UDC 517.9

T. M. Seoudy (Mansoura Univ., Egypt), **M. K. Aouf** (Fayoum. Univ., Egypt)

A CLASS OF p-VALENT MEROMORPHIC FUNCTIONS DEFINED BY THE LUI – SRIVASTAVA OPERATOR

ПРО КЛАС p-ВАЛЕНТНИХ МЕРОМОРФНИХ ФУНКЦІЙ, ЩО ВИЗНАЧЕНІ ОПЕРАТОРОМ ЛУІ – ШРІВАСТАВИ

In this paper, we introduce a subclass of p-valent meromorphic functions involving the Lui-Srivastava operator and investigate various properties of this subclass. We also indicate the relationships between various results presented in the paper with the results obtained in earlier works.

Введено підклас *p*-валентних мероморфних функцій, що визначаються оператором Луі – Шрівастави та вивчено різнманітні властивості цього підкласу. Ми також вказуємо співвідношення між різнманітними результатами, що отримані в роботі та результатами, що отримані раніше.

1. Introduction. Let Σ_p denote the class of all meromorphic functions f of the form

$$f(z) = z^{-p} + \sum_{k=1}^{\infty} a_k z^{k-p}, \quad p \in \mathbb{N} = 1, 2, \dots,$$
 (1.1)

which are analytic and p-valent in the punctured disc $U^* = \{z \in \mathbb{C} : 0 < |z| < 1\} = U \setminus \{0\}$. Let $\Sigma S_p^*(\lambda)$ denote the class of all meromorphic p-valent starlike of order λ $(0 \le \lambda < p)$ in U.

For functions $f \in \Sigma_p$, given by (1.1), and $g \in \Sigma_p$ defined by

$$g(z) = z^{-p} + \sum_{k=1}^{\infty} b_k z^{k-p}, \quad p \in \mathbb{N},$$

then the Hadamard product (or convolution) of f and g is given by

$$(f * g) = z^{-p} + \sum_{k=1}^{\infty} a_k b_k z^{k-p} = (g * f)(z).$$

For complex parameters $\alpha_1, \ldots, \alpha_q$ and β_1, \ldots, β_s ($\beta_j \notin \mathbb{Z}_0^- = \{0, -1, -2, \ldots\}; j = 1, 2, \ldots, s$), we now define the generalized hypergeometric function ${}_qF_s(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)$ by (see, for example, [9, p.19])

$$_{q}F_{s}(\alpha_{1},\ldots,\alpha_{q};\beta_{1},\ldots,\beta_{s};z)=\sum_{k=0}^{\infty}\frac{(\alpha_{1})_{k}\ldots(\alpha_{q})_{k}}{(\beta_{1})_{k}\ldots(\beta_{s})_{k}}\frac{z^{k}}{k!},$$

$$q < s + 1,$$
 $q, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, z \in U,$

where $(\theta)_{\nu}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ , by

$$(\theta)_{\nu} = \frac{\Gamma(\theta + \nu)}{\Gamma(\theta)} = \begin{cases} 1, & \nu = 0, & \theta \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}, \\ \theta(\theta - 1) \dots (\theta + \nu - 1), & \nu \in \mathbb{N}, & \theta \in \mathbb{C}. \end{cases}$$

Corresponding to the function $h_p(\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z)$, defined by

$$h_p(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z)=z^{-p}{}_qF_s(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z),$$

we consider a linear operator

$$H_p(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s):\Sigma_p\to\Sigma_p,$$

which is defined by the following Hadamard product (or convolution):

$$H_p(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s)f(z)=h_p(\alpha_1,\ldots,\alpha_q;\beta_1,\ldots,\beta_s;z)*f(z).$$

We observe that, for a function f(z) of the form (1.1), we have

$$H_p(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s) f(z) = z^{-p} + \sum_{k=1}^{\infty} \Gamma_{p,q,s} (\alpha_1) \ a_k z^{k-p}, \tag{1.2}$$

where

$$\Gamma_{p,q,s}(\alpha_1) = \frac{(\alpha_1)_k \dots (\alpha_q)_k}{(\beta_1)_k \dots (\beta_s)_k \ k!}.$$
(1.3)

