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ATOMS IN THE p-LOCALIZATION OF STABLE HOMOTOPY CATEGORY
ATOMH B p-JIOKAJIIBAIII CTABIVIBHOI TOMOTOIIYHOI KATETI'OPII

We study p-localizations, where p is an odd prime, of the full subcategories 8" of stable homotopy category consisting
of CW-complexes having cells in n successive dimensions. Using the technique of triangulated categories and matrix
problems, we classify atoms (indecomposable objects) in 8 for n < 4(p — 1) and show that, for n > 4(p — 1), this
classification is wild in the sense of the representation theory.

BuBuarorscst p-okaiizaii (e p — HemapHe HpOCTe YKCII0) TOBHUX Mijgkareropiit 8™ cTabiibHOI TOMOTOIIYHOI KaTeropii,
1o ckinagaeTbes 3 CW-KOMIDIEKCIB 13 KIIITHHAMH B 1 IOCHIJOBHUX PO3MIPHOCTSX. 3aCTOCOBYIOYH TEXHIKY TPHAHTYIbOBAHUX
KaTeropiit Ta marpuuHi 3ajaui, My HaBoguMO Knacudikauito aTomi (HeposkIagHuxX 06’exTiB) y 8y mman < 4(p —1) i
moKasyemo, 1mo amsi n > 4(p — 1) s knacubikamis € JUKO0 y ceHci Teopil 300paKeHs.

Introduction. Classification of homotopy types of polyhedra (finite CW-complexes) is an old prob-
lem. It is well-known that it becomes essentially simpler if we consider the stable situation, i.e.,
identify two polyhedra having homotopy equivalent (iterated) suspensions. It leads to the notion of
stable homotopy category and stable homotopy equivalence. Such a classification has been made for
polyhedra of low dimensions by several authors; a good survey of these results is the paper of Baues
[2]. Unfortunately, it cannot be done for higher dimensions, since the problem becomes extremely
complicated. Actually, it results in “wild problems™ of the representation theory, i.e., problems con-
taining classification of representations of all finitely generated algebras over a field (cf. [3, 10, 11];
for generalities about wild problems see the survey [9]).

In the survey [10] the first author proposed a new approach to the stable homotopy classification
which seems more “algebraic” and simpler for calculations. It is based on the triangulated structure of
the stable homotopy category and uses the technique of “matrix problems”, more exactly, bimodule
categories in the sense of [9]. In particular, it gave simplified proofs of the results of [3-5]. In [11]
this technique gave new results on classification of polyhedra with torsion free homologies.

The main difficulties in the stable homotopy classification are related to the 2-components of
homotopy groups. That is why it is natural to study p-local polyhedra, where p is an odd prime;
then we only use the p-parts of homotopy groups. In this paper we use the technique of [10, 11]
to classify p-local polyhedra that only have cells in n successive dimensions for n < 4(p — 1).
Analogous results have been obtained by Henn [13], who used a different approach. Our description
seems more straightforward and more visual. It gives explicit construction of polyhedra by successive
attaching simpler polyhedra to each other. We also show that for n > 4(p—1) the stable classification
of p-local polyhedra becomes a wild problem, so the obtained results are in some sense closing.

Section 1 covers the main notions from the stable homotopy theory, bimodule categories and
their relations. In Section 2 we calculate morphisms between Moore polyhedra and their products. In
Section 3 we describe polyhedra in the case n = 2p — 1. This classification happens to be “essentially
finite” in the sense that there is an upper bound for the number of cells in indecomposable polyhedra
(atoms); actually, atoms have at most 4 cells. Section 4 is the main one. Here we describe polyhedra
for 2p < n < 4(p — 1). The result is presented in terms of strings and bands, which is usual
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in the modern representation theory. String and band polyhedra are defined by some combinatorial
invariant (a word) and, in band case, an irreducible polynomial over the residue field Z/p. In the
representation theory such description is said to be tame. Finally, in Section 5 we prove that the
classification becomes wild if n > 4(p — 1).

The description obtained by matrix methods is local, just as that of [13]. Using the results of [12]
we also obtain a global description of p-primary polyhedra. Fortunately, it almost coincides with the
local one, except rare special cases, when one local object gives rise to (p — 1)/2 global ones.

The first author expresses his thanks to H.-J. Baues, who introduced him into the world of
algebraic topology and was his coauthor in several first papers on this topic.

