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SHARPENING OF THE EXPLICIT LOWER BOUNDS
ON THE ORDER OF ELEMENTS IN FINITE FIELD EXTENSIONS BASED
ON CYCLOTOMIC POLYNOMIALS

MNIICWIEHHA ABHUX HU2KHIX I'PAHUID AJIA IOPAIKIB
EJEMEHTIB Y POGHIIMPEHHAX CKIHYEHHHUX ITOJIIB
HA OCHOBI HUKIOTOMIYHUX ITOJIHOMIB

We explicitly construct elements with high multiplicative order in any extensions of finite fields based on cyclotomic
polynomials.

SIBHO MOOYIOBaHO €NEMEHTH BEIUKOrO MYJIbTHILTIKATUBHOTO MOPSIKY Y OY/Ib-KUX PO3IIMPEHHIX CKIHYCHHHX IMOJIB Ha
OCHOBI I{UKJIOTOMIYHUX IIOJIIHOMIB.

1. Introduction. It is well known that the multiplicative group of a finite field is cyclic [1,2]. The
problem of constructing efficiently a generator of the group for a given finite field is notoriously
difficult in the computational theory of finite fields. That is why one considers less restrictive ques-
tion: to find an element with high multiplicative order [2]. We are not required to compute the exact
order of the element. It is sufficient in this case to obtain a lower bound on the order. High order
elements are needed in several applications: cryptography, coding theory, pseudo random number
generation, combinatorics.

Throughout this paper Fj is afield of g elements, where g is a power of prime number p .

F; is the multiplicative group of F, . |S| denotes the number of elements of finite set S. A par-
tition of an integer ¢ is a sequence of such nonnegative integers uy,...,u. that 2]‘—1 juj=c.

U(c,d) denotes the number of partitions of ¢, for which uy,...,u. <d. (§) denotes the group
generated by &, and G X H — the direct product of groups G and H . For aprime k, pi(l)

is the highest power of k dividing integer /.
Gao [3] gives an algorithm for constructing high order elements for many (conjecturally all)
general extensions qu of finite field F,. Voloch [4, 5] proposed another method for general ex-

tensions. For special finite fields, it is possible to construct elements which can be proved to have
much higher orders. Extensions based on the Kummer or Artin — Schreier polynomials are consid-
ered in [6 — 8]. A generalization of the extensions is given in [9].

Extensions connected with a notion of Gauss period are considered in [10 — 12]. More precisely,
the following extensions are constructed. Let r =2s+1 be a prime number coprime with ¢g . Let

q be a primitive root modulo 7, that is the multiplicative order of ¢ modulo r equals to

r—1. Set Fq(e):Fq’—leq[x]/q)r(-x)’ where @,(x)=x"""+x"2+...+x+1 isthe rthcy-

clotomic polynomial and 6 = x(mod ®,(x)). It is clear that the equality 0"=1 holds. The ele-
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ment B=0+ 0~ s called a Gauss period of type ((r—1)/2,2). It generates normal base over
F, [11].
pr-1-2

It is shown in [10] that [ has high multiplicative order: at least . Bounds of such
kind: explicit and for any p and r, are of special interest in applications (particularly, cryptog-

raphy). The bounds allow to compare simply different field extensions.
The bounds using partitions U((r —3)/2,p—1) [11], U(r—-2,p—1) [12] or asymptotic bound

exp[(2,5 \’l_l +0(1)j\/’”— 1] [11] do not allow to obtain a bound on the element order for
p

2

fixed finite field. Explicit bounds in terms of p and r are derived in [12] from bounds in terms
of partitions. However, such bounds are obtained only for r = p2 +2 and r< p+2. Important

in applications case p+2<r< p2 +2 remains not described.

That is why we give in this paper better comparatively with [10] explicit lower bounds for any
p and r Dboth on the order of element [3 and similar form elements. To obtain the bounds we
count solutions of a linear Diophantine inequality instead of counting partitions. Our main result is

Theorem 2.
2. Preliminaries. Let c,d be positive integers (d < c). Denote by L(c,d) the set of solu-

tions (uq,...,u.) of the following linear Diophantine inequality:
C
Y ju;<c, (1)
j=1
with the condition 0 <uy,...,u. <d.

For the extension F,(6) we prove the following three lemmas.

Lemma 1. Let a be any non-zero element in the finite field F, . If solutions (uy,...,u,_5)

and (vq,...,v,_p) from L(@r—2,p—1) are distinct, then the products H:j 0’ +a)"  and

B )
H:-:1 0’ +a)"’  are not equal.

