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ON THE DERIVED NORM OF A FINITE GROUP*

ПРО ПОХIДНУ НОРМУ СКIНЧЕННОЇ ГРУПИ

Given a finite group G, we define a subgroup CS(G) as the intersection of the normalizers of all subgroups of the derived
subgroup of G. Let CS0 = 1. We define CSi+1(G)/CSi(G) = CS(G/CSi(G)) for i \geq 1. By CS\infty (G) we denote
the terminal term of the upper series. It is proved that the derived subgroup G\prime is nilpotent if and only if G = CS\infty (G).
In particular, we obtain the following result: if all elements of odd prime order of G are in CS(G), then G is solvable.

Для заданої групи G її пiдгрупу CS(G) визначено як перетин нормалiзаторiв усiх пiдгруп похiдної пiдгрупи G.
Нехай CS0 = 1. Визначимо CSi+1(G)/CSi(G) = CS(G/CSi(G)) для i \geq 1. Позначимо останнiй член верхнього
ряду через CS\infty (G). Доведено, що похiдна пiдгрупа G є нiльпотентною тодi i тiльки тодi, коли G = CS\infty (G).
Зокрема, ми отримали такий результат: якщо всi елементи непарного простого порядку в G належать CS(G), то
G є розв’язною.

1. Introduction. Let G be a finite group (all groups considered in this paper are finite). The notation
and terminology used in this paper are standard, as in [9, 10, 12]. It is known that if the derived
subgroup G\prime of G normalizes each subgroup of G, then G is nilpotent [2]. Naturally, as a dual
problem, one can ask that what can be said about the finite groups G satisfying the following condition:
G normalizes all subgroups of the derived subgroup G\prime of G? Note that R. Baer and H. Wielandt
in 1934 and 1958, respectively, introduced the following concepts: N(G) denote the intersection of
the normalizers of all subgroups of G and \omega (G) denote the intersection of the normalizers of all
subnormal subgroups of G. Those concepts were investigated by many authors, for example, see [1,
2, 4 – 6, 8, 11, 13, 14, 18 – 26]. In the note we give an answer to the above question. In fact, we shall
study this question in a more general way. First of all, we give the following definition.

Definition 1.1. Let G be a finite group. CS(G) to be the intersection of the normalizers of all
subgroups of the derived subgroup of G. That is,

CS(G) =
\bigcap 

H\leq G\prime 

NG(H).

Obviously, CS(G) is a characteristic subgroup of G.

Definition 1.2. For a finite group G, there exists a series of normal subgroups

1 = CS0(G) \leq CS1(G) \leq CS2(G) \leq . . . \leq CSn(G) \leq . . .

satisfying CSi+1(G)/CSi(G) = CS(G/CSi(G)) for i = 0, 1, 2, . . . and CSn(G) = CSn+1(G) for
some integer n \geq 1. Write CS\infty (G) for the terminal term of the upper series.

Remark. Fortunately, we find Group Theorists Chernikov and Subbotin proposed the above
problem in [15 – 17], when we investigate that what can be said about the finite group G satisfying
G = CS(G) and G = CS\infty (G). So we think the above idea and problem are belong to Chernikov
and Subbotin.
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In the memory of Group Theorist Chernikov, we give the following definition.

Definition 1.3. A finite group G is called a CS -group (Chernikov – Subbotin-group) if G =

= CS(G), that is, all subgroups of derived subgroup of G are normal in G.

Throughout the paper, we denote by \scrF dn the class of finite groups G with G\prime nilpotent. It is well-
known that \scrF dn is a saturated formation containing all supersoluble groups. The group G = [N ]H

means a semidirect product of a normal subgroup N and a complement subgroup H. Moreover, HG

is the normal core of the subgroup H in G.

2. Preliminaries. First, we give two examples on CS(G) as remarks. Example 2.1 indicates
that the subgroup CS(G) may be nonnilpotent. Example 2.2 shows that CS(G) < G is possible
when G is a nilpotent group.