1. Stable homotopy category and bimodule categories. We use basic definitions and facts
concerning stable homotopy from [8]. We denote by 8 the stable homotopy category of polyhedra,
i.e., finite CW-complexes. It is an additive category and the morphism groups in it are Hos(X,Y') =
= lim, Hot (X[k], Y [k]), where X [k] denotes the k-fold suspension of X and Hot(X,Y") denotes
the set of homotopy classes of continuous maps X — Y. Note that the direct sum in this category is
the wedge (bouquet, or one-point gluing) X VY and the natural map Hos(X,Y) — Hos (X[k], Y [k])
is an isomorphism. In what follows, we always deal with polyhedra as the objects of this category.
In particular, isomorphism means stable homotopy equivalence. Note that all groups Hos(X,Y") are
finitely generated and the stable homotopy groups 72 (X) = Hos(S™, X) are torsion if n > dim X.
It is convenient to formally add to 8 the “negative shifts” X [—k] k € N of polyhedra with the natural
sets of morphisms, so that X [k][l] ~ X[k + ] and Hos(X[k], Y[k]) ~ Hos(X,Y) for all k& € Z.
Then 8 becomes a triangulated category, where the suspension plays role of the shift and the exact
triangles are cofibre sequences X — Y — Z — X][1] (in 8 they are the same as fibre sequences).
From now on we consider 8 with these additional objects. Actually, the category obtained in this way
is equivalent to the category of finite S-spectra [8, 15].

We denote by 8™ the full subcategory of S whose objects are the shifts X[k], k € Z, of polyhedra
only having cells in at most n successive dimensions, or, the same, (m — 1)-connected and of
dimension at most n + m for some m. The Freudenthal theorem [8] (Theorem 1.21) implies that
every object of 8" is a shift (iterated suspension) of an n-connected polyhedron of dimension at most
2n — 1. We denote the full subcategory of 8" consisting of such polyhedra by §". Moreover, if two
such polyhedra are isomorphic in §, they are homotopy equivalent. Following Baues [2], we call an
object from 8™ an atom if it belongs to 8", does not belong to 8"~ ! and is indecomposable (into a
wedge of non-contractible polyhedra).

Recall that the p-localization of an additive category C is the category €, such that Ob €, = Ob €
and Home, (A, B) = Z, ® Home(A, B), where Z, C Q is the subring {%‘ a,b ez, p{b}.
We consider the localized categories S, and S; and denote their groups of morphisms X — Y
by Hos,(X,Y). Actually, 8, coincides with the stable homotopy category of finite p-local CW-
complexes in the sense of [14]. Every such space can be considered an image in 8, of a p-primary
polyhedron, i.e., such polyhedron X that the map p*1y for some k can be factored through a wedge
of spheres [8].

To study the categories S;) we use the technique of bimodule categories, like in [11]. We recall
the corresponding notions.

Definition 1.1 (cf. [9], Section 4). Let A and B be additive categories, M be an A-B-bimodule,
i.e., a biadditive functor A°® x B — Ab (the category of abelian groups). The bimodule category
E(M) (or the category of elements of M) is defined as follows:
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Ob &(M) = Uacoba M(4, B).
BeObB
Ifue M(A,B), ve M(A',B), then

Homg () (u,0) = { (f,9)| f: A— A", g: B~ B, gu=vf}

(both these elements are from M (A, B')). M) is also an additive category. Note that we only
consider bipartite bimodules in the sense of [9].

Usually we choose a set of additive generators of A and B, i.e., sets {A;, As,..., As} C ObA
and {B1, Ba,...,B;} C ObB such that every object from A (respectively, from B) is isomorphic
to a direct sum @;:1 kjA; (respectively, @._, l;B;). Then an object of (M) can be presented as a
block matrix F' = (Fj;), where F;; is a matrix of size [; x k; with coefficients from M(A;, B;). If
we present morphisms in the analogous matrix form, the action of morphisms on elements from M
is presented by the usual matrix multiplication.

We use the following localized version of [11] (Theorem 2.2).

Theorem 1.1. Let n < m < 2n — 1. Denote by A (respectively, by B) the full subcategory
of 8, conmsisting of (m — 1)-connected polyhedra of dimension at most 2n — 2 (respectively, of
(n — 1)-connected polyhedra of dimension at most m). Consider the A-B-bimodule M such that
M(A,B) = Hos,(A, B). Let J be the ideal of the category E(M) consisting of all morphisms
(o, B): f — [ such that « factors through f and [3 factors through f'. Let also J be the ideal of SZ
consisting of all maps f: X — Y such that f factors both through an object from A|[l] and through
an object from B. The map f — Cf (the cone of f) induces an equivalence E(M)/J ~ gZ/H.
Moreover, 3> = 0, hence the isomorphism classes of the categories gZ and gg /3 are the same.

