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L,-DUAL MIXED AFFINE SURFACE AREAS *
L,-AYAJIbHI MIITAHI A®IHHI ITIOBEPXHEBI IIJVIOIII

Lutwak proposed the notion of L, -affine surface area according to the L,-mixed volume. Recently, Wang and He introduced
the concept of L,-dual affine surface area combined with the L,-dual mixed volume. In the article, we give the concept
of L,-dual mixed affine surface areas associated with the L;,-dual mixed quermassintegrals. Further, some inequalities for
the L,-dual mixed affine surface areas are obtained.

JlyTBOK 3ampornoHyBaB MOHATTS L,-aiHHOI MOBEpXHEBOI IO, [0 BiJIOBifa€ MOHATTIO L,-MimraHoro o6’emy. Hermo-
naBHO Banr i Xe BBenu moHATTS Ly-1yansHoi adiHHOT HOBEPXHEBOI ILIOII, OB SI3aHOI 3 Ly-AyalbHUM MillIaHUM 00’ €MOM.
B po6orti 3anponoHoBaHO MOHSATTS Ljp-IyansHoi MinraHo! adiHHOI MOBEpXHEBOI IUIOINI, IO BixnoBinae L,-TyaJbHUM Mi-
mIaHUM KBepMmacinTerpamaM. Kpim Toro, HaBegeHO Aeski HepiBHOCTI Ui L,-TyalbHUX MiMIaHUX a(iHHUX MOBEPXHEBHX
TUIOIL.

1. Introduction and main results. Let " denote the set of convex bodies (compact, convex subsets
with nonempty interiors) in Euclidean space R™. For the set of convex bodies containing the origin
in their interiors, the set of centroid of convex bodies is the origin and the set of origin-symmetric
convex bodies in R", we write K, K7 and K7, respectively. Let S denotes the set of star bodies
(about the origin) in R”. Let S"~! denotes the unit sphere in R”, denote by V (K) the n-dimensional
volume of body K|, for the standard unit ball B in R", denote w,, = V(B).

The studies of the classical affine surface area went back to Blaschke [1]. The notion of classical
affine surface area was extended to convex bodies by Leichtwei3 [5]. For K € K", the affine surface

area, (K), of K is defined by
YUK = inf{nVi(K, QO)V(Q)Y/™: Q € S"}. (1.1)

Here Q* denotes the polar of body (). Subsequently, Lutwak [10] introduced mixed affine surface
areas. On the researches of classical affine surface areas, also see [6].

The L,-affine surface areas were introduced by Lutwak [13]: for K € K}, p > 1, the L,-affine
surface area, (2,(K'), of K is defined by

n PO, ()5 = inf{nV, (K, Q")V(QP" : Q € 81},
Here V,,(M, N) denotes the L,-mixed volume of M, N € K (see [12, 13]). Obviously, if p =1,
0, (K) is just the affine surface area Q(K') of K.

In addition, Lutwak [13] also gave the notion of L,-mixed affine surface areas. Moreover, Wang
and Leng in [16] defined L,-mixed affine surface area, Q,;(K), of K (for i = 0, ,;(K) is just
the L,-affine surface area (2,(K)) and extended some Lutwak’s results. Regarding the studies of
L,-affine surface areas, besides see [13, 16], also see [17-21]. Recently, Ludwig [7, 8] extended
L,-affine surface areas to Lg-affine surface areas.

Because the definition of L-affine surface area base on the L,-mixed volume. In 2008, Wang
and He [14] showed the notion of L,-dual affine surface area associated with the L,-dual mixed
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volume. For K € 87, and 1 < p < n, the L,-dual affine surface area, Q_,(K), of K is defined by
nP/"Q_(K) " = inf{nV_,(K,Q")V(Q)™"/": Q e KI'}. (1.2)

Here ‘N/_p(M, N) denotes the L,-dual mixed volume of M, N € S} [13].

Associated with the L,-dual affine surface areas, Wang and He [14] proved the following dual
forms of Lutwak’s results:

Theorem 1.A. If K € S, n>p > 1, then

Qp(K)"7P > n" P, PV (K)" P

with equality if and only if K is an ellipsoid.
Theorem 1.B. If K € !, n > p > 1, then

Q_p(K)Qp(K*) < n’w;

with equality if and only if K is an ellipsoid.
Theorem 1.C. I[f K € S, 1 <p < q<n,then

QO (K)n—p 1/p
(nnppV(K)n+p) (1.3)

be called the Ly-dual affine area ratio of K € S} (see [14]).
Recall that Wang and Leng in [15] extended the notion of L,-dual mixed volume and gave the
definition of L,-dual mixed quermassintegrals. The main aim of this article is to define the L,-dual

Here

mixed affine surface area by the L,-dual mixed quermassintegrals. Further, we extend Wang and
He’s results.