If, for convenience, we write

$$H_{p,q,s}[\alpha_1] = H_p(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s),$$

then one can easily verify from the definition (1.2) that (see [5])

$$z(H_{p,q,s}[\alpha_1]f(z))' = \alpha_1 H_{p,q,s}[\alpha_1 + 1]f(z) - (\alpha_1 + p)H_{p,q,s}[\alpha_1]f(z). \tag{1.4}$$

The linear operator $H_{p,q,s}[\alpha_1]$ was investigated recently by Liu and Srivastava [5] and Aouf [2]. In particular, for q=2, s=1, $\alpha_1>0$, $\beta_1>0$ and $\alpha_2=1$, we obtain the linear operator

$$H_n(\alpha_1, 1; \beta_1) f(z) = \ell_n(\alpha_1, \beta_1) f(z).$$

which was introduced and studied by Liu and Srivastava [4].

We note that,

$$H_{p,2,1}(n+p,1;1)f(z) = D^{n+p-1}f(z) = \frac{1}{z^p(1-z)^{n+p}} * f(z), \quad n > -p,$$

where D^{n+p-1} is the differential operator studied by Uralegaddi and Somanatha [10] and Aouf [1].

Making use of the operator $H_{p,q,s}[\alpha_1]$, we now introduce a subclass of the function class Σ_p as follows:

we say that a function $f \in \Sigma_p$ is in the class $\Omega_{p,q,s}(\alpha_1; \lambda)$, if it satisfies the following inequality:

$$\operatorname{Re}\left\{\alpha_1 \frac{H_{p,q,s}[\alpha_1+1]f(z)}{H_{p,q,s}[\alpha_1]f(z)} - (\alpha_1+p)\right\} < -\lambda, \qquad 0 \le \lambda < p, \quad p \in \mathbb{N},$$

or, in view of (1.4), if it satisfies the following inequality:

$$\operatorname{Re}\left\{\frac{z(H_{p,q,s}[\alpha_1]f(z))'}{H_{p,q,s}[\alpha_1]f(z)}\right\} < -\lambda, \qquad 0 \le \lambda < p, \quad p \in \mathbb{N}.$$

2. Main results. In order to establish our main results, we need the following lemma.

Lemma 2.1 [3]. Let w(z) be a non-constant analytic in U with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point z_0 , then we have

$$z_0 w'(z_0) = \zeta w(z_0), \tag{2.1}$$

where $\zeta \geq 1$ is a real number.

Theorem 2.1. Let $\alpha_1 \geq 0$ and $0 \leq \lambda < p$, then

$$\Omega_{p,q,s}(\alpha_1+1;\lambda)\subset\Omega_{p,q,s}(\alpha_1;\lambda).$$

Proof. Let $f \in \Omega_{p,q,s}(\alpha_1 + 1; \lambda)$, then

$$\operatorname{Re}\left\{\frac{z(H_{p,q,s}[\alpha_1+1]f(z))'}{H_{p,q,s}[\alpha_1+1]f(z)}\right\} < -\lambda, \quad z \in U.$$
(2.2)

We have to show that implies the inequality

$$\operatorname{Re}\left\{\frac{z(H_{p,q,s}[\alpha_1]f(z))'}{H_{p,q,s}[\alpha_1]f(z)}\right\} < -\lambda, \quad z \in U.$$
(2.3)

Define the function w(z) in U by

$$\frac{z(H_{p,q,s}[\alpha_1]f(z))'}{H_{p,q,s}[\alpha_1]f(z)} = -\frac{p + (p - 2\lambda)w(z)}{1 - w(z)}.$$
(2.4)

Clearly, w(z) is analytic in U and w(0) = 0. Using the identity (1.4), (2.4) may be written as

$$\alpha_1 \frac{H_{p,q,s}[\alpha_1 + 1]f(z)}{H_{p,q,s}[\alpha_1]f(z)} = \frac{\alpha_1 - [\alpha_1 + 2(p - \lambda)]w(z)}{1 - w(z)}.$$
(2.5)

Differentiating (2.5) logarithmically with respect to z and using (1.4), we obtain

$$\frac{z(H_{p,q,s}[\alpha_1+1]f(z))'}{H_{p,q,s}[\alpha_1+1]f(z)} + \lambda =$$

$$= -(p-\lambda) \left\{ \frac{1+w(z)}{1-w(z)} + \frac{2zw'(z)}{(1-w(z))(\alpha_1 - [\alpha_1 + 2(p-\lambda)]w(z))} \right\}.$$
 (2.6)