Note also that all groups J(X,Y") are finite [12] (Corollary 1.10).

Finally, recall that, for £ < | < k + 2p(p — 1) — 1, the only nontrivial p-components of the
stable homotopy groups Hos(S!, S*) are Hos,(S¥*% S*¥) = Z/p, where 1 < s < p and ¢5; =
=2s(p—1)—17[16].

2. Moore polyhedra. The only atoms in 8127 are Moore atoms My, (k € N) which are cones of

k
the maps S? P, 52, We denote their d-dimensional suspensions My[d — 3] by M ,f and call them

Moore polyhedra. For unification, we denote S¢ by Mod. We need to know the morphism groups
M = Hos,(M], M{). We always suppose that d — 1 < 7 < d + 2p — 1. Obviously, M@ = 7,
.Mgadﬁp*3 =Z/pand M@ =0ifr ¢ {d,d+2p—3}.1If k > 0, from the cofibre sequences

o1 2 gt g s g By g (ED)
one easily obtains that Mgz = M% = 0, except the cases
MG~ M8~ 7/p",
MZbd+2p_3 ~ Mg;cd—i-?p—S ~ MZE)d+2p_4 ~ Mg}gd+2p—2 ~ Z/p.

The values of ./\/lfcllr for k,l € N,d —1 <r < d+2p— 1 can be obtained if we apply Hos, (M, _)
to the cofibre sequences (E%). It gives exact sequences
k

k
d—1,r P d—1,r dr dr P dr
My 7 = My = My — My — Mg,
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whence we get
Z/pmin(k,l) if re {d -1, d} ’

Z/p if re{d+2p—2,d+2p—4},
M — @2.1)
Zlp®Z/p if r=d+2p-—3,

0 in other cases.

The only nontrivial value here is for r = d + 2p — 3: we need to know that the exact sequence

d,d+2p—3 B
0= 2Z/p 5 MEFP3 2L 7/p -0 (2.2)
splits. It splits indeed for £k = 1 since the middle term is a module over M‘fil =Z/p. Ifk > 1,
suppose that the sequence for Mz’fﬁp -3 splits. The commutative diagram
k k
d— P d— d d _P d
gi-l —— gl — 5 Mg > S S
pl 1l J{ pl 1l (2.3)
gd-1 P g M gd P gd
? r My

induces the commutative diagram

0 Z]p > Mg’ld+2p_3 Z/p 0
3| | o]
0 Z]p Miflﬁp% Z]p 0.

Since the second row splits, the first one splits as well. Therefore, the sequence (2.2) splits for all
values of k and .
Definition 2.1. We fix generators of the groups M% and denote, for r = d + 2p — 3,
by azli (k,l € N) the generator of/\/lzl“’rJrl which is in the image of the map « from (2.2);
by ad; (k,1 € NU {0}) the generator of M5 which is not in Im «;
by ad, (k € NU{0},1 € N) the generator ofMZ’ZTH;
by ail* (k € N,l € NU{0}) the generator oszlJrl’T;
by v, (k.1 € NU{0}) the generator of M,
by v (k € N,1 € NU {0}) the generator of./\/lzlﬂ’d.
Note that all these morphisms are actually induced by maps S — S?. Using diagrams of the
sort (2.3), one easily verifies that these generators can be so chosen that

d* . * .
ok i<, o, i 1<l

dz .
o 7{71 B 0 if { > ol %71 - 0 if i >0’
1 ) 1 s
u ad, ifi>Uorl=0, " ab if 1>1orl=0,
Qi = ] oV = .
0 ifo<i<l, 0 ifo<i<l,
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462 YU. A. DROZD, P. O. KOLESNYK

d* _rx d dX rx _ dy
Al ViK' = V!> Qg Mk = Qs>
(2.4)
. 4. - ,
a1 dr oy it k> K, PRI if k>F,
Yirke Yl = 0 ko< Ve Oul = . /
k<A, 0 ifk<k,
Oéd if <k ad* it k<K
d . d k'l =" 4 dr k'l <K,
Ve kgl = ) ) Vi Qg = . /
itk >k, 0 itk >k,
kOt = gy Vi kOl = Qi

(always r = d + 2p — 3).

