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A STUDY OF FUNCTIONAL PROPERTIES AND MULTIPLIERS SPACES
OF GROUP L (p, q) (G)-ALGEBRAS

BUBUEHHS ®YHKIIOHAJIbHUX BJACTUBOCTEN TA IPOCTOPIB
MHOJKHHUKIB 1151 TPYII L (p, q) (G)-AJTEBP

Let G be a locally compact Abelian group (noncompact and nondiscrete) with Haar measure and suppose that 1 < p < oo
and 1 < ¢ < oo. The purpose of the paper is to define temperate Lorentz spaces and study the spaces of multipliers on
Lorentz spaces and characterize them as the spaces of multipliers of certain Banach algebras.

Hexait G € 10KaJbHOIO KOMIIAaKTHOIO a0eiBCBKOIO IPYMNOI0 (HEKOMIIAKTHOIO Ta HEAWCKPETHOI0) 3 Miporo Xaapa. I[lpu-
myctumo, mo 1 < p < oo ta 1 < ¢ < oo. Hama mera — BU3Ha4NTH HOMipHI npoctopu JlopeHna, BUBYUTH MIPOCTOPH
MHOXHHKIB Ha npocTopax JlopeHIa Ta oxapakTepu3yBaTH iX 5K HIPOCTOPH MHOXKHUKIB Ha JesKMX OaHaXOBUX airedpax.

1. Introduction and preliminaries. In this paper, we are interested in the relationship between the
spaces of multipliers on L (p, q) (G) and the spaces of multipliers L! (p, ¢) (G) on group L (p, q) (G)-
algebra. The multipliers of type (p,p) and multipliers of the group L,-algebras (L; (G)) were
studied and developed by Mckennon [11-13] and Griffin [6] where the multipliers are identified as
the operators commuting with the translation operators. The ideas in these papers are used frequently
in our paper for the generalization of the results of Mckennon and Griffin concerning multipliers of
type (p, p) to the Lorentz spaces L (p,q) (G) for 1 < p < 00, 1 < g < 0.

For the convenience of the reader, we now review briefly what we need from the theory of
L (p, q) (G) Lorentz spaces. Let (G, %, 1) be a measure space and let f be a measurable function on
G. For each y > 0, let

Ar)=pl{zeG: |f(2) >y}

The function Ay is called the distribution function of f. The rearrangement of f is defined by

ffO)=inf{y>0:A\p(y) <t} =sup{y>0:Ap(y)>t}, t>0,

where inf @ = co. Also the average function of f is defined by

) =

~ | =

¢
/f* (s)ds, t>0.
0

Note that A¢ (-), f*(-) and f**(-) are nonincreasing and right continuous on (0,00) [2, 9]. For
p,q € (0,00) we define

1/q

/ e L, =
0

1/q

I/

h=RES
h=RES

g =
pq

/ ()7 19/t
0

Also, if 0 < p, g = oo we define

1F11 oo = sup /P f* (1) and || fll, oo = supt'/?f** ().
t>0 t>0
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For 0 < p < oo and 0 < ¢ < oo, the Lorentz spaces are denoted by L (p, q) (G, i) (or shortly
L (p,q) (Q)) is defined to be the vector space of all (equivalence classes of) measurable functions f on
G such that || f||,) , < co. We know that || f||; , = || f||, and so L7 (G) = L (p,p) (G) , where L? (G)
is the usual Lebesgue space. It is also known that if 1 < p < oo and 1 < ¢ < oo, then

: p
£l < W Fllpq < p— If

*
‘qu

for each f € L (p,q) (G) and (L (p,) (G), ]I,

2. Main results. Let G be a local compact Abelian group, A be a Haar measure on G and
C. (G) be the space of complex-valued, continuous functions with compact support. For 1 < p < oo,
1 < ¢ < o0, symbols B, ; and M, , will stand for the following spaces:

) is a Banach space [1, 2, 9].

Byo={T|T:L(pq) (G)— L(p,q)(G), T is bounded and linear } ,

My ={T € Byg | T (Ly) = Ly (T) forallz € G},

where L, () is the translation operator. It is so easy to show by usual techniques that the space
By, , 1s a Banach algebra with respect to composition under operator norm and the space M, , is a
complete subspace of B, ,.