We claim that |w(z)| < 1 in U. For otherwise, there exists a point $z_0 \in U$ such that

$$\max_{|z| < |z_0|} |w(z)| = |w(z_0)| = 1.$$

Applying Lemma 2.1 to w(z) at the point z_0 , we have $z_0w'(z_0)=\zeta w(z_0)$ where $\zeta\geq 1$. So, (2.6) yields

$$\operatorname{Re}\left\{\frac{z(H_{p,q,s}[\alpha_1+1]f(z_0))'}{H_{p,q,s}[\alpha_1+1]f(z_0)} + \lambda\right\} =$$

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 9

$$= -(p - \lambda) \operatorname{Re} \left\{ \frac{1 + w(z_0)}{1 - w(z_0)} + \frac{2\zeta w(z_0)}{\left(1 - w(z_0)\right) \left(\alpha_1 - \left[\alpha_1 + 2(p - \lambda)\right] w(z_0)\right)} \right\} \ge \frac{p - \lambda}{2(\alpha_1 + p - \lambda)} > 0,$$

which contradicts the inequality (2.2). Hence, |w(z)| < 1 in U and it follows that $f \in \Omega_{p,q,s}(\alpha_1; \lambda)$. Theorem 2.1 is proved.

Theorem 2.2. Let $\delta > 0$ and $f(z) \in \Sigma_p$ satisfy the following inequality:

$$\operatorname{Re}\left\{\frac{z(H_{p,q,s}[\alpha_1]f(z))'}{H_{p,q,s}[\alpha_1]f(z)}\right\} < -\lambda + \frac{p-\lambda}{2(\delta+\lambda p-\lambda)}, \quad z \in U.$$
(2.7)

Then the function $\mathcal{F}_{\delta,p}(f)$ defined by

$$\mathcal{F}_{\delta,p}(f)(z) = \frac{\delta}{z^{\delta+p}} \int_{0}^{z} t^{\delta+p-1} f(t) dt, \quad \delta > 0,$$
(2.8)

belongs to $\Omega_{p,q,s}(\alpha_1; \lambda)$.

Proof. From (2.8), we readily have

$$z\Big(H_{p,q,s}[\alpha_1]\mathcal{F}_{\delta,p}(f)(z)\Big)' = \delta H_{p,q,s}[\alpha_1]f(z) - (\delta + p)H_{p,q,s}[\alpha_1]\mathcal{F}_{\delta,p}(f)(z). \tag{2.9}$$

Using the identity (1.9) and (2.9), condition (2.7) may be written as

$$\operatorname{Re}\left\{\alpha_{1}\frac{H_{p,q,s}[\alpha_{1}+1]\mathcal{F}_{\delta,p}(f)(z)}{H_{p,q,s}[\alpha_{1}]\mathcal{F}_{\delta,p}(f)(z)} \frac{\frac{z(H_{p,q,s}[\alpha_{1}+1]\mathcal{F}_{\delta,p}(f)(z))'}{H_{p,q,s}[\alpha_{1}+1]\mathcal{F}_{\delta,p}(f)(z)} + \delta + p}{\frac{z(H_{p,q,s}[\alpha_{1}]\mathcal{F}_{\delta,p}(f)(z))'}{H_{p,q,s}[\alpha_{1}]\mathcal{F}_{\delta,p}(f)(z)} + \delta + p} - \alpha_{1} - p}\right\}$$

$$< -\lambda + \frac{p - \lambda}{2(\delta + \lambda p - \lambda)}. (2.10)$$

We have to prove that $\mathcal{F}_{\delta,p}(f) \in \Omega_{p,q,s}(\alpha_1;\lambda)$ implies the inequality

$$\operatorname{Re}\left\{\frac{z\left(H_{p,q,s}[\alpha_1]\mathcal{F}_{\delta,p}(f)(z)\right)'}{H_{p,q,s}[\alpha_1]\mathcal{F}_{\delta,p}(f)(z)}\right\} < -\lambda, \qquad 0 \le \lambda < p, \quad z \in U.$$
(2.11)

