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A NOTE ON A BOUND OF ADAN-BANTE *
OJIHE 3AYBAKEHHSI IIOJIO T'PAHUII AJAH-BAHTE

Let G be a finite solvable group and let x be a nonlinear irreducible (complex) character of G. Also let () be the number
of nonprincipal irreducible constituents of x X, where ¥ denotes the complex conjugate of x. Adan-Bante proved that there
exist constants C' and D such that d1 (G/ ker x) < Cn(x) + D. In the present work, we establish a bound lower than the
Adan-Bante bound for n(x) > 2.

Hexait G — ckiHueHHa po3B’s3Ha Ipyna, a X — HeJIHIHHKUI He3BiqHU (KOMIUIEKCHUI) Xapakrep rpynu G. Takox Hexai
1(X) — YMCIIO0 HETOJIOBHUX HE3BIIHUX CKIAIOBHX XX, A€ X MO3HAYAE BETHINHY, KOMIUIEKCHO CIPSDKEHY 10 X . SIK 1oBemeHo
Anan-banre, icuytots crami C ta D Taki, mo dl (G/ ker x) < Cn(x) + D. B nauiii po60oTi BCTAHOBIEHO OLIHKY HUXKYY,
HiXk ouinka Anan-Banre wis n(x) > 2.

Let G be a finite solvable group and x be a nonlinear irreducible (complex) character of G. Let ()
be the number of nonprincipal irreducible constituents of y Y, where ¥ means the complex conjugate
of x. In her paper [1], E. Adan-Bante utilized a key lemma to yield a bound for the derived length of
G/ ker x. That is the following lemma.

Lemma 1. Letn > 1 be an integer and N = {1,2, ...} be the set of all positive integers. Define

p(n) = max{ning...ng | ni,ng,...,ns € Nand ny +ngs + ... + ns = n}.
Hence
p(n) < on—1

Adan-Bante’s inequality above can be improved slightly. In fact, we have the following lemma.
Lemma 1'. Let n > 1 be an integer and N = {1,2, ...} be the set of all positive integers. Define

p(n) = max{ning...ns | ni,ne,...,ns € Nand ny +na + ...+ ns = n}.
Then
3n/3, n =0 (mod 3),
p(n) =< 4-3"Y3 n =1 (mod 3),
2.30=2)/3 " 5 =2 (mod 3).
Hence

p(n) < 3"/3.

Proof. By the relation of congruence, then for n > 2 we have that one of the following:

n =0 (mod 3), n =1 (mod 3), or n=2(mod 3).
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By the definition of p(n) and computation, it follows that

n=2 pn)=2 n=5 pn) =23,
n=3, pn)=3, n=6, pn)=3-3,

n=4, pn)=4, n=7 pn) =4-3.

We prove that the factors of p(n) are 2 or 3.
Letn =mi +mo+ ...+ my, t > 1, such that

p(n) =mimg...my.

We assert that
(i) m; > 1 foreveryi=1,2,...,t.
Otherwise, it is no loss to assume that m; = 1. Thus,

(1+mg)ms...my >mimoms...my = p(n),

a contradiction.
(i) m; <4 foreacht=1,2,...,¢.
Otherwise, it is no loss to assume that mq > 4 and then
2-(m1—2) > mj.
Hence,
2 (my —2)mams ... my > myimams...my = p(n),

a contradiction.
So, m;, i =1,2,...,t,are 2 or 3 since 4 = 2 - 2 and then

p(n) =23,
where a, b are nonnegative integers and 2a + 3b = n.

Now, since 2 -2 -2 < 3 - 3, it follows that the number of factor 3 in p(n) should be as many as
possible. That is,

0<a<?2.
Therefore, we have that
3n/3, n =0 (mod 3),
p(n)=144-3"%3  n=1(mod 3),
2.3"2/3 n =2(mod 3).
It follows that
p(n) < 3n/3,

Lemma 1’ is proved.
Utilizing the inequality p(n) < 3"/3 in Adan-Bante’s proof in [1], we have that the bound of
Adan-Bante can be improved as follows.

ISSN 1027-3190.  Vkp. mam. scypn., 2014, m. 66, Ne 7



1008 XIAOYOU CHEN

Theorem 1. Let G be a finite solvable group and x € Irr (G), where Irr (G) denotes the set of
irreducible characters of G. Then there exists a constant ¢ such that

dl (G/ ker x) < en(x) + 1.

Remark. In particular, if x € Irr(G) is faithful, we would have that d1 (G) < en(x) + 1. Note
that E. Adan-Bante has studied the finite solvable groups with 7(y) < 2 in [2, 3].

Keller [4] obtained that there exist universal constants C; and Cs such that dl(G) <
< Cplog (m(G,V)) 4+ Cq for any finite solvable group G acting faithfully and irreducibly on a
finite vector space V. In fact, the author proved the result with log = logy, C1 = 24 and Cy = 364.
And the author says in [4] that these constants are far from being best possible. Notice that the
constants C' and D in [1] are related to the constants in [4]. Actually, C' = Cilog2 + Cs + 1 and
D =1— Cylog?2 (By the way, that Adan-Bante wrote D = 1 + Clog2 in [1] is a typo). Also, our

log 3
constant ¢ = %Cl + Cy+ 1. If n(x) > 2, that is, n(x) > 3, and since
log 2

log 3’
3

then we have that en(x) +1 < Cn(x) + D. So our bound is lower than Adan-Bante’s if () > 2.
(It can be seen that the specific values of C'; and Cy are not used in the comparison.)
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