n],p(v) T p,— P '_Z Pjv; Py — Py P[,\ | E :pﬂj E :pﬂ)a
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= (Pno-g,;l))(v) - P[)\n]o'[(izb],p(v)> =

P, P
_ n (1) [An] o
Pn _ P[)\n] Un,p v P P[)\ ] [)\n] N (U)

P)\n
= o)+ 5 — (al(v) = ol ),

which proves Lemma 2 (ii).

The next lemma states that if (v,) is (IV, p) summable to s, then the sequence of the weighted

de la Vallée Poussin means of (v,,) converges to s.
Lemma 3. If (v,) is (N, p) summable to s, then
(1) limg, oo T;[/\n]vp(v) =3,
(i) limp—eo Trj[)\n},p('l}) =s.
Proof. (i) Since

we have

11113;@7’ [M]’p(v) = lim ‘71(11,;))(7)) =s.

Proof of (ii) is similar.

Lemma 4. For a real sequence v = (vy,) let there exist a nonnegative sequence M =

such that P
n-l Av,, > —M,.
Pn
Then P
. [An] —
) = (7 ()~ vn) < 71:” Tonl,p(M):
pP,—-P
.. < _on [)‘n} <
(11) Un Tn,[Aan(U) = P[)\n} Tn,[)\n],p(M)'
Proof. (i) Since Av,, > — Ppn M, we have
n—1
k »;
- Z Avj = — (v —vy) < Z P-] M;.
j=n+1 j=n+1 i=1

(M)

(11)

Multiplying the inequality (11) by px, summing the resulting inequality from k£ = n + 1 to [An] and

then dividing it by Pjy,,] — P, we get

[An]
1
*(Ti[xn},p(”) —Un) = P _p Z (PkvE — prvn) <
[An] [ N—
Py ] — Dk M; <

" k=n+1 Jj= n+1
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[An]

P — Pa
S P, Z pJ -
] n+1
_ P =P
P’n, [/\n],p(M)
(ii) Since Av, > — 2" M, we have
n—1
Z Avj = v, — v > — Z Pi ;. (12)
j=k+1 j=k+1 ]_

Multiplying the inequality (12) by pg, summing the resulting inequality from k = [An] + 1 to n and
then dividing it by P, — F}y,), we get

n

TN C) I N (Prvn — pive) 2
An]p Py = P k[%%:}"‘l

ZP Zpkz

Py Dnl+1  j=k+1 P

P,—P 1 " P,— P
n = P n = Pom) <
— Sy | = - s (M),
P[)\n} P, — P[)\n] Pl J P[)m,} s[An],p

3. Proof of Theorem 1. Since (Vn(g,)(Au)) is (N, p) summable to s, (Vn(lp)(Au)) is convergent
to s, and then (Vn(%)(Au)) is convergent to s. Applying the identity (3) to (V,g,lp)(Au)), we obtain
that

P,
VD (Au) -V (Au) = VAV (Aw)) = pfnlAVTE?p)(Au).

P,
Therefore, we have ——* AVTE?p) (Au) = o(1). Under the assumptions of Theorem 1 we now prove
Pn

P, P, P
that LAV (Aw) = o(1). Let v, = LAV (Aw). Then ol(v) = LAV (Aw).
Pn n
Applying Lemma 1 (i) to v,,, and using Lemma 2 (i) and Lemma 4 (i), we have
P)\n
= AY0) < 720 (0) = oY)+ DL (), (13)
Taking lim sup of both sides of (13), we obtain
Py — P,
li?%solip (vn - 07(117)( )) < 1171]11_>5up( Dl »(v) — og,;(v)) + lirrlri)solip ([)\]]Dn >[M] (v )) . (14

Noticing that the first term on the right-hand side of (14) vanishes by Lemma 3 (i), we deduce that

Py — P,
lim sup (v, — 07(11729(’0)) < limsup <[/\n}3 >[>\n},p(M)> <

n—oo n—oo
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< lim sup (P[)\n]_Pn> limsup 7., (M).
n—oo P, n—00 m[Anl.p
Hence, it follows by (9) that
lirrisolip(vn — 07(11729(’0)) <0. (15)

Similarly, applying Lemma 1 (ii) to v,,, and using Lemma 2 (ii) and Lemma 4 (ii), we have

P, — P
1 1 n [An]
Un — U(,%(”) Z T;[An},p(v) - 01(1,1)9(@) - WT;,[M]W(M)' (16)
Taking the lim inf of both sides of (16), we obtain
it~ it -1 i (2 )
i (v~ o£0)) 2 iminf (770, (1) iy 0) +limint (= =5 Selety 00 ). (7)

Noticing that the first term on the right-hand side of (17) vanishes by Lemma 3 (ii), we deduce
that

P, — Py,
lim inf (v, — o{!) (v)) > lim inf (_MT;,[MLP(M)) >

n—o0 n.p n—o0 P[)\n]

.. 1
liminf (v, — o) (v)) > 0. (18)
Combining (15) and (18) yields
Pn—l
Op = p—nAVg,Q(Au) =o(1). (19)

Applying the identity (3) to (VTE,OP) (Aw)), we obtain that

Pn—l

Vi (Au) = V) (Au) = VIO AV O (Aw)) = .

1
AVn(m) (Au).

Since (VTEPP)(AU)) is (N, p) summable to s, it follows from (19) that (Vrff)p)(Au)) converges to s.

v (Au)

From the representation u,, = VTS%) (Au) + Zn Pk and the condition (7), it follows that
’ k=1 Py

(uy,) is slowly oscillating.
As a corollary we have the following classical Tauberian theorem for (N, p) summability method.
Corollary 1. Let (py,) satisfy the condition (7). For a real sequence uw = (uy,) let there exist a

n M
nonnegative sequence M = (M) with (Zkl ;) € S such that (8), (9) and (10) are satisfied.

If (un) is (N, p) summable to s, then (u,) is convergent to s.
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Proof. Assume that (uy,) is (N, p) summable to s. It follows by (3) that (Vi) (Au)) is (N, p)

summable to 0. By Theorem 1 (u,,) is slowly oscillating. Finally, (u,,) is convergent to s by Theorem
6 in [1].
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