Consider the function w(z) in U defined by

$$\frac{z(H_{p,q,s}[\alpha_1]\mathcal{F}_{\delta,p}(f)(z))'}{H_{p,q,s}[\alpha_1]\mathcal{F}_{\delta,p}(f)(z)} = -\frac{p + (p - 2\lambda)w(z)}{1 - w(z)}, \qquad 0 \le \lambda < p, \quad z \in U.$$
 (2.12)

Clearly, w(z) is analytic and w(0) = 0. (2.12) may be written as

$$\alpha_1 \frac{H_{p,q,s}[\alpha_1 + 1] \mathcal{F}_{\delta,p}(f)(z)}{H_{p,q,s}[\alpha_1] \mathcal{F}_{\delta,p}(f)(z)} = \frac{\alpha_1 - \left\lfloor \alpha_1 + 2(p - \lambda) \right\rfloor w(z)}{1 - w(z)}.$$
 (2.13)

Differentiating (2.13) logarithmically with respect to z and using (2.12), we obtain

$$\frac{z(H_{p,q,s}[\alpha_1+1]\mathcal{F}_{\delta,p}(f)(z))'}{H_{p,q,s}[\alpha_1+1]\mathcal{F}_{\delta,p}(f)(z)} =$$

$$= -\frac{p+(p-2\lambda)w(z)}{1-w(z)} - \frac{2(p-\lambda)zw'(z)}{(1-w(z))(\alpha_1-[\alpha_1+2(p-\lambda)]w(z))}.$$
(2.14)

Using (2.12)-(2.14) and (2.10), we get

$$\alpha_{1} \frac{H_{p,q,s}[\alpha_{1}+1]\mathcal{F}_{\delta,p}(f)(z)}{H_{p,q,s}[\alpha_{1}]\mathcal{F}_{\delta,p}(f)(z)} \frac{\frac{z(H_{p,q,s}[\alpha_{1}+1]\mathcal{F}_{\delta,p}(f)(z))'}{H_{p,q,s}[\alpha_{1}+1]\mathcal{F}_{\delta,p}(f)(z)} + \delta + p}{\frac{z(H_{p,q,s}[\alpha_{1}]\mathcal{F}_{\delta,p}(f)(z))'}{H_{p,q,s}[\alpha_{1}]\mathcal{F}_{\delta,p}(f)(z)} + \delta + p} - \alpha_{1} - p + \lambda = 0$$

$$= -(p - \lambda) \left\{ \frac{1 + w(z)}{1 - w(z)} + \frac{2zw'(z)}{\left(1 - w(z)\right)\left(\delta - [\delta + 2(p - \lambda)]w(z)\right)} \right\}. \tag{2.15}$$

The remaining part of the proof is similar to that of Theorem 2.1.

Theorem 2.2 is proved.

According to Theorem 2.2, we have the following corollary.

Corollary 2.1. If $f \in \Omega_{p,q,s}(\alpha_1; \lambda)$, then the function $\mathcal{F}_{\delta,p}(f)$ defined (2.8) also belongs to $\Omega_{p,q,s}(\alpha_1; \lambda)$.

Theorem 2.3. If $f \in \Omega_{p,q,s}(\alpha_1; \lambda)$ if and only if the function g defined by

$$g(z) = \frac{\alpha_1}{z^{\alpha_1 + p}} \int_0^z t^{\alpha_1 + p - 1} f(t) dt, \quad \alpha_1 > 0,$$
(2.16)

belongs to $\Omega_{p,q,s}(\alpha_1+1;\lambda)$.

Proof. From (2.16), we have

$$z\left(\mathcal{F}_{\delta,p}(f)(z)\right)' = \alpha_1 f(z) - (\alpha_1 + p)\,\mathcal{F}_{\delta,p}(f)(z). \tag{2.17}$$

Using identity (1.9) and (2.17), hence

$$H_{p,q,s}[\alpha_1]f(z) = H_{p,q,s}[\alpha_1]\mathcal{F}_{\delta,p}(f)(z)$$
(2.18)

and the result follows.

To prove Theorem 2.4, we need the following lemmas.

Lemma 2.2 [8]. The function $(1-z)^{\gamma} = \exp(\gamma \log(1-z))$, $\gamma \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$, is univalent in U if and only if γ is either in the closed disk $|\gamma - 1| \le 1$ or in the closed disc $|\gamma + 1| \le 1$.