Let Homp1 () (L (p,q) (G), L (p,q) (G)) = Hompiq) (L (p,q) (G)) denote the space of all
module homomorphisms of L! (G)-module L (p,q) (G), that is, the space of operators in By,
satisfying T (f x g) = f+T (g) forall f € L' (G) and g € L (p, q) (G) . The module homomorphisms
space is a Banach L' (G)-module by (foT) (g) = f+* T (g9) =T (f xg) forall g € L (p,q) (G) .

We briefly describe the content of this paper. In Subsection 2.1, we will construct pg-temperate
functions spaces for Lorentz spaces and give some properties. In Subsection 2.2, we will characterize
the multipliers space of L (p, ¢) (G) as a certain Banach algebra and generalize the results of Mcken-
non to L (p, q) (G) . Finally in Subsection 2.3, we will examine the multipliers spaces L’ (p, q) (G)
on group L (p, q) (G)-algebras.

2.1. The space Lt (p, q) (G) and its basic properties.

Definition 1. Let f € L(p,q) (G) and (h* f) (x) = / h(t) f (t7'z) dX(t) be defined for all
G

h € L(p,q) (G) and almost all x € G. If (h* f) € L(p,q) (G) for all h € L (p,q) (G) and one of
the following conditions:

sup {I1h5 fll, 1 € L(p, ) (G), Bl <1} < oo, (1

sup{||h*f||p’q:h€C'c(G), Hth7q§1}<oo )

is satisfied, then the function f is called a pq-temperate and the space of these functions is showed
by L' (p,q) (G) . The spaces Lt (p,q) (G) can be renamed as group L (p,q) (G)-algebras. The value
in (1) or (2) will be used for the norm of f € Lt (p, q) (G) and showed by ||f||;q .

Proposition 1. C. (G) is a subspace of <Lt (p,q) (G) ) . Also, L' (p,q) (G) is a dense

subspace of L (p,q) (G).
Remark 1. The space L' (G) N L(p,q) (G) is also contained by L (p,q) (G). So we have

another evidence for nonempty property of the space L! (p,q) (G) .

1l
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Proposition 2. For each f € L' (p,q) (G) , there is an operator Wy on L (p,q) (G) by Wy () =
= () * f which also belongs to B, ,.

Proof. Let’s take any f € L' (p,q) (G). Since Wy (g) = g* f forall g € L(p,q) (G), Wy is
well-defined by Definition 1. Also, the following equality:

Wil = sup (Wi (9)ll,, = sup llg* fll,, = II£Il;
gl o<1 P gl <1 i i
says that W is bounded on L (p,q) (G). The linearity property of W; can be seen easily. Thus
Wf S prq.
Proposition 2 is proved.
We have also another good result here. That is, for all f,g € L! (p, q) (G)

Wiwg=WyoWy =Wy =WroW,.

Proposition 3. The space (Lt (p,q) (G), ||'H;7q) is
(i) a normed algebra under convolution,

(ii) a Banach L' (G)-module under convolution,
(ii1) strongly invariant under translation.

Proposition 4. The space Lt (p,q) (G) is a Banach space under a new norm ||| - |H;q = [Ill,q+
t
+ ||'”p7q :
Proof. Forany f € L' (p,q) (G) C L(p,q) (G), we know that HfHZ,q < ooand | f[,, < oo
Since the function H||||;q = Ill,, + ||-H;q is a sum of two known norms, the function ||\|||Zq

is a norm on L (p,q) (G). We will prove the proposition in a classical way. Let {f,},cy be a
Cauchy sequence in (Lt @) (G) ]Il ];7(1) . Then, for each € > 0, there exists an N € N such that

| fr — fm\H;’q < ¢ for all m,n > N. The inequality HHH;(I D ([

for all m,n > N and so the sequence { f,, },,c is also a Cauchy sequence in (L (p,q) (G)

implies that || f,, — fmll,q <€

) || ' Hp q) "
The completeness of L (p, q) (G) shows that there exists a function f € L (p, q) (G) such that f,, — f
in L (p, q) (G) . If we consider the sequence {W, }, - corresponding to {f,}, oy, then we see that
{Wt, },en 1s @ Cauchy sequence in By, ; and converges to an operator W € B, 4 such that