Now we give the concept of L,-dual mixed affine surface areas as follows: for K € S, p > 1,
real ¢ # n, the L,-dual mixed affine surface area, fNZ_W-(K ), of K is defined by

P n—p—1i

i (K) 5 = inf {nlW (K, QOWi(Q) " 1 Q e ki ). (14)

Here W_m(M , V') denote the L,-dual mixed quermassintegrals of M, N € S'.
According to definitions (1.2), (1.4) and equality (2.11), we easily know that for K € S,

Q_0(K) =Q_,(K). (1.5)

Associated with the L,-dual mixed affine surface areas, we give the general forms of Theo-
rems 1.A, 1.B and 1.C. Our main results can be stated as follows, respectively.
Theorem 1.1. If K € S}, p>1and 0 < i <n, then

Qpi(K)" P70 = " P i, P (K )P (1.6)

with equality for i = 0 if and only if K is an ellipsoid, for 0 < i < n if and only if K is a ball.
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Theorem 1.2. I[f K € K!,p>1,and 0 <i <n — p, then

Qi (K)Qpi(K*) < n’w} (1.7)

n

with equality for i = 0 if and only if K is an ellipsoid, for 0 < i < n if and only if K is a ball.
Theorem 1.3. I[f K € S}, 1 <p<gq,iisareal and 0 <i < n, then

~ . 1/p ~ ; 1/q

. n—p—1u ) n—q—1

Q’p’?(NK) 4 < Q"”?(NK) , ) (1.8)
nn—P—i Y, (K )ntp—i

Similar to the definitions (1.1) and (1.3),

~ . 1
Q_pi(K)" P ”
nn—p—iWi (K)n—l—p—i

may be called the L,-dual mixed affine area ratio of K € S

Finally, we give the following Brunn—-Minkowski-type inequality for the L,-dual mixed affine
surface areas.

Theorem 1.4. If K,L € S', p > 1 and X\, ;u > 0 (not both zero), real i satisfies n +p < i <
< n+ 2p, then

(n—p—i) (n—p—1) (n—p—1)

Q_W-(/\ K +_pp- L)_(nii><n+p—i) > )\ﬁ_pJ(K)_(nii)m+p—i) + uﬁ_pvi(L)_mii)(mp—i) (1.9)

with equality if and only if K and L are dilates. Here \ - K +_,, ji - L denotes the Ly-harmonic
radial combination of K and L.

2. Preliminaries. 2.1. Radial function and polar of convex bodies. 1f K is a compact
star-shaped (about the origin) in R", then its radial function, px = p(K,-): R™\ {0} — [0, 00), is
defined by (see [2, 20])

p(K,u) =max{\>0: \-uc K}, uecS" L

If px is continuous and positive, then K will be called a star body. Two star bodies K, L are said to
be dilates (of one another) if pg (u)/pr(u) is independent of u € S™ 1.
If K € K7, the polar body, K*, of K is defined by (see [2, 20])

K'={zeR":z-y<l,ye K}.

Obviously, for K € K7,
(K*)* = K. 2.1

2.2. Lp-dual mixed quermassintegrals. For K,L € S}, p > 1 and A, x > 0 (not both zero),
the L,-harmonic radial combination, A - K +_, u- L € Sy, of K and L is defined by (see [13])

pPA-K+_ppu-L,)7"=Np(K, )"+ pp(L,-)"". (22)
For K € 8] and any real 7, the dual quermassintegrals, Wz(K ), of K are defined by (see [9])
W)= [ plEu) s () 23)
Sn—1
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Obviously,

Wo(K) :% / (K, u)"dS(u) = V(K). (2.4)

Sn—l
For K € K and its polar body, Ghandehari (see [3]) established an upper bound of the dual
quermassintegrals product as follows:
Theorem 2.A. If K € K7, i is any real and 0 < i < n, then

Wi(K)W;(K*) < w? (2.5)

with equality for i = 0 if and only if K is an ellipsoid centered at the origin, for 0 < i < n if and
only if K is a ball centered at the origin.
Note that the case i = 0 of (2.5) is just the well-known Blaschke — Santal6 inequality (see [4]).
Associated with the L,-harmonic radial combination of star bodies, Wang and Leng (see [15])
introduced the notion of L,-dual mixed quermassintegrals as follows: for K, L € S7, p > 1, > 0,
real ¢ # n, the Ly-dual mixed quermassintegrals, va_p,i(K , L), of the K and L be defined by
”—%W,p,i(f(, L)= lim WilK—pe - L) = WilK)

—p e—0t €

(2.6)

The definition above and Hospital’s role give the following integral representation of the L,,-dual
mixed quermassintegrals (see [15]):

WKL) = [ o o (s (), @)

Sn—1

where the integration with respect to spherical Lebesgue measure S on S™~!. From the formula (2.7)
and definition (2.3), we get
i

W_,i(K,K) = Wi(K). (2.8)
Theorem 2.B. Let K,L € 8!, p > 1, and real i # n, then fori <norn <i<n-+p

n+p—i —~— p

W_pi(K, L) > Wi(K) = Wi(L) 7, 2.9)

for i > n + p, inequality (2.9) is reverse. Equality holds in every inequality if and only if K and L
are dilates. For i = n + p, (2.9) is identic.