Proof. We prove Lemma 1 by the way of contradiction. Assume that solutions (uy,...,u,_»)

and (v,...,v,_p) from the set L(r—2,p—1) are distinct, and the products are equal:
r—2 ) r=2 )
[Te®' +a =[]® +a)7.
j=1 J=1

Since the polynomial ®,(x) is minimal polynomial for the element 6, we write
r=2

r=2
[Te/+a)" = [T/ +a@)"(mod @, (x)).
j=1

J=1
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As there are polynomials of degree r—2 < deg @, (x) on the left- and on the right-hand side of the

equality, these polynomials are equal as polynomials over F,, i.e.,
r=2 ) r=2 )
[T+ =[]+ . (2)
j=1 Jj=1

Let k be the smallest integer for which u; # v, and,say u; >v;. After removing common

factors on both sides of (2), we obtain

r=2 r=2
Fra ] e = [ o+ (3)
Jj=k+1 Jj=k+1

r=2

J uj .
j=k+1(x +a)’ by b. Itisclear that b#0.

Denote the absolute term of the polynomial H

Then there is the term
(g — vy )a" " Tpxk

on the left-hand side of (3) with minimal nonzero power of x . Since 0 <ug,v; <p-1, u; #vy,
a,b#0, the term is nonzero. And such term does not occur on the right-hand side, which makes
the identity (3) impossible.

Lemma 1 is proved.

Lemma 2. Let a be such nonzero element in the finite field F, that a’#-1. If solutions

(Upse.sur—3y2) and  (vi,...,v—3)2) from L((r—3)/2,p—1) are distinct, then the products
Hi-:f)/z [(a®’ + 1)(9j +a) and H(jr:_13)/2 [(a®’ + 1)(9j +a)]”’ are not equal.

Proof. Assume that solutions  (up,...,u—3y2) and  (vi,...,v,_3)2) from the set

L((r—3)/2,p—1) are distinct, and the products are equal:

(r=3)/2 . ) (r=3)/2 . .
IT 1@ +n©’ +a1* = [ (a8’ +1)0’ +a)" .

Jj=1 Jj=1

Then, analogously to the proof of Lemma 1, we obtain the following equality for polynomials of
degree r—3<deg®d,(x):

(r=3)/2 . ‘ (r=3)/2 ‘ ‘
IT e’ + D +a1 = [ [/ + D/ +a)]™ . 4)
j=1 J=1

Let k be the smallest integer for which u; #v;, and u; >v;. After removing common factors

on both sides of (4), we have
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(r=3)/2 . ‘ L. =2 . . _
[ax** + (@ +Dx* +a ™ ] e/ +D +a)l7 = [] lax’ + D +a)17 . (5)
j=k+1 J=k+1

(r=3)/2

e @)+ + @)1 by b. Obviously

Denote the absolute term for the polynomial

Up—Vk

b # 0. Applying the multinomial formula to [ax2k + (a2 + 1)xk +a] , we obtain that there is

the term
(ug — vy )a® + Da" " pxk

in the polynomial on the left-hand side of (5) with minimal nonzero power of x. Since 0 <uy,

Vi Sp-=1, up#vg, a*#-1, a,b#0, the term is nonzero. And such term does not occur on

the right-hand side, which leads to a contradiction.
Lemma 2 is proved.

Lemma 3. Let a be such nonzero element in the finite field F, that a’#1. If solutions

Myy... up_n) and (v1,...,v,_p) from L((r—3)/2,p—1) are distinct, then the products
H(j_:3)/2 [(@® +1)0’ +a)™ 1" and H(jr:_13)/2 [(@®’ +1)07 +a)™1"  are not equal.
Proof. Assume that solutions  (up,...,ui—3y2) and  (vi,...,v,_3)2) from the set

L((r—3)/2,p—1) are distinct, and the products are equal:

(r=3)/2 . ‘ (r=3)/2 . .
[T (@8’ +1e’ +a)™'1" = [(a®/ +1)(07 +a)™'1" .
j=1 j=1

Then, analogously to the proof of Lemma 1, we obtain the following equality for polynomials of
degree r—3<deg®,(x):

(r=3)/12 . ‘ (r=3)/2 ‘ .
[T @ +D“&/ +a)" = [ e/ +D7 &/ +a)" . (6)
j=1 j=1

Let k be the smallest integer for which u; #v;, and u; >v;. After removing common factors

on both sides of (6), we obtain

r=32 o ). =3y o _
(ax* + ) T (@ + D" +a) 7/ =F + )% I (ax/ + D +a) . (D)
j=k+1 J=k+1

r=3)/2

Denote the absolute term for the polynomial Hi‘:k+1 (axj +1)" (! +a)’i by b, and the abso-