Now, let’s take any g € C. (G) with||g[, , < 1. Since L (p, g) (G) is a Banach L' (G)-module, we
get foxg— fxgas f, = fin L(p,q)(G). Therefore, we have

||g * f||p7q = th;H ||g * fn”pﬂ S th;n ||g||p7q ||fn”p7q S th;n ||fn ,q = ”f”pg
and
t
|| f ||p7q = Sup ||g * f||p,q S ||f||p,q < 0.
lgll, o<1
Also,

lim |1 = £l = tim (I1f0 = £

t
pg T 1 = pr,q) -
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~ tim (IIfn gt sup_ g (o - f>up,q) <

lall, <1
S hrILn (an - f”p,q + ! ﬁup<1 Hng,q ||fn - pr,q) S hTILHQ an - pr,q =0
9lip,q>
and for any h € C. (G)
W (h) = lim Wy, (h) = lim (h f,) = h* f = W ()

can be found. Density of C. (G) in L (p, q) (G) implies that W = W, and (Lt (p,q) (G), ]

is a Banach space.
Proposition 4 is proved.

t
p.q

Proposition 5. The space (Lt (p,q) (G), ||| Hz’q> is a Banach algebra.
Proof. Let’s take any f,g € L' (p,q) (G). Then

t t t t
11 gl = 1F % gl g + 1 % gl g < IWr (@, + [1f1pg 19l <

t t t t t
< Wil lgllp.q + 1f g 1915 = 1f g 191lp.q + [1f1pq 19l5q =

t t t
= 1/ 110 Mglllg < ML Mgl -
Proposition 5 is proved.

Proposition 6. The set

A= sSpan {Wf*g ’ f €Lt (p7 Q) (G) » g € CC (G)}

is a complete subalgebra of By, ; and it has a minimal approximate identity.

Proof. By the definition of A, it is easy to see that A is a complete subalgebra of B, ,. Let F be
the family of all neighbourhoods of the identity of G and say F» < Fy if E] C E5 for E1, E5 € F.
Then clearly (F, <) is a directed set. For every E; € F, there exists a positive continuous function

hg, on G such that / hg, (z) dX (x) = 1, the support of hg, is contained in F; and ||hg,||; = 1. This
G

net {hp,},c; C Cc(G) is a minimal approximate identity for L' (G) [11, 16]. If {h,} denotes the
product net of {hp, };.; with itself, i.e., h, = hp, * hg,, then {h,} is again a bounded approximate
identity for L' (G) . In other words, ||, = ||hg, * thHl < kgl ||he, H1 <1,

Hm [ f = f # byl = lim [[f = £+ (5 f5,) | <

< 1ilm\|f—f*fEi||1 +h;an— (f* fe,)||, IfElly =0
and
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Wyl = sup Wy Bl = sup_[hxfll,g <17l 3)

Al o<1 1]y, <

for all f € L'(G). Hence, it is seen that the net {th} is in A and lim, HWMH < 1. Since
Ce(G) C L' (p,q) (G) , we have
Wy =Wy)(h)=hxf—hxg=hx(f—g)=Ws_g4(h) 4

for any f,g € C.(G) and h € L (p,q) (G). Therefore, by using (3), (4) and the equality Wy,, =
=Wy o W;, we get

@ Wi, 0 Wiy = Wiy = @ [Wisgan, = Wil =
= @ng*hv oWy —WyoWy|| =
= T | (W, — W) o W) < T [Wyon, — W, 177 =
= T | Wyen, | 171 < T g e, — ], W] = 0.

Therefore, the net {Whv} is a minimal approximate identity for the space A.

Proposition 6 is proved.

Proposition 7. The space A is a complete subalgebra of Homp () (L (p, q) (G)) -

Proof. Let W € A. By the definition of the space A, there exists {Wy, }, .y C span{Wy., | f €
€ L' (p,q) (G), g € Cc(G)} such that Wy, — W. Therefore forallg € L' (G) and h € L (p,q) (G),
we can write that

W(g*h)=lmW;y, (gxh)=limgx*hx f, =limg* Wy, (h)=g*W (h). Q)

From (5) we see that W € Homp,1 (¢ (L (p, ¢) (G)) - Since the space Homp,1 () (L (p, ¢) (G)) is a Ba-
nach algebra under usual operator norm, the space A is a complete subspace of Hom 1) (L (p, q) (G)) -
Now, let f1, fo € L' (p, q) (G) with Wy, , Wy, € A. Since (f1 * f2) € L' (p, q) (G), we write that

Wy oWp,) (g*h) =Wys, (Wy, (g% h)) =Wy, (g% hx* fo) =
=gxhxfoxfi=gxWyg (hx*fo) =
:g*Wfl (sz (h)) :g*(Wfl OWfQ)(h)

for all g € L' (G) and h € L (p,q) (G). This shows that A is a complete subalgebra of the space
Homy(g) (L (p,q) (G)) -

Proposition 7 is proved.

