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A CLASS OF p-VALENT MEROMORPHIC FUNCTIONS
DEFINED BY THE LUI-SRIVASTAVA OPERATOR

PO KJAC p-BAJIEHTHUX MEPOMOP®HUNX ®YHKIIIH,
IO BUBHAYEHI OITIEPATOPOM JIYI-LIPIBACTABU

In this paper, we introduce a subclass of p-valent meromorphic functions involving the Lui- Srivastava operator and
investigate various properties of this subclass. We also indicate the relationships between various results presented in the
paper with the results obtained in earlier works.

Beeneno migkiac p-BaleHTHHX MepoMopdHHX (QYHKIIH, 10 BH3Ha4aloThcst oneparopom Jlyi—IllpiBacTaBu Ta BUBYEHO
Pi3HMaHITHI BIACTHBOCTI IIbOTO MiTKIacy. MU TakoX BKa3ye€MO CIIBBITHOIICHHS MK Pi3HMaHITHUMH pe3yJibTaTaMH, IO
oTpuMaHi B poOOTi Ta pe3y/bTaTamH, 110 OTPUMaHi paHile.

1. Introduction. Let X, denote the class of all meromorphic functions f of the form
oo
f2)=2P+> P, peN=12..., (1.1)
k=1

which are analytic and p-valent in the punctured disc U* = {z € C: 0 < |z| < 1} = U\{0}. Let
Y8, (A) denote the class of all meromorphic p-valent starlike of order A (0 < A < p) in U.
For functions f € XJ,, given by (1.1), and g € X, defined by

g(z)=z2"P+ Zbkzk_p, p€EN,
k=1
then the Hadamard product (or convolution) of f and g is given by
(fxg) =277+ abpz" P = (g% f)(2).

k=1

For complex parameters a1, ...,aqgand 81, ..., 8s (8 € Zy, ={0,—1,-2,...}; j =1,2,...,5),
we now define the generalized hypergeometric function (Fi(ai,...,aq; B1,. .., Bs; 2) by (see, for
example, [9, p.19])

o
() - - ()i 2F
Fy(aq,...,aq81,...,8s;2) = —
ol o ) kzzo(51)k---(ﬁs)k k!
qg<s+1, q,s € Ng=NU{0}, ze€U,

where (), is the Pochhammer symbol defined, in terms of the Gamma function I, by

) :F(9+u): 1, v=0, 60ecC"=C\{0},
Y T() 60 —1)...0+v—1), veN, feC.
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Corresponding to the function hy (a1, ..., aq; 01, ..., Bs; 2), defined by

hp(Oél,...,Oéq;/Bl,...,ﬁs;Z) :Zﬁqus(alu"'7aq;ﬂl7"‘7/88;z)7

we consider a linear operator
Hy(on,...,0q;61,...,8s) 1 Xp = Xy,

which is defined by the following Hadamard product (or convolution):

Hp(alv" . 704(1;617"' >Bs)f(z) = hp(ah' . 'aaq;ﬁlv" . 7/38;2) * f(Z)

We observe that, for a function f(z) of the form (1.1), we have

Hy(aq,...,aqB1,...,0:)f(z) =277 + ZFWLS (o) agz"?, (1.2)
k=1
where
(Oq)k . (aq)k
Tpos(aq) = . 1.3
pas (1) Bk - (Bs)k k! (1.3)
If, for convenience, we write
Hp,qys[o‘l] = Hp(alv s 7O¢q§ 617 s 758) )
then one can easily verify from the definition (1.2) that (see [5])
2(Hpgsla1]f(2)) = a1Hpgslon + 1)f(2) — (a1 + p)Hp g5 [a1] f(2). (1.4)

The linear operator Hy, 4 [a1] was investigated recently by Liu and Srivastava [5] and Aouf [2].
In particular, for g =2, s =1, a1 > 0, 81 > 0 and g = 1, we obtain the linear operator