Example 2.1. Assume that G = S3. Then CS(G) = G is nonnilpotent.
Example 2.2. As \mathrm{A}\mathrm{u}\mathrm{t} (Q8) \sim = S4 and D8 \leq S4, we have the semidirect product G = [Q8]D8.

Then G is a 2-group of order 26 and CS(G) < G.

Proof. Indeed, the derived subgroup A of D8 is a subgroup of order 2, the action of A on Q8 is
faithful, so nonnormal in G. Thus CS(G) < G.

The case that CS(G) = 1 is possible for a solvable group G. For instance, the symmetry group
S4 of four letters satisfies CS(S4) = 1.

The following basic properties of the subgroup CS(G) are required in this paper.
Proposition 2.1. If M \leq G, then M

\bigcap 
CS(G) \leq CS(M).

Proof. Clearly, CS(G) =
\bigcap 

H\leq G\prime 
NG(H) \leq 

\bigcap 
H\leq M \prime 

NG(H). So M
\bigcap 
CS(G) \leq 

\leq M
\bigcap 

H\leq M \prime 
NG(H) =

\bigcap 
H\leq M \prime 

NM (H) = CS(M).

Proposition 2.2. Let N \unlhd G. Then CS(G)N/N \leq CS(G/N).

Proof. Clear.
Proposition 2.3. Let G = A\times B and (| A| , | B| ) = 1. Then CS(G) = CS(A)\times CS(B).

Proof. Let H be any subgroup of G\prime and let \pi be the set of primes dividing the order of A. Then
A is a normal Hall \pi -subgroup of G and B is a normal Hall \pi \prime -subgroup of G. So H \cap A\prime is a
normal Hall \pi -subgroup of H and H \cap B\prime is a normal Hall \pi \prime -subgroup of H. Since G\prime = A\prime \times B\prime ,

we have
H = (H \cap A\prime )\times (H \cap B\prime ).

Thus

NG(H) = NG((H \cap A\prime )(H \cap B\prime )) =

= NG((H \cap A\prime )) \cap NG((H \cap B\prime )) =

= (NA(H \cap A\prime )\times B) \cap (A\times NB(H \cap B\prime )) =

= NA((H \cap A\prime ))\times NB((H \cap B\prime )).

Now the result follows.
Lemma 2.1 (R. Baer [3, p. 159], Corollary 2). The following properties of the group G are

equivalent:
(i) G \in \scrF dn;

(ii) every homomorphic image of G induces in each of its minimal normal subgroups is a cyclic
group of automorphisms;
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(iii) if M is a maximal subgroup of G, then M/MG is cyclic;
(iv) if M is a maximal subgroup of G, then M/MG is Abelian;
(v) (G/\Phi (G)) \in \scrF dn.

3. \bfitC \bfitS -groups. The following facts are clear from Definition 1.3.
Proposition 3.1. (i) The subgroups of a CS -group are CS -groups.
(ii) The quotient groups of a CS -group are CS -groups.
Theorem 3.1. If G is a finite nilpotent group, then G is a CS -group if and only if all Sylow

subgroups of G are CS -groups.
The following Theorems 3.2 and 3.3 are belonged to Subbotin [15].
Theorem 3.2 (Subbotin [15]). If G is a CS -group, then the following statements are true:
(i) G is supersolvable;
(ii) G\prime is Abelian.
For the readers convenience, we give a new simple proof.
Proof. (i) Is obvious. We only need to prove (ii). Let x be in G\prime . Since by hypothesis, every

subgroup of G\prime is normal in G, the cyclic group \langle x\rangle is normal, and thus G/CG(x) is embedded in
\mathrm{A}\mathrm{u}\mathrm{t}(\langle x\rangle ), which is Abelian. Then G\prime centralizes x, and hence every element of G\prime is central in G\prime .