Proposition 8. The space A is an essential Banach L' (G)-module.

Proof. Let’s take any Wy € A, g € L' (G) and define the mapping g o W: L (p,q) (G) —
— L (p,q) (G) with (go Wy) (h) =Wy (g*h) forall h € L (p,q) (G). Then

lge Wil = sup [l(goWy)(R)ll,, = sup [[Wy(g*h)

b p7q =
IRl <1 7l <1
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= Wyl sup g+ hll,, < [[Wsl llgll, =

lh PaqS

pa 91l

is found. Thus, A is a Banach L' (G)-module. Since any bounded approximate identity {e} cr of
L' (G) is also an approximate identity for L (p, ¢) (G), for any Wy € A, we have

leao W= Wil = sup |l(caoWy—We) (W, , = sup [Wy(hxea) =Wy )], , =
k]l <1 llAll, <1

= sup |hxeax f=hxfll,,= sup |hx(eaxf=1)l,,=
1Al <1 1Al 4

= sup_ IIhII e
Il p,g 1~e P,q

forall h € L (p,q) (G). As aresult, A is an essential Banach L! (G)-module by [3] (Corollary 15.3).
Proposition 8 is proved.

Remark 2. 1If we consider any f € L' (G) and the net {W,, },.; € A, then

lim||f — f o %nzmn<

[Ihll,,q<1

sup |(f = foWe,) (h)\p7q> =

—lim< sup ||f x«h — W, (f*h), )
“ R, <t

17l <1

:hgl( sup ||f*xh— (eq* f) *h” )

éli;“( sup ||f—ea*f|1|h\|p,q> <

1,4 <1

<lm|f—eq* fll, sup A,
“ |h p,q—
is found. Therefore, f € L' (G) o A = A. In other words, L! (G) C A.

Remark 3. If p=q = 1, then L' (p,q) (G) = L' (1,1) (G) = L} (G
is a Banach algebra. If p = ¢, then L' (p,q) (G) = L' (p,p) (G) = L},
[6,11,12].

) = L1 (G) since L (G)
(G) which is examined in

2.2. Identification of multipliers space of L' (G)-module with the multipliers space of certain
normed algebra.
Proposition 9. Let f,g € L (p,q) (G) and T € Homyp () (L (p,q) (G)).

() If f € L' (p,q) (G) , then T (f) € L' (p,q) (G).
(i) Ifg € L' (p,q) (G), then T (f x g) = f* T (g) .
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Proof. (i) Let’s take any f € L (p, q) (G) . By the definition of T € Hom1 () (L (p, q) (G)),
we write

1T (1)l =50 {1 T (Nl g 2 hE ClG), R,y <1} =
= sup {|T (h+ ),y h € Ce(G), [l <1} <

< |Tlsup {1h+ fllpy b€ Co(G), [,y <1} < AT IS, < o0

and the result follows.

(i) Let ¢ € L' (p,q) (G). Since C.(G) is dense in L (p,q)(G), we can find a sequence
{fa}nen C Cc(G) such that limy, [|f, — f[|,, = 0 for all f € L(p,q)(G). Also, we can find
a bounded linear mapping W, € Homp1 (¢ (L (p, ) (G)) for all g € L (p, q) (G) . Therefore,

lsn £ %9 — £ 5 gl , = L [ (f) = Wy (£, =
=l [|Wy (fo = Pl q < Welllim || f = fll,, =0
is found. Since T (g) € L (p, q) (G) by (i), we get
li [, + 7 (9) — £ +T (g), = O

Therefore, the continuity of 7" € Homp1 () (L (p, q) (G)) implies that
fxT(g) =limfo*xT(g) =UmT (foxg) =T (f*g).

