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EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR THIRD-ORDER
m-POINT IMPULSIVE BOUNDARY-VALUE PROBLEMS ON TIME SCALES

ICHYBAHHSA JIOJATHUX PO3B’SI3KIB HEJITHIMHUX m-TOUKOBHUX
IMIIYVJIbCUBHUX ' PAHUYHUX 3AJAY TPETHOI'O ITOPAAKY
HA YACOBHUX IIKAJIAX

In the paper, the four functionals fixed-point theorem is used to study the existence of positive solutions for nonlinear third-
order m-point impulsive boundary-value problems on time scales. As an application, we give an example demonstrating
our results.

TeopeMy mpo HEPyXOMY TOUKY JAJIsl YOTHPHOX (PYHKIIOHAJTIB 3aCTOCOBAHO NPHU JOCIIDKCHHI 3a/1adi iCHYBaHHS JOAATHHX
PO3B’AI3KiB HENMHIWHUX 7 -TOYKOBHX IMITYJIbCHBHUX T'PaHUYHUX 3a]lad TPETHOTO MOPSJIKY HA YaCOBHX IIKaiax. SIK 3acTo-
CyBaHHsI, HABEICHO MPUKIIAJ, 1[0 LITIOCTPY€E OTPUMAHI Pe3yibTaTy.

1. Introduction. Impulsive differential equations, which arise in physics, chemical technology,
population dynamics, biotechnology, economics and so on (see [1] and references therein), have
become more important in recent years in some mathematical models of real processes. There has
been a significant development in the theory of impulsive differential equations with fixed moments of
impulses; see the monographs of Bainov and Simeonov [6], Lakshmikantham et al. [17], Samoilenko
and Perestyuk [24], Akhmet and Fen [4], and papers [2, 16].

The theory of time scales was introduced by S. Hilger [13] in his PhD thesis in 1988 in order
to unify continuous and discrete analysis. We refer to the books by Bohner and Peterson [8, 9] and
Lakshmikantham et al. [18]. Moreover, recently, it was demonstrated by Akhmet and Fen [3] that
dynamic equations on time scales can exhibit chaotic behavior.

The existence and multiplicity of positive solutions for linear and nonlinear second-order impulsive
differential equations have been studied extensively. To identify a few, we refer to the reader to see
[11, 12, 14, 21, 27]. On the other hand, there is not much reported concerning the boundary-value
problems for impulsive dynamic equations on time scales, see [7, 10, 15, 19, 20, 25, 26]. Especially
the existence of positive solutions for third-order with m-point impulsive boundary-value problems
on time scales still remains unknown.

In [12], Guo studied the following two-point boundary-value problem:

—a" = f(t,x,a"), t#t,

Axli—y, = I (z(tr)),

A |y, = Ip(z(te)2’ (t)), k=1,2,...,m,
az(0) — bz’ (0) = zg, cx(1)+dx'(1) = x.

Utilizing the Darbo fixed point theorem, Guo obtained the existence criteria of at least one solution.
In [14], Hu, Liu and Wu studied second-order two-point impulsive boundary-value problem

—u" = ht)f(t,u), teJ,
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— A |y, = I, (u(tr)),

Aulis, = To(ultn), k=1,2....m,
au(0) — Bu'(0) = 0,

yu(1) + 6u'(1) = 0.

By using the fixed point theorem in cone, they obtained the existence criteria of one or two positive
solutions.

In [23], Ma considered the existence and multiplicity of positive solutions for the m-boundary-
value problems

(p(t)u') = q(t)yu + f(t,u) =0, 0<t<1,

m—2
au(0) — bp(0)u'(0) = Z a;u(&;),

m—2
cu(1) +dp(1)d'(1) = 3 Biu(&).
=1

The main tool is Guo—Krasnoselskii fixed point theorem.
In [22], Liang and Zhang studied the following third-order impulsive boundary-value problem:

(p(—u"(1) +at)f(ult) =0, t#ty, 0<t<l,

Au\t:tk = Ik(u(tk)), k‘ = 1,2, .. .,N,

m—2
u(0) =Y au(&),
=1

u'(1) =0, u"(0)=0,

where ¢ : R — R is the increasing homeomorphism and positive homomorphism with ¢(0) = 0. By
using the five functionals fixed point theorem, they provided sufficient conditions for the existence
of three positive solutions.