Hy(on,1;81) f(2) = £y(aa, B1) f(2),

which was introduced and studied by Liu and Srivastava [4] .
We note that,

1

W*JC(Z): n > —p,

Hyz(np, DS(2) = D7) =

where D"P~! is the differential operator studied by Uralegaddi and Somanatha [10] and Aouf [1].
Making use of the operator H, 4 s[cv1], we now introduce a subclass of the function class
%, as follows:
we say that a function f € ¥, is in the class €, ; s(cv1; A), if it satisfies the following inequality:

Re {al Hp,q7s[a1 + 1]f(2’)
Hp,q,s[al]f(z)
or, in view of (1.4), if it satisfies the following inequality:

o Z(Hp,q,s[al]f(z))/
i { Hp,q,s[al]f(z)

—(a1+p)}<—)\, 0<A<p, peN,

}<—)\, 0<A<p, peN
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2. Main results. In order to establish our main results, we need the following lemma.

1237

Lemma 2.1 [3]. Let w(z) be a non-constan analytic in U with w(0) = 0. If ‘w(z)| attains its

maximum value on the circle |z| =1 < 1 at a point zy, then we have

zow'(20) = Cw(z0),

where ¢ > 1 is a real number.
Theorem 2.1. Let oy > 0 and 0 < X\ < p, then

Qp,%s(al + 1; )\) (@ an,s(al; )\)

Proof. Let f € Q, 4 s(c1 +1; A), then

Hyqslon +1]f(2)

Re{z(Hp’q’s[O” * l]f(z))/} <A zel.

We have to show that implies the inequality

o Z(Hp:qu[al}f(z))/ ) ]
R{ Hp,q,sl0n]f(2) }< A, zel.

Define the function w(z) in U by

Z(Hp,q,S[al]f(Z))/ __p+t (p —2N)w(z)
Hp,q,s[al]f(z) 1—w(z) '

Clearly, w(z) is analytic in U and w(0) = 0. Using the identity (1.4), (2.4) may be written as

Hpgslon +1f(2) _ an = [ +2(p — N]w(z)

Hpgslaa]f(z) 1—w(z)

Differentiating (2.5) logarithmically with respect to z and using (1.4), we obtain

!/

Z(Hp,q,S[al + 1]f(2))

+A=
Hp,q,s[al + 1]f(2:)
1+w(z 22w (2
RN EESTOM 2
L—w(z)  (1—w(2)) (a1 —[oq +2(p— N)]w(z))
We claim that |w(z)| < 1 in U. For otherwise, there exists a point 29 € U such that
max |w(z)| = |w(z0)| = 1.
|21<] ol

2.1)

2.2)

2.3)

2.4)

2.5)

(2.6)

Applying Lemma 2.1 to w(z) at the point zg, we have zow'(z9) = w(zp) where ¢ > 1. So, (2.6)

yields

2(Hpgslor +1]f(20)) _
Re{ Hy gslar + 1] f(20) i )\} N
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— (p— NRed LT W(20) 26w (z0)
- AH{{1—w@®+f1—w@®ﬂar—hr+ﬂp—ﬂh“m»}Z
p—A

> P74 o,
T 2(ar+p— )

which contradicts the inequality (2.2). Hence, w(z)’ < 1in Uand it follows that f € Q, , s(a1; ).
Theorem 2.1 is proved.

Theorem 2.2. Let 6 > 0 and f(z) € ¥, satisfy the following inequality:

H(Hpgolod /) p-A
- { Hpqsloalf(z) } ST o

Then the function Fs,(f) defined by

zeU. 2.7)

Fsp(f)(z) = Z%p /t5+p—1f(t)dt, 6 >0, (2.8)

0

belongs to €, 4 s(o1; N).
Proof. From (2.8), we readily have

2(Hygsl0n)Fsp(£)(2)) = 6Hpgalonlf(2) = (04 p)Hpg ol Fop(£)2). (29)
Using the identity (1.9) and (2.9), condition (2.7) may be written as