3. Atoms in 8?}’_1. For n < 2p — 1 the description of the category S) is very simple. First, the
next fact is rather obvious.

Proposition 3.1. [f'n < 2p — 1, all indecomposable polyhedra in 8); are Moore spaces M g In
particular, M, ,f are atoms in 812, and there are no atoms in 8 if 2 <n < 2p— 1.

Proof is an easy induction. For n = 2 it is known. Suppose that 2 < n < 2p — 1 and the claim
is true for 82_1. We use Theorem 1.1 with m = 2n — 2. Then A consists of wedges of the sphere
5272 while the spheres S¢ (n < d < 2n — 2) and the Moore atoms M{ (n < d < 2n — 2)
form a set of additive generators of B. Note that in our case M% =0forn<d<r<2n-—2,
except MSS_Q’%_Q. Therefore, the only new indecomposable polyhedra in 8} are the Moore spaces
M ,?”_1, which are not atoms.

Proposition 3.1 is proved.

Consider the category 812,” -1 Again we use Theorem 1.1 with m = 2n — 3 = 4p — 5. Now a set
of additive generators of A is

A — { o Ve L R Ve Mlilp—S}
and a set of additive generators of B is
B:{Sd:Mg (2p—1<d<4p—5), M? (2p—1<d§4p—5)}.

The only nonzero values of Hos,(A, B), where A € A, B € B, are
MZDA(p_D ~ 7 /p, with generators a,(jp_l)*, keN,leNU{0},
Mgf_1’4(p_1) ~ 7./p with generators agf_l, [ € NU {0},
Mé"g‘f”‘*p b= Z,, with generator ’yég -,

Therefore, the matrix F' defining a morphism f: A — B (A € A, B € B) is a direct sum F’ &

@ F", where F” is with coefficients from Mgg_5’4p_5 and F is a block matrix (Fj)x jenuoy, Where

F}; is with coefficients from /\/li’l) AP e #£ 0 and Fy; is with coefficients from Mgf ~LAPD e
denote by F}, the horizontal stripe (Fy;);enugoy With fixed & and by F' the vertical stripe (Fj)penu {0}
with fixed [. Morphisms between objects from A and B act according to the rules (2.4). They imply
that two matrices F' and G of such structure define isomorphic objects from &(M) if and only if
G" = TF"T’ for some invertible matrices T',7" over Z, and F’ can be transformed to G’ by a
sequence of the following transformations:

F}, — TF}, where T is an invertible matrix over Z/p;
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F'— F'T’, where T" is an invertible matrix over Z/p;

Fy — Fy, + UF}, where k' > k or k¥’ =0, k # 0 and U is any matrix of appropriate size over
Z/p;

Fl'v F' + F'U’, where I < | and U’ is any matrix of appropriate size over Z/p.

Using these transformations one can easily make the matrix F” diagonal and reduce F’ to a
matrix having at most one nonzero element in each row and in each column. Then the corresponding
object from (M) splits into direct sum of objects given by (1 x 1)-matrices. The (1 x 1)-matrices
over Mgh~>*~5 give Moore polyhedra M;”~*, which are not atoms (and belong to A). Therefore,
the atoms in 827! are Cy; (k,1 € N U {0}) corresponding to the (1 x 1)-matrices (al(jp_l)*) if
k # 0 and to (ozgf 71) if kK = 0. We call these polyhedra Chang atoms, in analogy with [2]. They are
defined by the cofibration sequences

M~ = M = Gy — M7 MY if K #£0,

(Cr)
M 8771 5 Cyp — MPTP = S i k=0
We can also present Chang atoms by their gluing diagrams, as in [2, 10, 11]:
Coo Cu Cro Cri
4p—3
pl
4p —14
2p
2p—1

Here bullets correspond to cells, lines show the attaching maps and these maps are specified if
necessary.

Theorem 1.1 and cofibration sequences (Cy;) easily give the following values of the endomor-
phism rings of Chang atoms modulo the ideal J:

A={(a,b)|a=b (modp)} CZyxZ, for Co,
Ap={(a,b)] a=b (modp)} CZ,xZ/p" for Co and Cro (k#0),

Ay ={(a,b)|a=b (modp)} CZ/p*xZ/p' for Cu (k#0,1+#0).