In [20], Li and Li studied the following boundary-value problem for the nonlinear third-order
impulsive dynamic system on time scales:

(1) = f(tult), u®(t),u® (1)), te0,T)r\Q,
Au(ty) = I, Au(ty) = Jo, Au(te) =Ly, k=1,2,...,m,
w(0) = Mu(o(T)), u®(0) = Ml (o(T)), u2(0) = M’ (a(T)).

They obtained some sufficient conditions for the existence of solutions by using Schauder’s fixed
point theorem.

Motivated by the above results, in this study, we consider the following third-order impulsive
boundary-value problem (BVP) on time scales:
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(%(uAA(t)))A + q(t) £ (t,u(t), u™(t)) = 0, teJ: =[0,1]p, t#ty, k=1,2,...,n,
Aulty) = Ik(u(tk)), k=1,2,...,n,

AUA(tk) = —Jk(u(tk),ué(tk)), k= 1, 2, RN N
(1.1)

m—2
au(0) — bu”(0) = Z au(&;),
i=1

m—2

cu(1) + du®(1) = Z Biu(&i),

i=1
u2(0) =0,
where T is a time scale, 0,1 € T, [0,1]p = [0,1] N T, ¢,(s) is a p-Laplacian operator, i.e.,
Pp(s) = [s[P~2s for p > 1, (¢,)71(s) = ¢y(s), where ]1) + (11 =1,t€(0,1)r, k=1,2,...,n with
0<ty <ty<...<t, <1, Au(ty) and Au”(t;) denote the jump of u(t) and u”(t) at t = ty, i.e.,
Aut) = u(tf) - ulty),  Aub(ty) = ul(t]) — ul(tp),

where u(t)), u(t{) and u(t; ), u”(t;) represent the right-hand limit and left-hand limit of wu(t)
and u®(t) att = ty, k = 1,2,...,n, respectively.

Throughout this paper we assume that following conditions hold:

(Cy) a,b,c,d € [0,00) with ac + ad + be > 0; oy, B; € [0,00), & € (0,1) for ¢ € {1,2,...
ceo,m =2}

(Cr) fec(0,1)r x RT x R,RT),

(C3) g €C([0,1]r,RT),

(C4) Iy € C(RT,RT) is a bounded function, J, € C(RT x R,R") such that (c(1 — t) +
+d)J (u(tk), uA(tk)) > ka(u(tk)), k=1,2,...,n.

By using the four functional fixed point theorem [5], we get the existence of at least one positive
solution for the impulsive BVP (1.1). In fact, our result is also new when T = R (the differential
case) and T = Z (the discrete case). Therefore, the result can be considered as a contribution to this
field.

This paper is organized as follows. In Section 2, we provide some definitions and preliminary
lemmas which are key tools for our main result. We give and prove our main result in Section 3.
Finally, in Section 4, we give an example to demonstrate our result.

2. Preliminaries. In this section, we present auxiliary lemmas which will be used later.

Throughout the rest of this paper, we assume that the points of impulse ¢; are right dense for
eachk=1,2,...,n. Let J =[0,1]p, J' = J \ {t1,t2,...,tn}.

Set

PC(J) = {u: [0,1]r — Ryu € C(J'),u(t{) and u(t; ) exist, andu(ty ) = u(ty),1 < k <n},
PCY(J) = {u e PC(J): u® € C(J'),u?(t;) andu (t; ) exist, andu® (t;) = u®(t), 1 < k <n}.
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Obviously, PC(J) and PC*(J) are Banach spaces with the norms

lullpe = max [u(®)],  |ullper = max {[[u]po, [[u®]|pc},
tel0,1]

respectively. A function v € PC*(J)NC?(J') is called a solution to (1.1) if it satisfies all equations
of (1.1).
Define the cone P C PC'(J) by

P = {u e PC(J): u(t) is nonnegative,
nondecreasing on [0, 1] andu”(t) is nonincreasing on [0, 1],
m—2
au(0) — bu”(0) = aiu(&)}.
i=1
Denote by 6 and ¢, the solutions of the corresponding homogeneous equation

(¢p(uM(t)>)A=0, ted: =01y, t#t, k=1,2,....n, 2.1)

under the initial conditions
(2.2)

Using the initial conditions (2.2), we can deduce from equation (2.1) for € and ¢ the following
equations:

0(t) = b+ at, o(t) =d+c(l—1t). (2.3)

Set
m—2 m—2
— Zai(bJraii) p— Zai(d+0(1—5i))
N = = (2.4)
p— ZB,-(bJra&) — > Bild+c(1-¢&))
i=1 i=1

and

p = ad + ac + bc. (2.5)

Lemma 2.1. Let (C1)—(Cy) hold. Assume that
(Cs) A#0.
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Ifu € PCY(J)NC?%(J') is a solution of the equation

1 s
u(t) = / G (t,5) ¢, ( / q(7)f (T,u(f),uﬂ(f))m)&w
0

0

+ 3 Wilt, 1) + A(S) (b + at) + B(f)(d + ¢(1 — 1)),
k=1

where
1 (b + at) (—CIk<’U,(tk)) + (d + C(l — tk)>Jk (u(tk), uA(tk))) , U<t
Wk(tvtk) =~
P+ (1= 1) (alk(u(ty) + (b + ate) Ty (ultr), u™ (k) th <t
1 {(b+aa(s))(d+c(1 —1), o(s) <t
G(t,s) = —
Plb+at)(d+c(l—o(s), t<s,
m—2 m—2
1 Z Oéi’CZ‘ P — Zai(d—kc(l—&))
Af) =« |ih "5 ,
S oBKi =Y Bild+c(l - &)
i=1 i=1
m—2 m—2
1 — Z ozl(b + CL&) Z Oéilci
B(f) = K 121,2 131:12 )
p— ) _ Bilb+a&) Bik;
i=1 i=1
and

1 s n
K = /G(@-,s)d)q (/ a(r)f (T,u(f),uﬂ(ﬂ)&)aﬁzm GRAF

then u is a solution of the impulsive BVP (1.1).
Proof. Let u satisfy the integral equation (2.6). Then we have

u) = [ Gle.s)e, ( [ats (T,u(f),uA(T))m) st
0

0
+> Wit tr) + A (b + at) + B(f)(d + c(1 — 1)),
k=1

ie.,
u(t) = /;(b+ ao(s))(d + e(1 — 1)), (/q(f)f (T,U(T),uA(T))AT) As+
0 0

ISSN 1027-3190.  Ykp. mam. ocypn., 2016, m. 68, Ne 3

413

(2.6)

2.7)

(2.8)

2.9)

(2.10)

2.11)



414 I. Y. KARACA, F. T. FEN

1
+t/;(b+at)(d+c (1—0(s)))Pq (()/q ))AT)As—i-

+ 3 (el =) (ali(ulti) + b+ ate) Ty (ulte), u (k) ) +

0<trp<t

+ 7 (b at) (—eli(ultn) + (d+ (1 = ) Ji (ultn), u () ) +

+A(f)(b+at) + B(f)(d+c(1—-1)),

t s
ut () = — / b+ a0()6, ( / a(n)f (7 ulr, uA(T))AT) Ds+

0

0<tp<t
+ > a(—elulty) + @+ el = )k (ulte), u™ () ) ) + A(fla = B(f)e,
t<tp<1
AL —l—c ao —a c —O‘ | Tu T —
WAE(0) = = (~c(b+aa(t) — a(d+ c(1 ¢q(0/q >)A)
~04 ( / a(r)f (T,um,uA(T))AT) ,
0
u”2(0) = 0.

Therefore, one can confirm that

’ A
(60 (w22)) " = ( [ (T,um,uA(T))AT) = —q(t)F (b u(t), u™ (1),

0
(% (“M(t)))A +q(t) f(t,ult),u™(t)) = 0.

Because the equations

1
u(0) :/Z(GH—C (1—10(s)))¢q (/q ))AT>A3+
0

ISSN 1027-3190.  Ykp. mam. ocypn., 2016, m. 68, Ne 3



EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR THIRD-ORDER m-POINT ... 415

n

+ 3 b (el (u(ti) + (d+ (1 = 1)) Jp (ult), u? (8))) + A(Hb+ B(H)(d + o),

k=1

1 s
wt0) = [ 2+ = als)e, (/ o)t (T,u(T),uA(T))AT) Dot

0 0
+z (—elulultn) + (d+ et — o)k (ulte), u (t))) + A(f)a — B(f)e

are valid, we obtain

(2.12)