Lemma 2.3 [7]. Let q(z) be univalent in U and let Q(w) and $\phi(w)$ be analytic in a domain D containing q(U), with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$ and suppose that

(1) Q(z) is starlike (univalent) in U,

(2) Re
$$\left\{ \frac{zh'(z)}{Q(z)} \right\} > 0 \ (z \in U).$$

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 9

If g(z) is analytic in U, with p(0) = q(0), $p(U) \subset D$, and

$$\theta(g(z)) + zg'(z)\phi(g(z)) \prec \theta(g(z)) + zg'(z)\phi(g(z)) = h(z), \tag{2.19}$$

then $g(z) \prec q(z)$, and q(z) is the best dominant of (2.19).

Theorem 2.4. Let $f \in \Omega_{p,q,s}(\alpha_1; \lambda)$ and let $\gamma \in \mathbb{C}^*$ and satisfy either

$$|2\gamma(p-\lambda)-1| \le 1$$
 or $|2\gamma(p-\lambda)+1| \le 1$. (2.20)

Then

$$\left(z^{p}H_{p,q,s}[\alpha_{1}]f(z)\right)^{\gamma} \prec (1-z)^{2\gamma(p-\lambda)} = q(z),\tag{2.21}$$

and q(z) is the best dominant.

Proof. Set

$$g(z) = \left(z^p H_{p,q,s}[\alpha_1] f(z)\right)^{\gamma}, \quad z \in U, \tag{2.22}$$

then g(z) is analytic in U with g(0)=1. Differentiating (2.22) logarithmically with respect to z, we obtain

$$\frac{zg'(z)}{g(z)} = \gamma \left[\frac{z(H_{p,q,s}[\alpha_1]f(z))'}{H_{p,q,s}[\alpha_1]f(z)} + p \right]. \tag{2.23}$$

Since $f \in \Omega_{p,q,s}(\alpha_1; \lambda)$, this is equivalent to

$$\frac{z(H_{p,q,s}[\alpha_1]f(z))'}{H_{p,q,s}[\alpha_1]f(z)} \prec -\frac{p+(p-2\lambda)z}{1-z},\tag{2.24}$$

from (2.23), (2.24) can be rewritten as

$$-p + \frac{zg'(z)}{\gamma g(z)} \prec -p + \frac{z\left((1-z)^{2\gamma(p-\lambda)}\right)'}{(1-z)^{2\gamma(p-\lambda)}}.$$
 (2.25)

On the other hand, if we take

$$q(z) = (1-z)^{2\gamma(p-\lambda)}, \qquad \theta(z) = -p, \qquad \phi(w) = \frac{1}{\gamma w}$$

in Lemma 2.3, then q(z) is univalent by the condition (2.20) and Lemma 2.2. It is easy to see that q(z), $\theta(w)$, and $\phi(w)$ satisfy the conditions of Lemma 2,3. Since

$$Q(z) = zq'(z)\phi(q(z)) = -\frac{2(p-\lambda)z}{1-z}$$

is univalent starlike in U and

$$h(z) = \theta(q(z)) + Q(z) = -\frac{p + (p - 2\lambda)z}{1 - z},$$

from (2.25) and Lemma 2.3, then

$$g(z) \prec (1-z)^{2\gamma(p-\lambda)} = q(z)$$

and the function $(1-z)^{2\gamma(p-\lambda)}$ is the best dominant.

Corollary 2.2. Let $f \in \Omega_{p,q,s}(\alpha_1; \lambda)$. Then

Re
$$\{(z^p H_{p,q,s}[\alpha_1] f(z))^{\gamma}\}$$
 > $2^{2\gamma(p-\lambda)}$, $z \in U$,

where γ is a real number and $\gamma \in \left[-\frac{1}{2(p-\lambda)}, 0\right)$. The result is sharp.