Since all these rings are local and J> = 0, the endomorphism rings of Chang atoms are local.
Therefore, these polyhedra are indeed indecomposable (hence atoms). Moreover, we can use the
unique decomposition theorem of Krull - Schmidt— Azumaya [1] (Theorem 1.3.6) and obtain the final
result.
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464 YU. A. DROZD, P. O. KOLESNYK

Theorem 3.1. The atoms in Sf,p” are Chang atoms Cy (k,1 € N U {0}). Every polyhedron
from 8129p -1 uniquely decomposes into a wedge of spheres, Moore polyhedra and Chang atoms.

In Section 5 we will need the whole endomorphism ring of the atom C' = Cpg. Applying Hos,,
to the sequence (Cgg) as below, we obtain the commutative diagram with exact columns and rows

SQp S4p—3 SQp—l S4p—4

C

S4p—4 0 —_— 0 —_— 0 _— 0 —_— Zp
¢ | | | b
S2p—1 O — 0 —— pZ, — Z, —— L/p
(3.1)
} i } ! vy |
C 0 —— pZ, — Hosy,(C,C) — Z, —— 0
! | b | i
SAp=3 o — %2, — Z, — 0 ——= 0
¢ b ¢ | |
S2p Z, — Z/p —— 0 0 —— 0

where s marks surjections. The central row and the central column, corresponding to the polyhedron
C, are easily calculated from all other values. It shows that Hos,(C, C') has no torsion, hence coin-
cides with A. Analogous calculations show that J(Cy;, Ck;) equals Z/p if k = 0 or [ = 0 (but not
both) and (Z/p)? if both k # 0 and [ # 0.

Theorem 3.1 also gives a description of genera of p-primary polyhedra in $2?~!. Recall that a
genus is a class of polyhedra such that all their localizations are isomorphic (in the corresponding
localized categories). Certainly, if these polyhedra are p-primary, we only need to compare their p-
localizations. Equivalently, two polyhedra X, Y are in the same genus if and only if there is a wedge
of spheres W such that X VW ~ Y VvV W in 8 [12] (Theorem 2.5). Let g(X) be the number of
isomorphism classes of polyhedra in the genus of X. If A = Hos(X, X)/ tors(X), where tors(X)
is the torsion part of Hos(X, X)), then Q ® A is a semisimple Q-algebra, so there is a maximal order
I' O A in this algebra. Then A O mI for some positive integer m and g(X) = g(A) equals the
number of cosets

ImA\(I'/mI)* /(A/mA)*,
where R* denotes the group of invertible elements of a ring R and ~ is the natural map I'* —
— (I'/mI")* [12] (Section 3). If X = Coi or X = Cyo, then A = Z; if X = Cjy, then A = 0.
So g(X) = 1 for all these cases. For X = C this formula implies that g(C) = (p — 1)/2. If
v € Hosy(S 4p—462r=1) i5 an element of order p, the polyhedra from the genus of C' can be realized
as the cones C(c) of the maps S%~* % §2~1 for 1 <c < (p—1)/2.

4. Atoms in 87 for 2p < n < 4(p — 1). Let now 2p < n < 4(p — 1). We use Theorem 1.1
with m = n + 2p — 3. Then A has a set of additive generators
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A={S"(m<r<2n—-1), M (im<r<2n-—1,1€ N},
and B has a set of additive generators
B:{Sd(ngdgm), M,ff(n<d§m,k‘EN)}.

Morphisms ¢: A — B, where A € A, B € B, are given by block matrices such that their blocks
have coefficients from Mﬁ;’ Taking into consideration Definition 2.1, it is convenient to denote these
blocks as follows.

Definition 4.1. We introduce sets

¢ = {eg (n<d<2n-p)+1,keNU{0}), el (n<d<2n—p)keN), eg,eg‘},

¥ ={f(n<d<2n-p) +1LIENU{OD, f* (n<d<2n—p)leN), fi},

and consider a morphism p: A — B, where A € A, B € B, as a block matrix (Pcf)eceo, fego-
Namely,
the block ® ed i consists of coefficients at a%l;

the block ® el fd consists of coefficients at agj;

the block ® ed i consists of coefficients at ag;;

the block ® el fir consists of coefficients at ai%;
the block ®ep n consists of coefficients at .
Note that for n = 4(p — 1) we need not specially add ef]* to €°, since m = 2(n — p) + 1 in this
case.
We also denote by ®. for a fixed e € &° the horizontal stripe (®.¢)cgo and by ®7 for a fixed
f € §° the vertical stripe (Pcf)eceo-
Note that the horizontal stripes ‘I)eg and <I>el<€d+1)* have the same number of rows and the vertical

stripes &/ and <I>fl<d+1)* have the same number of columns. All blocks ®.; defined above have

coefficients from Z/p, except e fn which has coefficients from Zy.