Recall that Lutwak in [13] gave the concept of L,-dual mixed volume: for K,L € S}, p > 1,
the L,-dual mixed volume, V_p(K ,L), of the K and L is defined by

V(K +_pe-L) - V(K)

n -~ .
_—pV_p(K, L) = EE%"' 5 (2.10)

From (2.10), (2.6) and (2.4), we see that
W_po(K,L) =V, (K, L). @.11)
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3. L,-dual mixed affine surface areas. In this section, we will complete the proofs of theorems.
Proof of Theorem 1.1. For i = 0, Theorem 1.1 is just Theorem 1.A.
For 0 < ¢ < n, from (2.9) and (2.5), we have

P o ntp—i [~ -~ }—n,i

Wi (K, Q)Wi(Q) 7 > Wi(K) 1 |Wi(Q")Wi(Q)

-2 ntp—i

> wyp "TWH(K) T

Hence, using definition (1.4), we know

S n—p—t n—p—i — 2L~ n4p—i

Q—pJ(K) n—i  >mn n-i (W, "71‘Wi(K) n—i

this yields inequality (1.6).

According to the equality condition of (2.5), we see that equality holds in (1.6) if and only if K
is a ball when 0 < i < n.

Theorem 1.1 is proved.

Proof of Theorem 1.2. For the case i = 0, the proof of Theorem 1.2 see Theorem 1.B.

For 0 < ¢ < n — p, from definition (1.4), it follows that for ¢ € K7,

n—p—i n—p—1i P

O pa(K) 57 <050 WK, Q)Wi(@) 7.

Since K € K7, taking K* for () and using (2.1), we can get
Qi (K)"P70 < " PTIW_, (K, K )" W (K) 7P
Thus by (2.8),
Q_p i (K)" P70 <" PTG () W (K*) 7P (3.1)

Similarly,
Qi (K*)"7P0 < " P (K W (K) P (32)

From (3.1) and (3.2), we obtain

n—p—1i

QoK) palk)]

< p2n=p=0) [Wi(K)Wi(K*)
Hence, using (2.5), we have

6 ()80

A 2i noi | VP! ,
< p2n—p=i) {wﬁl (V(K)V(K*)™ } < (nwp)? P 0 <i<n—p.

Because of 0 < ¢ < n — p, so inequality (1.7) is given.
According to the equality condition of (2.5), we see that equality holds in (1.7) if and only if K
is a ball.

Theorem 1.2 is proved.
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Proof of Theorem 1.3. For K, L € K], since 1 <p <gq,iisareal and 0 <7 < n, and

A ) = [ )] ] 7

then using the Holder inequality, (2.3) and (2.7) we obtain

Wil L) = [ o ot ds(u) =

Sn—1
1 ntq—i q pla . ., a—p
=~ [ ek et @] i @) 7 ds() <
Sn—1
— - q—-p
< W_gi(K, L)POW(K) @,
that is y 1
Wopa(B, L)\ (Wega(B, L)) 53
Wi(K) S\ WK) ' '
The definition of Q_,,;(K) can be rewritten as
- n—p—1i . n—i
1 Q,i(K)\ ” i(K,Q)\ 7 —
= pilK) —inf { (WS o)1 g ek

Associated with (3.3) and notice n — ¢ > 0, we can get (1.8).

Theorem 1.3 is proved.

4. Brunn-Minkowski-type inequality. In this section, we give Brunn-Minkowski-type
inequality for the L,-dual mixed affine surface areas. First, we prove Theorem 1.4. Next, associated
with the L,-radial combination of star bodies, we get another Brunn—Minkowski-type inequality.
Here the proof of Theorem 1.4 require a lemma as follows:

Lemma 4.1. IfK,L € S}, p>1and X, ju > 0 (not both zero), real i < n+2p and i # n,n+p,
then for any Q € SV

W_pi(X- K+fpu-L,Q)_"+§—i > AW_,i(K, Q) i + Wi (L, Q)™ i 4.1)

with equality if and only if K and L are dilates.