Proof. From Theorem 2.4, we have

$$\operatorname{Re}\left\{\left(z^{p}H_{p,q,s}[\alpha_{1}]f(z)\right)^{\gamma}\right\} = \operatorname{Re}\left\{\left(1 - w(z)\right)^{2\gamma(p-\lambda)}\right\}, \quad z \in U,$$
(2.26)

where w(z) is analytic in U, w(0) = 0, and |w(z)| < 1 for $z \in U$. In view of

$$\operatorname{Re}(t^b) \ge (\operatorname{Re} t)^b, \qquad \operatorname{Re}(t) > 0, \quad 0 < b \le 1,$$

(2.29) yields

$$\operatorname{Re}\left\{\left(z^{p}H_{p,q,s}[\alpha_{1}]f(z)\right)^{\gamma}\right\} \geq \left\{\operatorname{Re}\left(\frac{1}{1-w(z)}\right)^{-2\gamma(p-\lambda)}\right\} > 2^{2\gamma(p-\lambda)}, \quad z \in U,$$

for $-1 \le 2\gamma(p-\lambda) < 0$. To see that the bound $2^{2\gamma(p-\lambda)}$ cannot be increased, we consider the function f(z) which satisfies

$$z^{p}H_{p,q,s}[\alpha_{1}]f(z) = (1-z)^{2(p-\lambda)}, \quad 0 \le \lambda < p, \quad z \in U.$$

We easily have $f \in \Omega_{p,q,s}(\alpha_1; \lambda)$ and

$$\operatorname{Re}\left\{\left(z^{p}H_{p,q,s}[\alpha_{1}]f(z)\right)^{\gamma}\right\} \to 2^{2\gamma(p-\lambda)} \quad \text{as} \quad \operatorname{Re}(z) \to -1.$$

Corollary 2.2 is proved.

3. Convolution conditions. We give some necessary and sufficient condition in terms of convolution operator for meromorphic functions to be in the classes $\mathcal{S}_p^*(\lambda)$ and $\Omega_{p,q,s}(\alpha_1;\lambda)$.

Lemma 3.1. The function $f(z) \in \Sigma_p$ belongs to the class $\Sigma S_p^*(\lambda)$ $(0 \le \lambda < p)$ if and only if

$$z^{p} \left[f(z) * \frac{\left(1 - \frac{1 - e^{-i\theta} + 2(p - \lambda)}{2(p - \lambda)} z \right)}{z^{p} (1 - z)^{2}} \right] \neq 0, \quad 0 < \theta < 2\pi, \quad z \in U.$$

Proof. A function $f(z) \in \Sigma S_p^*(\lambda)$ if and only if

$$\frac{zf'(z)}{f(z)} \neq -\frac{p + (p - 2\lambda)e^{i\theta}}{1 - e^{i\theta}}, \quad 0 < \theta < 2\pi, \quad z \in U.$$

which is equivalent to

$$z^{p} \left[\left(1 - e^{i\theta} \right) z f'(z) + \left[p + \left(p - 2\lambda \right) e^{i\theta} \right] f(z) \right] \neq 0, \qquad 0 < \theta < 2\pi, \quad z \in U.$$
 (3.1)

Since

$$f(z) = f(z) * \frac{1}{z^p(1-z)}$$
 and $zf'(z) = f(z) * \left(\frac{(p+1)z-p}{z^p(1-z)^2}\right)$.

Therefor, we may write (3.1) as

$$z^{p} \left[\left(1 - e^{i\theta} \right) z f'(z) + \left[p + (p - 2\lambda) e^{i\theta} \right] f(z) \right] =$$

$$= z^{p} \left\{ f(z) * \left[\frac{\left(1 - e^{i\theta} \right)}{z^{p} (1 - z)^{2}} + \frac{\left[p + (p - 2\lambda) e^{i\theta} \right]}{z^{p} (1 - z)} \right] \right\} =$$

$$= 2(p - \lambda) e^{i\theta} z^{p} \left[f(z) * \frac{\left(1 - \frac{1 - e^{-i\theta} + 2(p - \lambda)}{2(p - \lambda)} z \right)}{z^{p} (1 - z)^{2}} \right] \neq 0.$$

Lemma 3.1 is proved.

Theorem 3.1. A necessary and sufficient condition for the function f(z) defined by (1.1) to be in the class $\Omega_{p,q,s}(\alpha_1;\lambda)$ is that

$$1 - \sum_{k=1}^{\infty} \frac{\left(1 - e^{-i\theta}\right)k - 2\left(p - \lambda\right)}{2(p - \lambda)} \Gamma_{p,q,s}\left(\alpha_1\right), \qquad a_k z^k \neq 0 \quad \left(0 < \theta < 2\pi; z \in U\right),$$

where $\Gamma_{p,q,s}(\alpha_1)$ is given by (1.8).