Using automorphisms of S we can make the block ®¢m ¢ diagonal with powers of p or zero
on diagonal. So we always suppose that it is of this shape and exclude this block from the matrix
®. Then we have to split the remaining part of the vertical stripe ®/¢ and, if n = 4(p — 1),
of the horizontal stripe @66" into several stripes, respectively, ®/0”" and @egn,s, where the indices
s € NU{oo} correspond to diagonal entries p® (setting p> = 0). Respectively, we modify the sets
€¢° and §°. Namely, we denote

=@ \{feHUu{fe” I seNU{oo}},
e=¢"\{e)'} if n<4(p-1), 4.1)
€= (¢ \{eg'Hh)U{e;"’| se NU{oco}} if n=4(p—1).

Note that, if n = 4(p — 1), the number of rows in the horizontal stripe ® 4. with s # oo equals
0

the number of columns in the vertical stripe ®/ . We split the sets € and § according to the upper
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indices. Namely, &, consists of all elements from € with the upper index d, d* or, if d = m, (m, s);
§a consists of all elements from § with the upper index d, d* or, if d = n, (n, s). We define a linear
order on each &, and § setting

e‘,ﬁ < e%/ and eg* > egf if k < K, and eg < ezf for all k, K/;

ifn=4(p—1), then ¢;"* < 681’5, < e’ for s > s and any k € N;

fE< fhand f&* > flrifk <k ork >k =0, and f¢ < fo* for all k, k';

< fore <f6n’sl for s < s’ and any k € N.

The formulae (2.4) imply that two such block matrices ® and @’ define isomorphic objects from

&(M) if and only if ® can be transformed to &’ by a sequence of the following transformations:

P, — T.d., where T, are invertible matrices and T edr = T e+l for all possible values of d, k;

®f — ®I TS where T are invertible matrices and 77 P = i for all possible values of d, k;
if n = 4(p — 1), then, moreover, Tegz,s =T/ forall s € N (not for s = 0);
&, — Uy @ if € < e, where U, is an arbitrary matrix of the appropriate size;
®f — &f'ULTif f/ > f, where U/'! is an arbitrary matrix of the appropriate size.
These rules show that the classification of polyhedra in 8 actually coincides with the classi-
fication of representations of the bunch of chains X = {€4,Fq, <,~| n < d < m} (cf. [6] or [7]
(Appendix B)), where the relation ~ is defined by the exclusive rules:

eﬁ* ~ eZH and f,f* ~ j‘“,‘jJr1 for n<d<2n-p), keN,
and, if n = 4(p — 1),
eo”” ~ fo° for seN (notfor s=o00).

Thus the description of indecomposable representations given in [6, 7] implies a description of
indecomposable polyhedra from 8;. Recall the necessary combinatorics. We write e — f and f — e if
e € €4 and f € F4 (with the same d) and set |X| = €U F.

Definition 4.2. (1) A word is a sequence w = xirixars...x_171]—12, where x; € |X|, r; €
€ {—,~} such that

a) ry E i1 foralll <i<l—1;

b) z;riziy1, 1 < i <, according to the definition of the relations ~ and — given above;

¢) ifry =— (ri_1 = —), then ©1 = y for all y € |X| (respectively, x; = y for all y € |X|).

We say that | is the length of the word w and write | = In w.

(2) For a word w as above we denote by E(w) = {i|1<i<l,x;€ €} and F(w) ={i |1 <
< < l, x; € 3}

(3) The inverse word w* of the word w is the word x;r;_1x;_1 . ..72X2T1 L.

(4) A word w is said to be a cycle if 1 = ri_1 =~ and x; — x1. Then we set 1| = —, Tij1q = ¥;
and r;q = 1 for all q € Z (in particular, ro = —).

(5) The k th shift of a cycle w, where k is an even integer; is the cycle wF = Tkt 1Th+1 - - - Tk—10k
(obviously, it is enough to consider 0 < k < I).

(6) A4 cycle w is said to be non periodic if w # wl¥! for 0 < k < 1.

(7) For a cycle w and an integer 0 < k < | we denote by v(k,w) the number of even integers
0 <@ < k such that both x; and x;_1 belong either to € or to §.