Since

u(l)—/ (b+ ao(s))oq (/q )AT)Aer
0

0

+ 3 d (ali(u(ti) + (b -+ ate) Ty (u(te), u (1)) ) + AF)G + a) + B,

uB(1) = — / g(b + ao(s))pq (/ q(n)f <T,u(7', ’LLA(T)>AT) As+

0 0
4 Z ¢ (alp(u(t) + (b -+ atg) Ty (u(te), u (1)) + A(f)a — B(f)e,

it can be verified that

cu(1) + du®(1) = A(f)(ad + ac + be) =
/ fu ¢q ( q ))AT) As+

+ D Wil te) + A(f) (b + a&) + B(f)(d+c(1 - &)) |-
k=1

-2

3

o\

=1

(2.13)
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From (2.5), (2.12) and (2.13), one can obtain

[ m—2 m—2 m—2
~ S ailb+ag)| AU+ |p— S aild+ el &) | B() = 3 ik,
L =1 i=1 - i=1
[ m—2 m—2 b m—2
p—> Bilb+al)| Af)+ |= D Bild+c(1-&)|B(f) =D Biki,
L i=1 i=1 - i=1

which implies that A(f) and B(f) satisfy (2.9) and (2.10), respectively.
Lemma 2.1 is proved.
Lemma 2.2. Let (C1)-(Cy) hold. Assume
m—2 m—2
(Ce) A<O0,p— Zi:l ﬁl(b—f— a&) >0,a— Zi:l a; > 0.
Then for u € PC*(J) N C%(J') with f, ¢ > 0, the solution u of the problem (1.1) satisfies
u(t) >0 for tel0,1]r.

Proof. 1t is an immediate subsequence of the facts that G > 0 on [0, 1] x [0, 1]T and A(f) > 0,
B(f) = 0.
Lemma 2.3. Let (C1)—(Cy) and (C¢) hold. Assume
m—2
C)e=) . Bi<o.
Then the solution u € PC(.J) N C?(J")of the problem (1.1) satisfies u™(t) > 0 for t € [0,1]r.

Proof. Assume that the inequality u”(¢) < 0 holds. Since u”(t) is nonincreasing on [0, 1],
one can verify that

u® (1) < u”(t), telo,1]r.

From the boundary conditions of the problem (1.1), we have

m—2
C

Cu(1) + é ; Bu(&;) < ul(t) < 0.

The last inequality yields
m—2
—cu(1) + > Bu(&) < 0.
i=1
Therefore, we obtain
m—2 m—2
> Biu(l) < Y Biu(&) < cu(1),
i=1 i=1

ie.,

-2
According to Lemma 2.2, we have u(1) > 0. So, ¢ — E m . B; > 0. However, this contradicts to
i=

condition (C7). Consequently, u”(t) > 0 for ¢ € [0, 1]r.
Lemma 2.3 is proved.
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Lemma 2.4. [f (C1)~(Cy) hold, then maxc(g 1), u(t) < M maxe(o 1], u?(t) for u € P, where

b+ 2212 ;&;

M=14+ S (2.14)
a — Zi:l (67
Proof. For u € P, since u” (t) is nonincreasing on [0, 1] one arrives at
&i
ie., u(&) — u(0) < &u(0). Hence,
m—2 m—2 m—2
Z au(é;) — Z a;u(0) < Z ai&uA(O).
i=1 i=1 i=1
m—2
By au(0) — bu®(0) = 2'71 a;u(&;), we get
m—2
b+ > g
u(0) < sz1_2 u”(0).
a — Zi:l (673
Hence
t
u(t) = / W2 ()5 + u(0) < tu?(0) + u(0) <
0
b+ 3" e b+ 3" e
) ;& . QG
< tu(0) + Sl —ut0) < |14 =l — |u®(0) = Mu®(0),
a — Zi:l (673 a — Zi:l (673
i.e.,
= t) < Mu”(0) < M A(t).
[ull pe tgl[oé}ﬁ?u( ) < Mu™(0) < max u (t)
Lemma 2.4 is proved.
From Lemma 2.4, we obtain
fullper = max {1l e, Ju e} = max { e fu(o), max 130} <
< max {M max u”(t), max uA(t)} =M max u”(t).
te[0,1]r te€[0,1]r te[0,1]r
Now define an operator T: P — PC(.J) by
1 s n
Tu(t) = /G(t,s)qbq /q(T)f (T,U(T),UA(T))AT As + ZWk (t,tr) +
0 0 k=1
+A(f)(b+at)+ B(f)(d+ c(1 —1)), (2.15)

where Wy, G, A(f), B(f) and 0, o are defined as in (2.7), (2.8), (2.9), (2.10) and (2.3) respectively.