Z(an,S[al + 1] Fs,(f)(2 ),

Hp,g,slon + 1]F5,p(f)(z) Hyq,s[a1 + 1]F5,p(f)(z)

Hy g [01] Fop(£)(2)  2(Hpqsla1] Fsp(f)(2))
Hy gsla1]Fsp(f)(2)

+o+p
Re

—o1 —p g <
+d+p

—
<A+ P (2.10)

(0+Ap—A)

We have to prove that Fs ,(f) € Qp q.s(a1; A) implies the inequality

2 (Hy gulcn Fsp(£)(2))
Re{ ol Fon (7)) }<‘A’ VsAsp 2el 1D

Consider the function w(z) in U defined by

Z(Hp7q75[a1]f5,p(f)(z))/ __p+t (p—2N)w(z)
Hp,q,slon]Fsp(f)(2) 1—w(z) ,

Clearly, w(z) is analytic and w(0) = 0. (2.12) may be written as

0<A<p, zeU. (2.12)

Hyqslon + 1) F5p(f)(2) _ a1 — [on +2(p — A)]“’(Z), (2.13)

Hy gs[a]Fsp(f)(2) 1 —w(2)
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Differentiating (2.13) logarithmically with respect to z and using (2.12), we obtain

2(Hp,g,s[on1 + 1]]:6,p(f)(z))/ _
Hy g slar + 1] Fsp(f)(2)

__prp-2u(z) 2p — Nzw'(2) , (2.14)

T-wz) (- w(@)(ar - a1+ 200~ Nw()

Using (2.12)—(2.14) and (2.10), we get

2(Hpgslon + 1] F5,(f)(2)]

Hp,q,s[al + 1}f6,p(f)(2) Hp,q,s[al =+ 1]]:571,(f)(2)
Hpgsl0a]Fsp(£)(2)  2(Hpgsl0n)Fsp(£)(2))
Hy g5 [an] Fop(f)(2)

+d+p
—a1—p+A=

aq

+o+p
z

o 1+ w(2) 220 (2)
=—lp=2) { T—w() (= w() -0 +2p—Nw) } @19

The remaining part of the proof is similar to that of Theorem 2.1.

Theorem 2.2 is proved.

According to Theorem 2.2, we have the following corollary.

Corollary 2.1. If f € Q4 s(a1;A), then the function Fs,(f) defined (2.8) also belongs to
Qp g.s(a1; A).

Theorem 2.3. If f € Q, , s(a1; ) if and only if the function g defined by

z

g(z) = Z%p /talﬂ’lf(t) dt, a1 >0, (2.16)
0
belongs to Uy g.s(a1 + 15 \).
Proof. From (2.16), we have
2 (Fop(£)(2)) = a1 (2) = (1 +p) Fsp(f)(2)- (2.17)
Using identity (1.9) and (2.17), hence
Hpqslon]f(2) = Hpg,s [01] Fsp(f)(2) (2.18)

and the result follows.

To prove Theorem 2.4, we need the following lemmas.

Lemma 2.2 [8]. The function (1 — z)7 = exp (ylog(1 — 2)), v € C* = C\{0}, is univalent in
U if and only if vy is either in the closed disk |y — 1| < 1 or in the closed disc |y + 1] < 1.

Lemma 2.3 [7]. Let q(2) be univalent in U and let Q(w) and ¢(w) be analytic in a domain D
containing q(U ), with ¢(w) # 0 when w € q(U). Set Q(z) = z¢'(2)¢(q(2)), h(z) = 0(q(2)) + Q(z)
and suppose that

(1) Q(z) is starlike (univalent) in U,

) Re{g/((j))} >0 (z € V).
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If g(2) is analytic in U, with p(0) = ¢q(0), p(U) C D, and

0(9(2)) + 29’ (2)0(g(2)) < 0(q(2)) + 2¢'(z)¢(a(2)) = h(2),

then g(z) < q(2), and q(z) is the best dominant of (2.19).
Theorem 2.4. Let f € Q4 s(a1; ) and let v € C* and satisfy either

12v(p—A) —1| <1 or [2v(p—A) +1| < 1.