Theorem 3.3 (Subbotin [15]). If G is a nonnilpotent group, then G is a CS -group if and only
if the following conditions hold:

1) G can be represented as the semidirect product G = [G\scrN ]B, where G\scrN is the nilpotent
residual of G and Abelian, each subgroup of which is normal in G, and B is a nilpotent CS-group;

2) the derived subgroup B\prime of B is normal in G and its order is coprime with the order of G\scrN .

4. \bfitC \bfitS \infty (\bfitG ) and \bfscrF \bfitd \bfitn -groups. As consequence of Theorem 3.2, we have the following
proposition.

Proposition 4.1. For any finite group G, the subgroup CS\infty (G) is solvable.
We can now characterize \scrF dn-groups.
Proposition 4.2. Let G be a finite group. Then the following statements are equivalent:
(i) G is an \scrF dn-group;
(ii) G/CS(G) is an \scrF dn-group.
Proof. (i) \Rightarrow (ii). Clear.
(ii)\Rightarrow (i). We use induction on the order of G. If CS(G) = 1, then nothing needs to be

shown. Suppose that CS(G) > 1. Thus we can find a minimal normal subgroup N of G such that
N \leq CS(G). By Proposition 4.1, CS(G) is solvable, so N is an elementary Abelian p-group for
some prime p.

Assume that N \leq \Phi (G), the Frattini subgroup of G, then by Proposition 2.2, CS(G)/N \leq 
\leq CS(G/N). It follows that (G/N)/CS(G/N) is in \scrF dn because G/CS(G) \in \scrF dn. We thus have
that G/N satisfies the condition of the theorem. By induction, (G/N)\prime = G\prime N/N is nilpotent. As
N \leq \Phi (G), it follows by (Huppert, 1967, III, Satz 3.5) that G\prime N is nilpotent and hence G\prime , which
gives G \in \scrF dn, as desired.

Assume now that N \not \subseteq \Phi (G), then there is a maximal subgroup M of G such that G = NM with
N

\bigcap 
M = 1. By Proposition 2.1, M\cap CS(G) \leq CS(M). Thus, by hypothesis that G/CS(G) \in \scrF dn,

and as G/CS(G) \sim = M/(CS(G)\cap M), we have M/CS(M) \in \scrF dn. Hence M satisfies the condition.
By induction, M \prime is nilpotent. Now, N \leq CS(G) and CS(G) normalizes all subgroups of G\prime . Thus
N normalizes M \prime , it follows that G\prime \leq N \times M \prime . Since M \prime is nilpotent, we conclude that G\prime is
nilpotent, as desired.

Theorem 4.1. Let G be a finite group. Then the following statements are equivalent:
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(i) G \in \scrF dn;

(ii) G/CS\infty (G) is an \scrF dn-group;
(iii) G = CS\infty (G).

Proof. (i)=\Rightarrow (ii). Clear.
(ii)=\Rightarrow (iii). We first show the following simple fact: If X > 1 is an \scrF dn-group, then CS(X) > 1.

In fact, we may let X \prime \not = 1. Then we have CS(X) =
\bigcap 

H\leq X\prime NX(H) \geq Z(X \prime ) > 1. The fact
follows. Using this fact and noting that CS(G/CS\infty (G)) = CS\infty (G), we deduce G = CS\infty (G).

(iii)=\Rightarrow (i). As CS\infty (G/CS(G)) = CS\infty (G)/CS(G), by induction, (G/CS(G)) \in \scrF dn. It
follows from Proposition 4.2 that G \in \scrF dn.

5. Applications. Gaschütz and N. Itô proved that if all minimal subgroups of a group G are
normal (which are called PN-groups), then G is soluble and the Fitting length of G is at most 3 (see
[10, p. 436] (Satz 5.7) or [7]). In this section, the following dual problem is considered: study the
finite groups all of whose minimal subgroups normalize every subgroup of the derived subgroup of
G.