(r=3)/2

kel (ax’ + 1) (x’ +a)"/ by c. Obviously b,c#0. Since

lute term for the polynomial

absolute terms on both sides of (7) are equal, the identity b =a"* "¢ holds. As coefficients near
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x* on both sides of (6) are equal, we have (uy — vy )ab = (u — vi)a" "+ "'c, which implies the

k=2 Comparing the identities, we obtain a’* =1 — a contradiction to the lem-

identity b=a
ma assumption a*#1.

Lemma 3 is proved.

3. Lower bounds based on a number of linear Diophantine inequality solutions. All lower

bounds on elements order in Theorem 1 below involve a number of solutions (uy,...,u,.) of the
linear Diophantine inequality (1), where 0 <u,...,u. <p—1. We use for the proof of parts (a),
(b), (c) of the theorem a technique similar to that in [10 — 12]. The idea was introduced by Gathen
and Shparlinski [10], and developed in [11, 12]. We take a linear binomial of some power of 06
and all conjugates of it, that also belong to the group generated by the binomial, and construct their
distinct products. In this case, the conjugates are nonlinear binomials. To obtain the bounds we
count solutions of a linear Diophantine inequality instead of counting integer partitions.

Theorem 1. Let e be any integer, f be any integer coprime with r, a be any nonzero

element in the finite field F,. Then:

(a) Ge(Gf +a) has the multiplicative order at least | Lir-2,p-1

l

(b) (O_f + a)(ef +a) for a’ #-1 has the multiplicative order at least |L((r -3)2,p— 1)|

and this order divides ¢ ™"'* -1

() G_Ze(e_f+a)(9f+a)_1 for a’#1 has the multiplicative order at least
|L((r=3)/2,p—1)| and this order divides ¢"~""* +1,

(d) Ge(Gf +a) for a’ #+1 has the multiplicative order at least | L((r—=3)/2,p— 1)|2/2 .

Proof. (a) First we show that ee(ef +a) has the same order as 0%(0+a), where g=
=ef _l(mod r). Clearly the map, taking 6 to 67, is the Frobenius automorphism of the field
F,(0). Since ¢ is primitive modulo r, the congruence f =¢"(modr) holds for some integer
m. As g isapowerof p, the map,sending O to o/ =97" , is a power of the Frobenius au-
tomorphism and, therefore, is also an automorphism of the field F,(0). Since the last examined
automorphism takes 0%(0+a) to ee(ef + a), multiplicative orders of these elements coincide.

So, to prove (a), it is sufficient to show that 0%(0+a) has the multiplicative order at least
|L(r—2,p-1)].
As g is primitive modulo r, foreach j=1,...,r—2, aninteger o(j) exists such that

qoc(j> = (jmodr). The powers

(/) alj) __alj)

(eg(e+a)) =057 (99" 1 a) = 0987 +a)

belong to the group (0%(0+ a)). For every solution from L(r—2,p—1) we construct the follow-
ing product:
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r=2 r=2 . r=2 r=2
[T109@ +ay" = 6= ] @ +a) = 020 +a)"
=1 Jj=1 J=1

g(r=2)

that also belong to the group. Note that all these products have the same factor 0 . According

to Lemma 1, if two solutions (uy,...,u,_,) and (vq,...,v,_») from L(r—2,p—1) are distinct,

then the products r.—2 0/ +a)" and r.—2 (9j +a)”/ are not equal. Hence, the products
P J=1 j=1 q p

Gg(r_z)H;j ®'+a)" and Gg(r_z)H;;lz (8’ +a)"" , corresponding to distinct solutions, cannot
be equal and the result follows.

(b) The order of the group F;,_l equals to ¢ —=1=(¢" "2 =1)(¢""""? +1). Note that

since ¢ is primitive modulo r, and r is prime, the congruencies ¢" ' =1(modr) and

q"™Y2 = _1(mod r) are true. Then

(r—l)/2+1)

[0°@7 +ay? " = g ©"" L )@ +a)y = 0 +a)®' +a).

and so, the order of (O_f +a)(6f +a) divides q(r_l)/z —1. We show that (O_f +a)(6f +a)
generates the group of the order at least |L((r -3)2,p— 1)| . Indeed, since the field automorphism,

taking © to ef, sends (9_1+a)(6+a) to (6_f+a)(6f+a), multiplicative orders of these

elements coincide. Hence, it is sufficient to prove that
0 '+a)®+a) = 07 (a0 +1)O+a)

has the multiplicative order at least |L((r -3)/2,p—-1) | .