ISSN 1027-3190.  Ykp. mam. ocypn., 2016, m. 68, Ne 3



418 I. Y. KARACA, F. T. FEN

Lemma 2.5. Let (C)-(Cy) hold. Then T': P — P is completely continuous.
Proof. By Arzela— Ascoli theorem, one can easily prove that operator 71" is completely continuous.

3. Main results. We are now ready to apply the four functionals fixed point theorem [5] to the
operator T in order to get sufficient conditions for the existence of at least one positive solution to
the problem (1.1).

Let o and ¥ be nonnegative continuous concave functionals on P, and let 5 and ® be nonnegative
continuous convex functionals on P, then for positive numbers r, j, [ and R, we define the sets:

Qa,B,r,R) ={ueP:r<au), Blu) <R},
U(Y,j) ={ueQa,B,rR): j <V(u)}, (3.1)
V(®,1) ={ueQ(a,B,m,R): ®(u) <}
Lemma 3.1 [5]. IfP is a cone in a real Banach space B, o and V are nonnegative continuous

concave functionals on P, 8 and ® are nonnegative continuous convex functionals on P and there
exist positive numbers r, j, | and R, such that

T:Q(a,B,7,R) = P

is a completely continuous operator, and Q(«, 3,1, R) is a bounded set. If
() {fueU(¥,)): fu) < R}N{uecV(P,0): r <alu)} # ;
(ii) «(Tu) >, for all u € Q(a, B,7, R), with a(u) = r and | < ®(Tu);
(iii) a(Tu) > r, for all u € V(P,1), with a(u) = r;
(iv) B(Tu) < R, for all u € Q(«, B, 1, R), with B(u) = R and V(Tu) < j;
(V) B(Tu) < R, for all u € U(¥, j), with B(u) = R,

then T has a fixed point v in Q(«, 3,7, R).

Suppose w, z € T with 0 < w < z < 1. For the convenience, we use the notations

m—2 L
«; G (&, 3) Pgx
Yol [otene

T)AT |As + %(c+ d)(2a +b)

<1
Sr{fewo

(/q VA | As + p(c—i—d)(Qa—i—b)
0

| =

m—2
Y Bild+c(1-&))
=1

z

:/ZG(w,s)¢q /q(T)AT As,

w

ISSN 1027-3190.  Ykp. mam. ocypn., 2016, m. 68, Ne 3



EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR THIRD-ORDER m-POINT ... 419

1 1
1
A_O/p(c(l—a(s))—i—d) b O/q(T)AT As+na(c + d) + Aa,
a3 e

_ 1
b+ ZZ_Q a;&;

1

L

)

and define the maps

— mi ¢ (u) = t =U(u) = A1), 3.2
a(u) terﬁrzlhu(), (u) tén[oa}mu( ),  B(w) (u) nax u (t) (3.2)

Moreover, let Q(a, 8,7, R), U(V,j) and V(®,1) be defined by (3.1).
Theorem 3.1. Assume (C1)—(C7) hold. If there exist constants r, j, I, R with max {5, R} <l,
L+1 L+1
max {L]’ mr
(Co) Flt,u,u”) = 0 () for (tu,u) € [, 2r x [1,1] X [0, R

(C9) f(tvuv uA) < ¢p (f) :Ik(u(tk)) < %

x [0, MR] x [0, R].
Then the BVP (1.1) has at least one positive solution u € P such that

} < R and suppose that f satisfies the following conditions:

T (u(te), u?(ty)) < %for (t,u,u”) € [0,1] x

min u(t) >, max u(t) < R.
t€(w,z)r t€[0,1)y
Proof. The impulsive BVP (1.1) has a solution v = wu(t) if and only if u solves the operator
equation © = T'u. Thus, we shall verify that the operator T' satisfies four functionals fixed point
theorem which will prove the existence of a fixed point of 7.
We first show that Q(a, 3,7, R) is bounded and T": Q(«, 8,7, R) — P is completely continuous.
For all u € Q(«, 3,7, R), we have by Lemma 2.4 that

|ull por < M max u®(t) = MB(u) < MR,
te[0,1]

which means that Q(«, 5,7, R) is a bounded set. According to Lemma 2.5, it is clear that 7:
Q(a, B,r, R) — P is completely continuous.
Let