Proposition 9 is proved.
Definition 2. For the space A, the space N* is defined as follows:

A*:{TGHole(G) (L(p,q)(G)):ToW €A forall WeA}.

Proposition 10. A* = Homy1 () (L (p,q) (G)).
)

Proof. Let T € Hompi gy (L(p,q) (G)) and Wy, € A such that f € L' (p,q)(G) and
g € C.(G) . By using Proposition 9, since T (f) € Lt (p, q) (G) , we have

(T'oWyag) (h) =T (Wyag (h)) =T (hx fxg) =h*T(f *g) = Wr(sg) (h) =

for all h € L(p,q)(G). This means that T € A*. On the other hand, the inclusion A* C
C Homp,(g) (L (p, ) (G)) is obvious from the definition of A*.
Proposition 10 is proved.

Proposition 11. M (A, A), the space of multipliers on Banach algebra A, is isometrically iso-
metric to the space \*.
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Proof. Define a mapping F': A* — M (A, A) by letting F (T') = pp for each T' € A*, where
pr (S) =T o S forall S € A. Note that, if py (SoK) =T oSoK = pr(S)o K forall S,K €
€ A, then we see that F' (T') = pr € M (A, A) and so F' is well-defined. Also, it is obvious that the
mapping F’ is linear.

For any T1,T» € A*, if F (Th) = F (T3), then pr, = pp, and pp, (S) = pp, (S) forall S € A.
This means that 77 0 S =75 0 S and 77 = T5. Hence, the mapping F' is one-to-one.

Beside these, for any 7' € A* = Hompi(g) (A, A) and for all S € A, we get

[ToS|= sup [[(ToS)(@l,,= sup [T(S@),, <

lgll, <1 gl <1

<|T[ sup [S(9ll,, =TS

llgll,, <1
Therefore, we have

lor (9) || |70 S| 17N S|
pr|| =sup ———— =su <sup ——— = ||T]|. (6)
lorll =2 e = 5% er <3 qsy - W

On the other hand, since the net {Why} is a minimal approximate identity for A, we can write the
following inequality:

— 4 >
o7 Sup g = Sup Wl = sup |70 Wi, || =

> liﬁranTothH =Tl (N

By (6) and (7), we see that ||pr|| = ||T|| -

Lastly, we need to show that the mapping F is onto. Let’s take any p € M (A, A) and the minimal
approximate identity {eq},c; of L' (G). Since, it is known that A C Homp: g (L (p,¢) (G)) and
peq € A, we get

pea (f*9) = (fo(pea)) (9), ®)

where f € L' (G) and g € L (p, q) (G) . If we use the property M (A, A) C Homp1 (g (A, A), then
we can write the equalities

p(foea)(g)=p(f*ea)(g) = (fopea)(g). ©)
From (8) and (9), we have
pea (f *+g) = (fo(pea)) (9) = p(f xea) (9) -

Therefore, for all f € L' (G) and g € L (p, q) (G)

lim [|p (f * €a) (9) = pf (9)]l.g = T [(p (f * €a) = pf) (D,g = lim [[p (f * €a = £) (9)

<
p,q —

<lim||p(f*ea = Pl lgll,, <Umlpll [(f*ea = FIlgl,q <
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< lim [|p[[|(f * ea = Il g

pg =0

is found and we can write that
lim (peq) (f * g) = lim (f o (pea)) (9) = limp (f *ea) (9) = pf (9) -
Since L (p, q) (G) is an essential Banach L' (G)-module, the following expression:

(pea) (f * g) = (f o pea) (9) = [+ (pea) (9)

converges to such a f x T'(g9) € L(p,q)(G) where T € Hompi (L (p,q)(G)). Since

lim,, (peq) (f *g) = limgy (f o (pea)) (9) = pf (9), we write f o T = pf for all f € L' (G).
Thus, for any W € A, we have

eqoT oW = (peq)o W = p(eqoW).

Since A is an essential Banach L! (G)-module, we have T o W = p (W) and p (W) = pr (W) for
all W € A. This means that p = pr.

Proposition 11 is proved.