As g is primitive modulo r, for j=1,...,(r—3)/2, an integer «(j) exists such that

qoc(j) = j(mod r). The powers

070+ DO+ = 07/ (@b’ +1)0' +a)

belong to the group (G_I(ae +1)(0+a)). For every solution from the set L((r—3)/2,p—1), we
construct the following product:
(r=3)/2

[T 16776’ +1)®/ +ayn" =
j=1

Sy, (r=3)/2 ) ) (r=3)/2 . .
=0 = T 1@e! + 0@’ +a = 072 [T @8’ +1)®7 +a)"
j=1 J=1

—(r=3)/2

that also belong to the group. Note that these products have the same factor € . According
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to Lemma 2, if two solutions from  L((r—3)/2,p—1) are distinct, then the products
Hi-:f)/z [(@®’ +1)0’ +a)]"/ and H(jr:_13)/2 [(@®’ +1)(0’ +a)]" are not equal. Hence, the result

follows.
(c) Since

(r=1)/2 _

[0°@7 +ay? = 0@ DA L ayel + o) = 0720 +ax® +a) !,

the order of 07207/ +a)®’ +a)™" is a divisor of q(r_l)/z +1. We show that 072¢(0/ +
+ a)(ef T+ a)_1 generates the group of the order at least |L((r -3)/2,p-1) | . Indeed, since the field

automorphism, taking 0 to 0/, sends G_Zef_l(e_l+a)(6+a)_1 to 0720 +a)®’ +a)!,

multiplicative orders of these elements coincide. Hence, it is sufficient to prove that
-1
077 (0" +a)O@+a) = 0'(@d+1)O+a)",

where t=—"2e¢f 1 , has the multiplicative order at least |L((r -3)/2,p-1) | .
As g is primitive modulo r, for j=1,...,(r—3)/2, an integer «(j) exists such that

qoc(j) = j(modr). The powers

qa(./’)

[07(a0+ 1)(O+a)'] = 0/ (a0’ + 1)(07 +a)”!

belong to the group (0" (a®+1)(0+ a)_1> . For every solution from the set L((r —3)/2,p—1), we
construct the following product:

(=32 ' _ _ [y, (232 4 ' _
I 6”@’ +n©’ +ay'1 === 7 [] a0’ +D®' +a)"1" =
Jj=1 J=1
(r=3)/2 ‘ ‘
= 02 T (a8’ + 1)@ +a)™'1"
j=1

g!(r=3)12

that also belong to the group. Note that these products have the same factor . According

to Lemma 3 if two solutions from  L((r—3)/2,p—1) are distinct, then the products
17" @8’ + 10’ +ay "1 and TT,”"[@8’ +1)®7 +@)'1" are not equal. Hence, the
result follows.

(d) Recall that the order of F;,_l equals o ¢ ' =1=(¢g" V2 -1)g" "2 +1). Factors

(=12 _4 (r=1)/2

and ¢ +1 have the greatest common divisor 2, since their sum equals to

q

(r=D/2

2q . Consider the subgroup of F;,_l generated by ee(ef +a) . This subgroup contains two

subgroups: first one is generated by
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wy = [6°(87 “‘Cl)]q(r_l)nJrl =0 +a)0’ +a),
and second one — by

wy = (090 +a)

T=007 +a)e’ +a).
According to part (b), the order of w; divides q(r_l)/ 21, and according to part (c), the order of

(r=1)/2

w, divides ¢ +1.

Construct the element

wiwy it pa(g" V-1 =2,

wiws if pa(g" V241 =2.

If pa(g" V2 —1)=2, then (¢ V2—-1)/2 is odd and coprime with ¢" 2 +1. Clearly the

(r=1)/2

order of wi is a divisor of (g —1)/2 . Hence, in this case, (z)=(wi)x{w,). Similar to the

previous consideration, if p,(g" "% +1)=2, then {(z)=(w;)x(w3). In both cases, the order of
w is the product of the orders of w; and w, divided by 2. According to part (b) and part (c), the

order of w, and so, the order of 0°(0+a) is at least |L((r -3)/2,p-1) |2/2 .
Theorem 1 is proved.
Corollary 1. The Gauss period B has the multiplicative order at least |L(r -2,p—-1 | and

this order divides ¢"™V'* —1.