R
= —(L 1).
4o L+1(t+)

Clearly, ug € P. By direct calculations, one can confirm that

a(up) = up(w) = Lfl(Lw +1) >,

R
,B(UO) = m[/ < R,

U(ug) = f(ug) = ——L > j,
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Bug) = (1) = 7 (L+1) = RS

So, up € {u € U(¥,5): B(u) < R}N{u e V(®,1): r < a(u)}, which means that (i) in Lemma 3.1
is satisfied.

For all u € Q(a, 3,7, R), with a(u) = 7 and | < ®(Tw), since u** is nonincreasing on [0, 1]y
we have

a(Tu) = Tu(w) > wTu(l) = w®(Tu) > wl >r.

So, a(Tw) > r. Hence (ii) in Lemma 3.1 is fulfilled.
For all u € V(®,1), with o(u) =,

a(Tu) = tenﬁ}i;lh Tu(t) = (Tu)(w) =

and for all u € U(V, j), with 5(u) = R,

B(Tu) = tgl[oa}ﬁT(TU)A(t) = (Tu)?(0) <

1

1
< O/;a (c(I—0(s)) +d) g (/ q(1)f (T,u(r),uA(r)>A7') As+

0

! 1
kol R R
< Ao/pa(C(l—U(S))-i-d) Pq (O/C](T)AT)A5+na(c+d)A+aAA
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1 1
:% /;G(C(I—O—(s))+d)¢q /q(T)AT As+na(c+d)+ad | =R.

0 0

Hence, (iii) and (v) in Lemma 3.1 hold. We finally prove that (iv) in Lemma 3.1 holds.
For all u € Q(«, 8,7, R), with S(u) = R and ¥(T'u) < j, we have

L
Tu)=¥(Tu) <j < ——R<R.
B(Tw) = W(Tw) < j < 1~
Thus, all conditions of Lemma 3.1 are satisfied. 7" has a fixed point u in Q(«, 3, r, R). Therefore,
the BVP (1.1) has at least one positive solution u € P such that

min u(t) >, max u(t) < R.
t€[w,z|T t€[0,1]r

Theorem 3.1 is proved.
4. An example.
Example 4.1. In BVP (1.1), suppose that T = [0,1], p = 2, m = 3, n = 1, q(t) = 1

1 1
a c 351 4,0[1 10’B1 » U1 2,16,

(w220)" + Flu()u@) =0, te o], t;«é%,

oe ()= () = ()

1 1
20 = —y | =
u(0) — u=(0) Tk (4),
A 1
u(l) +u=(1) =2u 1)
u®2(0) =0,
where
0.09 € [0 ! ]
. u —
A N ) ) 100 )
fluu™) =93 Lo 800
1799 8995’ ~ 100’
1
= — >
1(u) T 0,
A 3 A
Jl(u7u ) = Tan W (’LL,U, ) € [0,00) X [0,00)
180
1 1 . .
Set w = R z= 3’ by simple calculation we get
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A =14.64957265,  Q=0.03375593836, A = 17.14957265, L = %, M = %,
and
1 | Q+a(s)2-1), ofs) <t
G(t,s) ==
S la+9@-o@s), t<s.

1 1
Choose r = 100’ I =10, 7 = 2 and R = 8, it is easy to check that max{QO, 8} < 10,

154 77\
e d 2% 1T
A%\ 36 4820 ’

F(t,u(t), u (1)) = 0.09 > ¢, ( ) — 0.08776060928

o
for (t,u(t),u”(t)) € [;;] X [1(1)0,10} x [0, 8];

Flt,u(t),u®(t) <0.2 < ¢, (f) = 0.2176072544,

1
I (u <2>> = (0.3802469136 < 0.4532687651 =

1(+(3) - (2)) -

R 154
= 0.2851851852 < 04532687651 = - for(t, u(t), u” (1)) € [0,1] [0, 9] % [2,8].

Ll
A?

So, all conditions of Theorem 3.1 hold. Thus by Theorem 3.1, the BVP (4.1) has at least one positive
solution = such that

1
min u(t) > —, max u(t) <8.
te[t,1] 100 t€[0,1]
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