Conclusion 1. The space M (A, A) is isometrically isomorphic to Hompa () (L (p, q) (G)) -

2.3. Multipliers on group L (p, q) (G)-algebras. 1f an operator T’ € B, , satisfies the condition
T (fxg)=fx+T(g) forall f,g € L*(p,q) (G), then we will call the operator T" as a multiplier on
the space L' (p, q) (G) . The space of all multipliers on L (p, q) (G) will be showed by the symbol
my,q- Since, one can show by using usual techniques that the space m,, , is a Banach algebra under
operator norm with composition, we will omit its proof.

Lemma 1. Forany f € L(p,q) (G) with f # 0, there exists a g € C.. (G) such that f x g # 0.

Proof. Let’s take a function f € L (p,q) (G) with f # 0 and assume that f x g = 0 for all
g € C. (G) . We know by [5] that

I/

pa <9 11, <0 Csun s | [ 7@ (-)dn (@) g€ Co(6), gl <17 =
G

=y Cswp{[(f+9) (0)] : g€ Ce(G), gl <1}

Therefore || f||,, = 0 and so f = 0 (a.e.). This contradiction proves the lemma.
Lemma 2. Forany T € myqand V € A, we have

sup {70V (), : h e L (1,0)(G), IIhl,q <1} < ITIIV].

Proof. Let’s define a set D = {W;: f € L' (p,q)(G), Wy € A} and take any W € A.
By the definiton of A, for all ¢ > 0, we can find f € L' (p,q) (G) and g € C.(G) such that
|W — Wyl < e. Since fxg € L' (p,q) (G), we can conclude that Wy,, € D and so D = A.
Now, define a map ¢': D — By, such that ¢’ (Wy) = Wp(s) for any T' € m,, 4. Since it is easy to
show that ¢’ is bounded, it has a continuous extension ¢: A — B, , with ||¢'|| = ||¢]| .

Now, we will show the operators o (V') and (T o V) coinciding on L' (p, q) (G) . Let’s take any

he L (pq)(G), |hll,, < 1and V' € A. Since D = A, we can write
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lim [|[Wy, — V|| =0, (10)
where {Wy, } € D and {fy},cn € L' (p,q) (G) for all n € N. Also, since

Wg(fo):g*me:Lx(f*g):wag(f)

forall f € L (p,q)(G) and W, € A, we say that A C M), , and so V' € M), ,. By Proposition 9, we
have

(VoWn)(9) =V (Wn(g) =VI(gxh)=gxV(h)=Wyau(9)

forall g € L (p,q) (G) and so V o W), = Wy (3. Again, the equality Ww, (ny = Wy, o Wy, implies
that

IWs, () =V ()L = | Waw, ) = W | = W7 0 Wi = V o W) =

=[|[(Wy, = V) o Wyl
for all n € N. Therefore

i [Wy, () = V (W), =T [ (W, — V) o Wil < Tim [Wy, — V|| [Wi]| = 0

is found. As a result, for 7' € my, 4,

Pq

lim |7 (Wy, (h) = T (V (R)),,, =0 (11
can be written. For any g € L' (p,q) (G) and n € N, we have

Wriry (9) = g% T (fu) =T (g fu) =T (Wy, (9)) = (T o Wy,) (9)

or simply W4,y =T o Wy, . This says that p (Wy, ) = ¢’ (Wy,) = Wpy,y =T o Wy, . Therefore,
we get

T |70 Wy, — o (V)] = lim [l (W) — o (V)] <

< [lelHlim [Wy, = V| =0

by (10). Since limy, [|(T'0 Wy,) (h) — ¢ (V) (h)]l,,, = 0, we can easily obtain that limy, [|g * ((T" o
oWy, )(h) =g * (@ (V) (h)) llpg = 0and g+ (V) (h) = g+ T (V (h)) by (11) for all g € C.. (G) .
By Lemma 1, we get ¢ (V) (h) = (T o V) (h). Since L! (p,q) (G) is a normed algebra, it is easy to
see that

1T o V) (W)l = 10 (V) (B = Tim llp (W) ()], = Tim [ Wy, ()], <

p.q

< lim [[Wrg,, || 12

— : t
p,q ”th,q hTIln HT (fn)Hp,q N

Therefore, by using equalities |[W|| = || f| |k, , <1 and (10), we see that

b |
p,q’ P9 —

pq —

(T o V) (W)l,q < ITINim || full, g = 1T Ximm [ W, || < T [[V]] -
Lemma 2 is proved.
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Proposition 12. Forany T € my, 4, V € Aand f € L' (p,q) (G) , we get