Proof. It follows from Theorem 1, part (a) that the multiplicative order of
B=0+6"'=07"(0>+1) isatleast |L(r—2,p—1)|. Since

_ (r=1)/2 _ (r=1)/2 _(r=1)/2 1 _ 1o
©+67H" =7 T+677 He+6H)=®"'+0)0+67)" =1,
the order of B divides ¢" "% 1.

Corollary 1 is proved.

Let a be any nonzero element in F,. We use below the following denotations:

Bry if pa(q" "V -1=2,
Y =(9_1 +a)(9+a)_1 and 7=

By? if pa(g" "+ =2.

Corollary 2. The element z  for a’>#1  has the multiplicative order at least
|L(r—2,p—1)||L((r—3)/2,p—1)|/2.
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(r=1)/2

Proof. According to Corollary 1, B has the order that divides ¢ —1 and is at least

|L(r -2,p—1 | . According to Theorem 1, part (c) (if to put e = 2_1(mod r), f=1), v hasthe

order that divides q(r_l)/ 2+1 and is at least |L((r -3)/2,p— l)| . Analogously to the proof of
Theorem 1, part (d), the order of z is the product of the orders of 3 and 7y divided by 2.

Hence, the result follows.
Corollary 2 is proved.
4. Explicit lower bounds on orders for any p and r. Explicit lower bounds on the orders

of finite field elements in terms of p and r are of special interest in applications. That is why
we count in this section a number of solutions of the linear Diophantine inequality to derive explicit
lower bounds on the multiplicative orders of the examined elements ee(ef +a) and z.

Lemma 4. The number |L(c,d)| of solutions of linear Diophantine inequality (1) with the

condition 0 <uy,...,u. <d, is at least

d+DV?2 4 d=1,2,

5Ve/2=2 if d=4.

Proof. Let &, 1<3<d, be an integer which we shall choose later. Take the biggest integer

o. such that 2?_1 id <c. Since

o
Y8 = oo +1)/2 < S(o+ 1?72,

i=1

we choose o from the inequality &(o+ 1)? <2c, thatis o= L«/2C/6J—1 . Clearly, if to take

u; €{0,...,0—-1} for i=0,...,00 and u ;=0 for i=o+1,...,c, we obtain a solution of (1).

The number of such solutions equals to (8 +1)® > (§+ 1)V>"272 = 5+ 1)V>® /(5 +1)2 .

To choose &, we find maximum of the numerator f(d) = (d+ 1)"2"/8 of the last bound. Ob-

viously d=d inthecase d=1,2.
So, we assume below that d>4. Represent the numerator in the form  f(8)=

= exp (ln O+ 1)\/2c/6) . Then we have

(® = @417 s L)
£/(8) = G+1)V*" 2¢/8 ST )

I In@+1

571 25 =0. The value 392155 <9, < 3,921555 is a point

If to write f’(8)=0, then
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of function maximum. The nearest integer to maximum is & =4 . The function f(d) monoton-

ically decreases for 08>8, and the denominator (d+ 1)? monotonically increases. Hence, we

take & =4 in this case, and the result follows.
Lemma 4 is proved.
Our main result is the following theorem that gives explicit lower bounds on the elements orders.
Theorem 2. Let g be a power of prime number p, r=2s+1 be a prime number coprime

with q, q be a primitive root modulo r, © generates the extension Fy(0)= Fq,_l , e beany

integer, [ be any integer coprime with 1, a be any nonzero element in the finite field F,.
Then:

2 2(7‘—2)—2 l:f‘ p — 2,
(a) Ge(Gf +a) has the multiplicative order at least { 3V7=2-2 if p=3,

5222 if p>s,
N R

() 007 +a) for a®#+1 has the multiplicative order at least { 3¥2(=3)-4 5 if p=3,
s34y pss,

() z for a*#1 has the multiplicative order at least { 3(N2+DVr=3/2-4 o if p=3,
S(W2+DVr=312-4 5 if p=5.

Proof. (a) According to Theorem 1, part (a) and Lemma 4.
(b) According to Theorem 1, part (d) and Lemma 4.

(c) According to Corollary 2 and Lemma 4.

Theorem 2 is proved.

We obtain the following corollary from Theorem 2.

2 2(7’—2)—2 l‘-f' p= 2’
Corollary 3. The Gauss period B has the multiplicative order at least {3Vr=2=2  jf p=3
V222 e 5 s

The bound in Corollary 3 improves the previous bound 2‘/3_2 from [10] on the multiplica-
tive order of the element J3 .
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