Note that, since = ~ x for all x € |X|, there are no symmetric words and symmetric cycles in the
sense of [7] (Appendix B).
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To words and cycles correspond indecomposable representations of the bunch of chains X called
strings and bands. We describe the corresponding matrices @ (recall that we have already excluded
the part @, 1,).

Definition 4.3. (1) If w is a word, the corresponding string matrix ®(w) is constructed as

follows:
its rows are labelled by the set E(w) and its columns are labelled by the set F(w);
the only nonzero entries are those at the places (i,i+ 1) if r; = — and i € E(w) and (i + 1,1)

if ri = — and x; € F(w); they equal 1.
We denote the corresponding polyhedron by A(w) and call it a string polyhedron whenever it does
not coincide with a sphere, a Moore or a Chang polyhedron'.

(2) If w is a non periodic cycle, z € N and m # t is a unital irreducible polynomial of degree
v from (Z/p)[t], the band matrix ®(w, z, ) is a block matrix, where all blocks are of size zv X zv,
constructed as follows:

its horizontal stripes are labelled by the set E(w) and its vertical stripes are labelled by the set
F(w);

the only nonzero blocks are those at the places (i,i+ 1) if r; = — and i € E(w) and (i + 1,1) if
r; = — and i € F(w) (note that here i =l is also possible);

these nonzero blocks equal I, (the identity zv X zv matrix), except the block at the place (11)
(if L € E(w)) or (11) (if'l € F(w)) which is the Frobenius matrix with the characteristic polynomial
w’. If 1 = t — c is linear, we replace the Frobenius matrix by the Jordan z X z block with the
eigenvalue c.

We denote the corresponding polyhedron by A(w, z,7) and call it a band polyhedron®.

Using these notions, we obtain the following description of polyhedra in the category S.

Theorem 4.1. (1) All string and band polyhedra are indecomposable and every indecomposable
polyhedron from S}, except spheres, Moore and Chang polyhedra, is isomorphic to a string or band
polyhedron.

(2) The only isomorphisms between string and band polyhedra are the following:

A(w) ~ A(w*);

A(w, z,m) ~ A(w*, z,m);

Alw, z,7) ~ A, 2, 7%), where n* = 7 if v(k,w) is even and 7*(t) = t*7(0)"*x(1/t) if
v(k,w) is odd’.

(3) Endomorphism rings of string and band polyhedra are local, hence every polyhedron from
8y, uniquely decomposes into a wedge of spheres, Moore and Chang polyhedra, and string and band
polyhedra.

(4) 4 string or band polyhedron is an atom in S} if and only if the corresponding word contains
at least one letter from &g and at least one letter from §a(n_p)11-

Note that in this case we can simplify the writing of the words, since for every = € |X| there
is at most one element y € |X| such that x ~ y and then z — y is impossible. Hence we can
*2)*f(f—1

. . . . 1 (d
omit all symbols — and write x instead of = ~ y. For instance, eﬁ fld 161(6, means eg ~

(d=1)x fld_l -~ fl(d—2)* . eil_Q (d=1)*  rd—1 -~ fl(ld—Z)*

~ e ~ e 1 . One can prove that there can be

' The words consisting of one letter = correspond to spheres, the words of the form & ~ y correspond to Moore
polyhedra, the words that only have one symbol ‘—’ correspond to Chang polyhedra, and these are all exceptions.

2 Band polyhedra never coincide with spheres, Moore or Chang polyhedra.

M =t"4at” '+ .. a1t + ap, then 7 =¥ +ay (aw_1t"" ... Fart +1).
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at most one place in a word w where a fragment e”* ~ f™5 or f"® ~ e occurs; moreover, if it
occurs, w cannot be a cycle.

Example 4.1. We give several examples of string and band polyhedra and their gluing diagrams.
In these examples we suppose that p = 3.

(1) The “smallest” possible string atoms are for n = 6. They have 3 cells and are given by

the words e%* fI or €5 f*. The smallest band atoms have 4 cells. They are A(wp,1,t F 1), where
wy = ez fl7. Here are their gluing diagrams:

11

10

3k

(2) More complicated band atoms are A(wo, 1,2+ 1) and A(wo, 2,tF1). Their gluing diagrams
are

11

3l
10

The nontrivial attachments of cells of dimension 10 come, respectively, from the Frobenius matrix
0 -1 +1 1
<1 0 > and the Jordan block ( 0 il)'
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(3) For the maximal value n = 8 the smallest atoms contain 4 cells. They are given by the words
eg fg ” fo11 and have the gluing diagrams

15

14

13

12

11

10

(4) The band atoms for n = 8 are rather complicated and cannot be “small”. For instance, one of

the smallest is A(w, 1,tF 1), where

15

14

13

12

11

10

_ 8% 9% ,10% £11 10 £9 . . . .
w = ey fien, [, Chs fl3. The gluing diagram for this atom is

(the powers of 3 near vertical lines are omitted).
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(5) Finally, we give an example of an atom having exactly one cell of each dimension (we do
not precise the corresponding word, since it can be easily restored).