T o V) (Dllpg < NITHINV (g -

Proof. Let e > 0. Since A is a Banach algebra with an approximate identity, for any V' € A, we
can find P, S € A such that |P|| =1, ||S — V|| <eand V = P oS by Cohen factorization theorem
in [8]. Therefore, we get

1S (Dllpg = 1S =V +V) (Pl NS =V) Dl + 1V (Dl <

<ellfllpq + 1V (Nlpq

and

(T V) (Dlpg =T o (PoS)(Hll,e =TS )

‘qu =

<ITIPIIS Dllpg < 1T (21 g + 1V (D)

by Lemma 2. Since ¢ is arbitrary, we have [|(T'o V) (), , < T [V (F)ll,4-

Proposition 12 is proved.

Lemma 3. The set o= {V (f): f € L' (p,q) (G), V € A} is dense in L (p,q) (G).

Proof. Let’s take any g € L (p,q) (G) and € > 0. Since C. (G) = L (p,q) (G), there exists a
function f € C; (G) such that [|g — f[, , < % If we take the approximate identity {W},_ } of A into

consideration, then Wj,_ (f) € L (p,q) (G) for each ~ by Proposition 9. Since the net {h,} is an
approximate identity for L (p, ¢) (G) , we have lim, Hth (f) — prq = limy ||hy % f = f,, =0

and so {W,_ (f)} C p. Asaresult, we get ||W),, (f) — ng’q < ||Wa, (f) - pr’q—i- If—gll,, <€
and o= L (p,q) (G).

Lemma 3 is proved.

Lemma 4. Let S be a dense subspace of L (p,q) (G) and V € By 4. If V(h* f) = h*x V (f)
Jorall h € C.(G) and f € 3, then V € M) ,.

Proof. Let’s take any x € G. Then by [7], we can find a net {uq},.; C Cc(G) such
that limg [[Lgh — ua * hl|,, = O for all b € . Since V' € By, is bounded, lim, ||V (Lzh) —
— V (uaq * h)|lpg = 0 can be written. Also by the hypothesis, we get lim, ||L,V (h) — uq *
*V (h)|lpg=0asV (h) € L(p,q)(G). Therefore, we have

IV (Loh) = LoV ()], = IV (Loh) = V (ug % h) + V (g * h) = LV ()], <

< |V (Lzh) =V (ua * h)ll, g + [V (wa x h) = LV (R)]],, , <

q =

< ||V (Lzh) =V (ua * )|, , + [[ua * V (h) = LV (B)||

Hp’ p.q

for all h € S. It means that V (L,h) = L,V (h) and V € M, 4, as S = L (p,q) (G).
Lemma 4 is proved.
Lemma 5. Let f,g € L(p,q)(G) and T € M, .
() IFf € L' (G), then T (f +9) = f + T (g).
(i) f f € L' (p,q) (G), then T (f) € L' (p, q) (G).
(i) If g € L' (p,q) (G), then T (f = g) = f =T (g).
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Proof. (i) is proved in [4] (Lemma 2.1).
(i) Let f € L' (p,q) (G) and T € M, 4. Then by (i), we get

1T (F)llpy = s {05 T ()l hECaG), Il <1} =
=sup {|IT (A% g b € Ce(G), ll,, <1} <

< T sup {10+ Fll, g - B € Ce(G), Ihllg <1} < ITIFIL,, < o0

Asaresult, T (f) € L' (p,q) (G).

(iii) Let ¢ € L' (p,q) (G). Since C.(G) is dense in L (p,q) (G), we can find a sequence
{fa}nen C Cc (G) such that limy, || f, — f]|,, = 0. If we remember Proposition 7, then it says that
Wy € Hompy () (L (p, q) (G)) and so

lim | fo % g — f % gll g = e [ W (f) = Wy ()], =

= m [|[Wy (fa = )l g < IWglllim [ fo = I, = 0.
Since T (g) € Lt (p, q) (G) by (ii), we get
li || £+ T (g) = £+ T (9)ll,q = 0-
Therefore,
f*T(g) =limfoxT(g) =UmT (faxg) =T (f*g)

by the continuity of 7" and (i).

Lemma 5 is proved.