Then
(szpvq,S[al]f(z))fy <(1- Z)Qv(pﬂ) =q(2),

and q(z) is the best dominant.
Proof. Set

g(z) = (szp,qﬁ[al]f(z))W, zeU,

(2.19)

(2.20)

(2.21)

(2.22)

then g(z) is analytic in U with g(0) = 1. Differentiating (2.22) logarithmically with respect to z, we

obtain

2g(2)  [2(Hpgsloa)f(2))
0@ T Hualf) P

Since f € , 4.s(a1; A), this is equivalent to

Z(Hp,q,S[aﬂf(Z))/ P +(p—2N)z
Hy gsla1] f(2) 1—2 ’

from (2.23), (2.24) can be rewritten as

zq'(2) z((1— 2)27(;;7)\))’
19z P T B

On the other hand, if we take

1

g(z) = (1 - 2)27(1)—)\)’ 0(z) = —p, d(w) = %

(2.23)

(2.24)

(2.25)

in Lemma 2.3, then ¢(z) is univalent by the condition (2.20) and Lemma 2.2. It is easy to see that

q(2), O(w), and ¢(w) satisfy the conditions of Lemma 2,3. Since

Qz) = 2¢ (2)(a(2)) = —2(?:2)2
is univalent starlike in U and
h(z) = Bla(2) + Qz) = L HPZ2VE

from (2.25) and Lemma 2.3, then
9(z) < (1= 270N = g(z)

and the function (1 — 2)27®=) is the best dominant.
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Corollary 2.2. Let f € Qp qs(a1;N). Then

Re { (2P Hpqs[c1]f(2))"} > 2(=Y L ey,

2(
Proof. From Theorem 2.4, we have

where v is a real number and ~ € [—p%)\), 0). The result is sharp.

Re { (P Hpg.sl01]f(2))7} = Re{(1 - w(z))”(l"”} . zel, (2.26)
where w(z) is analytic in U, w(0) = 0, and |w(z)| < 1 for z € U. In view of
Re (%) > (Ret)’,  Re(t) >0, 0<b<l1,

(2.29) yields

—w

N 1 —2v(p—A) ()
Re{(szpyqu[al]f(z)) } > < Re (1(2)> > 24MPmA 0 2 e U,
for —1 < 2y(p — A) < 0. To see that the bound 227~ cannot be increased, we consider the
function f(z) which satisfies
PHyslan]f(z) =1 —2)2PN  0<A<p, zel.

We easily have f € Q,, s(a1;\) and
Re{(zpﬂp,q,s[al] F(2))} =22 as Re(z) — —1.

Corollary 2.2 is proved.

3. Convolution conditions. We give some necessary and sufficient condition in terms of
convolution operator for meromorphic functions to be in the classes S, (A) and Q4 s(a1; ).

Lemma 3.1. The function f(z) € %, belongs to the class ¥.S;; (A\) (0 < X\ < p) if and only if

1—e @ +2(p—N)
<1 - 2(p—A) Z)
2P(1 — z)?

2P| f(z) % #0, 0<0<2m, zel.

Proof. A function f(z) € ¥S; (A) if and only if

2f'(2) , p+(—2))e”
e =+ T , 0<f<2m, zeUl.
which is equivalent to
P ! (1 _ e”) 2 (2) + [p+ (p — 2)\) eiﬂ f(z)] £0, O0<@<2r, zel. 3.1)

Since
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(p+1)z—p>_

2P(1 — 2)?