Proof. From Lemma 3.1, we find that $f \in \Omega_{p,q,s}(\alpha_1; \lambda)$ if and only if

$$z^{p} \left[H_{p,q,s}[\alpha_{1}]f(z) * \frac{\left(1 - \frac{1 - e^{-i\theta} + 2(p - \lambda)}{2(p - \lambda)}z\right)}{z^{p}(1 - z)^{2}} \right] \neq 0, \qquad 0 < \theta < 2\pi, \quad 0 \le \lambda < p, \quad z \in U.$$
(3.2)

From (1.7), the left hand side of (3.5) may be written as

$$z^{p} \left[H_{p,q,s}[\alpha_{1}]f(z) * \frac{\left(1 - \frac{1 - e^{-i\theta} + 2(p - \lambda)}{2(p - \lambda)}z\right)}{z^{p}(1 - z)^{2}} \right] =$$

$$=1-\sum_{k=1}^{\infty}\frac{\left(1-e^{-i\theta}\right)k-2(p-\lambda)}{2(p-\lambda)}\Gamma_{p,q,s}\left(\alpha_{1}\right)\ a_{k}z^{k}\neq0.$$

Theorem 3.1 is proved.

Remarks. 3.1. Putting q=2, $s=\alpha_2=\beta_1=1$ and $\alpha_1=n+p(n>-p)$ in Theorem 2.1, we obtain the results obtained by Aouf [1] (Theorem 1).

3.2. Putting q=2, $s=\alpha_2=\beta_1=1$, $\delta=c-p+1(c>p-1)$ and $\alpha_1=n+p(n>-p)$ in Theorem 2, we obtain the results obtained by Aouf [1] (Theorem 2).

- 3.3. Putting q=2, $s=\alpha_2=\beta_1=1$ and $\alpha_1=n+p(n>-p)$ in Theorem 3, we improve the result obtained by Aouf [1] (Theorem 3).
- 3.4. Taking q=2, $s=\alpha_2=1$ and $\alpha_1,\beta_1>0$ in Theorems 2.1–2.4 Corollaries 2.1 and 2.2, respectively, we obtain the results obtained by Liu and Owa [6] [Theorems 2.2, 2.3, 2.5, 2.9, Corollaries 2.4 and 2.10].
- 3.5. Taking $e^{-i\theta}=-x$ in Lemma 3.1, we obtain the results obtained by Liu and Owa [6] (Lemma 3.1).
- 3.6. Taking q=2, $s=\alpha_2=1$, α_1 , $\beta_1>0$ and $e^{-i\theta}=-x$ in Theorem 3.1, we obtain the result obtained by Liu and Owa [6] (Theorem 3.2).
- 1. Aouf M. K. New criteria for multivalent meromorphic starlike functions of order alpha // Proc. Jap. Acad. A. 1993. 69. P. 66 70.
- 2. Aouf M. K. Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function // Comput. Math. and Appl. 2008. 55, № 3. P. 494 509.
- 3. Jack I. S. Functions starlike and convex of order α // J. London Math. Soc. 1971. 2, № 3. P. 469 474.
- 4. Liu J.-L., Srivastava H. M. A linear operator and associated families of meromorphically multivalent functions // J. Math. Anal. and Appl. 2000. 259. P. 566–581.
- 5. *Liu J.-L.*, *Srivastava H. M.* Classes of meromorphically multivalent functions associated with the generalized hypergeometric function // Math. Comput. Modelling. 2004. 39. P. 21–34.
- 6. *Liu J.-L.*, *Owa S*. On a classes of meromorphic *p*-valent starlike functions involving certain linear operators // Int. J. Math. and Math. Sci. 2002. 32. P. 271 280.
- 7. *Miller S. S., Mocanu P. T.* On some classes of first-order differential subordinations // Mich. Math. J. 1985. 32, № 2. P. 185–195.
- 8. Robertson M. S. Certain classes of starlike functions // Mich. Math. J. − 1985. 32, № 2. P. 135 140.
- 9. Srivastava H. M., Karlsson P. W. Multiple Gaussian hypergeometric Series. New York etc.: Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, 1985.
- Uralegaddi B. A., Somanatha C. Certain classes of meromorphic multivalent functions // Tamkang J. Math. 1992. –
 23. P. 223 231.

Received 10.09.12, after revision -23.12.13