Proof. Since i <n+2pandi#n,n+p,thus —(n+p—1i)/p<0wheni<n+pandi+#n,
or0 < —(n+p—i)/p < 1whenn-+p < i< n-+2p. Hence by (2.2), (2.7) and Minkowski’s integral
inequality (see [2]), we have

Wp’()\ K—I—pu LQ) n+p1:

p

T ntp—i
1 )
|5 [ oKL Q| =
Sn—1
. T
__n+tp—i
s [ b K L @ T | -
Sn—1
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__pP
n+p—1

1 _ _ P2 ntp—i
“n / [(Ap(E,w)™P + pp(L,w)"P)p(Q, u) =i ] # du >
Sn—1
__p
1 ' n+p—1i
> |5 [ o ip(Quu) P +
Sn—l
__ P
n+p—1

1 )
R b / p(L,w)" P~ p(Q, u)"Pdu =
Snfl

= AW_pi(K, Q) 77 + pW_pi(L, Q)" #iri  forany Q€SI

According to the equality condition of Minkowski’s integral inequality, we see that equality holds
in (4.1) if and only if K and L are dilates.

Lemma 4.1 is proved.

Proof of Theorem 1.4. Since n+p < i < n+ 2p, thus —% > 1. Then by definition (1.4)

and inequality (4.1), we obtain

Lo p
"—Pﬂ} n¥p—i

[nﬁﬁ—p,i(k K4 pp- L)

= inf { (WA K 4y LQOWQ) 77| Qe /C’g} _
= inf { [nwim()\ K+_pp-L, Q*)} T ntp—i Wz(Q) e ey Q€ ICZ} >
— P — D — P2
> inf { AW (K, Q)75+ p(nW i (L, Q)75 | Wy(@Q) T+ Q /cg} >

p

> inf {)\ [nW,p,i(K, Q*)Wi(@)—m} TR Qe ICZ} +

it L[V, Q)] ek}

o __ P
= A [n T Q) ] T
This yields inequality (1.9).

By the equality condition of (4.1) we know that equality holds in (1.9) if and only if K and L
are dilates.

Theorem 1.4 is proved.

For K,L € 8”,p > 1and A, u > 0 (not both zero), the L,-radial combination, Ao K +,uoL € S,
of K and L is defined by (see [20])

IO()‘OK;pMOLv')p = )‘p(Ka)p+MP(L> ')p' (4.2)

According to definition (4.2) of the L,-radial combination, Wang and He in [14] showed the
Brunn — Minkowski-type inequality for the L,-dual affine surface area as follows:
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Theorem 4.A. If K,L € K!',n>p > 1, then

n—p ~ n—p

Qp(KFnipL) ™ > Qp(K) 7 + 0 (L) (4.3)
with equality if and only if K and L are dilates.

Associated with the L,-radial combination of star bodies, we establish a Brunn-Minkowski
inequality for the L,-dual mixed affine surface areas. Under the definition (4.2) of L,-radial combi-
nation, we have the following theorem.

Theorem 4.1. [f K, L € K, p>1,real i <n — p, then

~ n—p—i n—p—1i n—p—1i

Q_piNo KFnipipio L) 1 > AQ_pi(K) 7 + pQ_p;(L) = (4.4)

with equality if and only if K and L are dilates.

Proof. Since i < n — p, thus n—pf ! > 0and n+p—1¢ > 2p > 1. Therefore, from

n—1i
definition (1.4) and formula (2.7), we have

n—p—i

P~ ~
nn—t pr,i()‘ o K+n+p7iﬂ @] L) n—i —

— inf {nW_pﬂ-(A 0 KT nip_itio L QOWi(Q) 75: Q e lc?} _
= inf {n[ AW (K, Q") + uW_pa(L, Q") W@ 77: Q e K7 } =

= inf {n)\WN/_m(K, QIYWi(Q) ™77 + npuW_p s (L, Q1 YWi(Q) 77 : Q € /cg} >

P

> inf {nAW_p,i(K, QIWi(Q) "5 : Q € /cg} +

p

tint {nplV (L, Q)WHQ) 77 : Q € K1 } =

n—p—i n—p—i

= i A (K) 7o 4 naip) (L) ot

Thus

n—p—1t

~ - n—p—1t ~ n—p—1i ~
Q—p,i()‘OK_'_n—l—p—iMOL) n—i > AQ—p,i(K) n—i —|—,u,Q_m(L) n—i

The equality holds if and only if A o K+,,4,_;u o L are dilates with K and L, respectively. This
mean that equality holds in (4.4) if and only if K and L are dilates.

Theorem 4.1 is proved.

Obviously, by (1.3) we know that if ¢ = 0 and A = p = 1 in Theorem 4.1, then inequality (4.4)
is just inequality (4.3).
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