1

=10 Gy aE) = 1)

Therefor, we may write (3.1) as

2P {(1 - ew) 2f'(2) + [p + (p—2X) ew} f(z)} =

Lemma 3.1 is proved.
Theorem 3.1. A necessary and sufficient condition for the function f(z) defined by (1.1) to be
in the class Q0 ¢ s(a1; \) is that

(1—e®k—-2(p—N) %
1—; TSy [pgs (o), agz" #0 (0<0<2mzel),

where I'), , s (1) is given by (1.8).
Proof. From Lemma 3.1, we find that f € €, , s(«1; A) if and only if

—e 4 2(p -\ Z>
£0

1
2P| Hyg,s[on]f(2) * ( zpil(p—_z));)

) 0<f<2m, 0<A<p, =ze€Ul.
(3.2)
From (1.7), the left hand side of (3.5) may be written as

(1 1 —e—i9+2(p—A)Z)
2 | Hygalen] ) T -

Ipgs (1) apz” #0.

L (e k200 -
_1_2 2(p — )

k=1

Theorem 3.1 is proved.

Remarks. 3.1. Putting ¢ = 2, s = a3 = 1 = 1 and oy = n + p(n > —p) in Theorem 2.1, we
obtain the results obtained by Aouf [1] (Theorem 1).

32. Puttingg=2,s=as=p1=1,0=c—p+1c>p—1)and oy =n+p(n > —p) in
Theorem 2, we obtain the results obtained by Aouf [1] (Theorem 2).
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3.3. Putting ¢ = 2, s = ay = 1 = 1 and a1 = n+ p(n > —p) in Theorem 3, we improve the
result obtained by Aouf [1] (Theorem 3).

34. Taking ¢ = 2, s = ag = 1 and 1,81 > 0 in Theorems 2.1-2.4 Corollaries 2.1 and
2.2, respectively, we obtain the results obtained by Liu and Owa [ 6] [Theorems 2.2, 2.3, 2.5, 2.9,
Corollaries 2.4 and 2.10].

3.5. Taking e = —z in Lemma 3.1, we obtain the results obtained by Liu and Owa [6]
(Lemma 3.1).
3.6. Taking ¢ =2, s = as = 1, a1, B1 > 0 and e = —z in Theorem 3.1, we obtain the result

obtained by Liu and Owa [6] (Theorem 3.2).

1. Aouf M. K. New criteria for multivalent meromorphic starlike functions of order alpha // Proc. Jap. Acad. A. - 1993. -
69. — P. 66-70.

2. Aouf M. K. Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric
function // Comput. Math. and Appl. — 2008. — 55, Ne 3. — P. 494 —509.

3. Jack I. S. Functions starlike and convex of order « / J. London Math. Soc. — 1971. — 2, Ne 3. — P. 469-474.
Liu J.-L., Srivastava H. M. A linear operator and associated families of meromorphically multivalent functions // J.
Math. Anal. and Appl. — 2000. — 259. — P. 566 -581.

5. Liu J.-L., Srivastava H. M. Classes of meromorphically multivalent functions associated with the generalized hyper-
geometric function // Math. Comput. Modelling. — 2004. — 39. — P. 21 -34.

6. LiuJ.-L., Owa S. On a classes of meromorphic p-valent starlike functions involving certain linear operators // Int. J.
Math. and Math. Sci. — 2002. — 32. — P. 271 -280.

7. Miller S. S., Mocanu P. T. On some classes of first-order differential subordinations // Mich. Math. J. — 1985. — 32,
Ne2. - P 185-195.

8. Robertson M. S. Certain classes of starlike functions // Mich. Math. J. — 1985. — 32, Ne 2. — P. 135-140.

9. Srivastava H. M., Karisson P. W. Multiple Gaussian hypergeometric Series. — New York etc.: Halsted Press, Ellis
Horwood Limited, Chichester, John Wiley and Sons, 1985.

10. Uralegaddi B. A., Somanatha C. Certain classes of meromorphic multivalent functions / Tamkang J. Math. — 1992. —

23. - P. 223-231.

Received 10.09.12,
after revision — 23.12.13

ISSN 1027-3190.  Vkp. mam. scypn., 2014, m. 66, Ne 9