Proposition 13. Let w be a map such that w: M, ,; — mpq, w(T) = wr and w (T) (f) =
=wr (f)=T(f)forall T € My and f € L' (p,q) (G) . Then w is an isometric isomorphism.

Also, for T' € my 4, there exists at least one S € My, such that ws (V (f)) = (T'o V') (f) for
all Ve Aand f e L (p,q) (G).

Proof. We showed that T (f) € L' (p,q) (G) for T € M, and f € L' (p,q) (G) in Lemma 5.
If we use A C M, 4, then

W) (fxg)=wr(fxg) =T (fxg) =T (W (g) =W (T(9) =

=f*T(g9)=f*wr(g)

for all f,g € L' (p,q)(G) and T' € M, , by Lemma 5. This means that w (T') € m,, and w is
well-defined.
On the other hand, we see the linearity of w by the following equality:

w (T + BT2) (f) = wary+pm, (f) = (a1 + BT2) (f) = T (f) + BTz (f) =

= awry (f) + fwr, (f) = aw (T) (f) + Bw (T2) (),
where o, 8 numbers, f € L' (p,q) (G) and Ty, Ts € M, ,.
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Then, by definition of w,

Now, let’s take any 77,75 € M), , and assume that w (17) = w (T5) .
)=1L(p,q) (G),wegetTh =T5

we get Ty (f) = Tz (f) forall f € L' (p,q) (G). Since Lt (p, q) (G
on L (p,q) (G) and w is injective.

For any 7' € M, ,, we now know that wr € m,,. From this point, since L!(p,q) (G) =
= L(p,q) (G), we have

lor ()1l I ()] .
Jeor) = sup 5P = sup et — il = || T
Hpr,q Hpr,q Py
where 7T is extension of 7. Therefore, |w|| = 1 and w is continuous. Let’s take any T € m,,,. By

Proposition 12 and Lemma 3, there exists a S € By, ;, such that S (V (f)) =T (V (f)) forall V € A
and f € L' (p,q) (G) . Therefore, we get

SV () =SV (hxf) =TV (hxf))=ThxV(f)) =
=h+T(V(f))=hxS V()

forall h € C.(G),V € A and f € L' (p,q) (G) by Proposition 9 and Lemma 5. Besides these,
S € M, by Lemmas 3 and 4. As a result, we obtain

w(S) (V(h) =ws (V (h) =SV (h) =TV (h)) (12)

forallh € L' (p,q) (G) and V € A as S € M,,,.

Now, let’s assume that there is a function h € L' (p,q) (G) such that wg (h) # T (h). Then
ws (h) =T (h) # 0and g * (ws (h) — T (h)) # 0 for all g € C, (G) by Lemma 1. Since we can find
a sequence {hn},cy C Ce (G) with limy, ||y, — Rl|, , = 0 for h € L' (p,q) (G) C L (p,q) (G), we
write the following:

lg * (ws (h) =T (M)l = llg * (ws = T) (W)l 4 = [l(ws = T) (g * W)l 4 =

= [Ih# (ws = T) (9l = lim [+ (ws = T) (9)l,, =

= lim [[(ws — T) (hn  9),, = im [ (w5 — T) (Wh, (9))],,-

Therefore, Wy, (9) € pandp = L (p, q) (G) imply that ||g * (ws (k) — T (h))|,,, = 0 by (12). This
contradiction shows that w (S) = wg =T, i.e., w is surjective.

Forany T' € My, f € L' (p,q) (G) and € > 0, there exists a g € L (p,q) (G) with [|g]|,, < 1
such that ||wp (f )HM < |lg * wr (f)
that

|4 + € by the property of ||-H;7q norm. Since Lemma 5 says

grwr (f) =g*T(f)=T(gxf)=TWys(9)) = (ToWy)(g),

we get

lor ()l < g *wr (£l g +e <

t
pq TESITINAAL, +€
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Therefore, ||w (T)|| = ||wr|| < ||T||. Conversely, with Proposition 12 and Lemma 3, we have

I = sup {[IT (V- (D)l = V (B € o0 IV ()], g <1} =

= sup { Jwr (V (B))ll, : V () € g, IV ()], < 1} < o]

for ' € M, ,. Lastly, we have |lw (T)|| = ||T'|| and M, ; = mp.4.
Proposition 13 is proved.
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