15

14

13

12

11

10

Another atom with this property is the properly shifted S-dual of this one in the sense of [15]
(Chapter 14).

One can also calculate genera of p-primary polyhedra for 2p < n < 4(p — 1). Namely, let A(X)
denotes the ring Hos(X, X))/ tors(X). We call the end x; or x; of a word w spherical if it of the
form ed or f¢. Note that these letters can only occur at an end of the word since they are not related
by ~ to any letter. It is rather easy to verify that A(X) = 0 if X is a band polyhedron, while for a
string polyhedron X = A(w)

0 if w has no spherical ends,
A(X) =< Z if one end of w is spherical,
A if both ends of w are spherical.

Hence, we obtain the following result.
Corollary 4.1. If X is a band or string polyhedron, then g(X) = 1, except the case when
X = A(w) and both ends of the word w are spherical. In the latter case g(X) = (p — 1) /2.
5.Casen >4(p—1). Forn=4p—3wesetm=6p—5=n+2p—2andg=2(n—1) =
=n+4p —5 = m + 2p — 3. Then A contains Moore polyhedra M} (including S¢ = M) and
B contains the shifted Chang polyhedron C"™ = Cy[2p — 2]. Let N}, = Hos, (M}, C"™). Applying
Hos, (M}, _) to the cofibre sequence

0— St 58" 5 Com 5 §m — gntl
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we get an exact sequence
()—>Z/pi>/\/'k 5 Z/p—o.

Thus #(N}) = p?. On the other hand, applying Hos, (-, C) to the cofibre sequence (Eﬁ) of Section 2,
we get an exact sequence

p* n
No —)NQ —>Nk—>0.

Therefore the map 7 is an isomorphism. Setting k = 1, we see that pNy = 0, hence Ny ~ Z/p x Z/p
and Ny ~ Z/p x Z/p for all k. We denote by )\, a generator of Ny which is in Im A and by uy a
generator of Ny such that p(ux) # 0.

Analogous observations show that the generator of the cyclic group MZ}] = Hosp(Mlq,Mg)
induces an isomorphism A, — N; if &k > [ > 0 and zero map if 0 < k < [. On the other
hand, the diagram (3.1) implies that an element (a,b) of the ring A = Hos,(C,C') acts on N}, as
multiplication by a (recall that ¢ = b (mod p)) Therefore, a map ¢: A — B, where A is a wedge
of Moore polyhedra M;' and B is a wedge of Chang polyhedra C™ can be considered as a block

matrix ® = (®;x)renufoy, Where all blocks are with coefficients from Z/p and both horizontal stripes
i=1,2
®1, &5 have the same number of rows. Namely, @ consists of coefficients at A\;, and P, consists

of coefficients at ;. Two such matrices define isomorphic objects from €(M) if and only if one of
them can be transformed to the other by a sequence of the following transformations:

®, — TP, and &5 — T'd, with the same invertible matrix 7

®* s ®FT* for some invertible matrix T%;

dF s ®F + ®'Uy, for any matrix Uy, of the appropriate size, where [ > korl =0 < k.
It is well-known that this matrix problem is wild, i.e., contains the problem of classification of pairs
of linear maps in a vector space; hence, a problem of classification of representations of any finitely
generated algebra over the field Z/p (cf. [9], Section 5). Namely, consider the case when the matrix
¢ = ®(F,G) is of the form

I 010
0 IO
F 110
G 0|1

Here [ is a unit matrix of some size, F' and G are arbitrary square matrices of the same size; line
show the subdivision of ® into blocks ®;; (there are only two vertical stripes). One easily checks
that ®(F, G) and ®(F’,G’) define isomorphic objects if and only if there is an invertible matrix 7T
such that F' = TFT~! and G’ = TGT~'. So we obtain the following result.

Theorem 5.1. The classification of p-local polyhedra in S} for n > 4(p — 1) is a wild problem.
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