Theorem 5.1. Let G be a p-solvable group. Suppose that all elements of G of order p are in
CS(G). If p = 2, in addition, all elements of G of order 4 are in CS(G). Then the lp(G) \leq 1.

Proof. We use induction on | G| . Clearly, G/Op\prime (G) satisfies the hypothesis and lp(G/Op\prime (G) =

= lp(G). We may assume that Op\prime (G) = 1.

Let P be a Sylow p-subgroup of CS(G). By Theorem 4.1, CS(G)\prime is nilpotent. Thus Op\prime (G) = 1

implies CS(G)\prime is a p-group, and hence P is normal in G. Also Fp(G) = Op\prime ,p(G) = Op(G). As
G is p-solvable by the condition, by [12, p. 269] (Theorem 9.3.1), we know

CG(Op(G)) \leq Op(G).

We now claim that G is q-nilpotent for any prime q \not = p. Otherwise, there exists a prime q such
that G is non-q-nilpotent. Then there exists a subgroup K with the following properties: K is
non-q-nilpotent but all proper subgroups of K are q-nilpotent. By a theorem of Itô [12, p. 296]
(Theorem 10.3.3), K = [Q]R, where Q is a normal q-subgroup, \mathrm{e}\mathrm{x}\mathrm{p}(Q) = p or 4, and R is a cyclic
r-subgroup, the prime r \not = q. Consider the subgroup

M = Op(G)Q.

Let p > 2. By above, \Omega 1(Gp) \leq P \leq Op(G), so \Omega 1(Gp) = \Omega 1(Op(G)). Then \Omega 1(Op(G)) \unlhd G.

Since Q = K \prime \leq G\prime , it follows that \Omega 1(Op(G)) normalizes Q and [Q,\Omega 1(Op(G))] = 1. By [10,
p. 437] (5.12), we get [Q,Op(G)] = 1. Thus Q \leq CG(Op(G)). As CG(Op(G)) \leq Op(G) and Q is
a p\prime -group, Q must be 1, a contradiction. Similar for the case when p = 2.

Now let Gq\prime denote the normal q-complement of G for every prime q \not = p. Then Gp \leq Gq\prime and
Gp is the intersection of all Gq\prime , hence Gp \unlhd G, of course, lp(G) = 1.

Theorem 5.2. Let G be a finite group. If all elements of odd prime order of G are in CS(G),

then G is solvable.
Proof. By induction, every proper subgroup of G is solvable, so we can assume G\prime = G, and

thus every subgroup of G is normalized by all elements of odd prime order. We can assume that G
is not a 2-group, so let p be an odd prime divisor of | G| . I argue that G has a normal p-complement,
and this will be a contradiction since G\prime = G. By a theorem of Frobenius, it suffices to show that if
a subgroup X of order not divisible by p normalizes a p-subgroup P in G, then X centralizes P.

To prove that X centralizes P, it suffices to show that X centralizes every element y in P of prime
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order. But y normalizes every subgroup, so [y,X] \leq X. Also [y,X] \leq [P,X] \leq P, and thus [y,X]

is trivial, as wanted.
Theorem 5.3. Let G be a finite group. If all elements of prime order or order 4 of G are in

CS(G), then G\prime is nilpotent, in particular, the Fitting length of G is bounded by 2.
Proof. Let p be any prime dividing | G| and let P be a Sylow p-subgroup of G. As G is solvable,

hence p-solvable. According to Theorem 5.1, we have Fp(G) = Op\prime ,p(G) = Op\prime (G)P, the maximal
normal p-nilpotent subgroup of G. Nextly, by Frattini argument G = NG(P )Op\prime (G). On the other
hand, by Schur – Zassensaus’s theorem [12, p. 253] (Theorem 9.1.2), NG(P ) = [P ]M, where M is
a Hall p\prime -subgroup of NG(P ) and hence G = Fp(G)M.

By hypothesis, \Omega 1(P ) and \Omega 2(P ) normalize M \prime . Hence M \prime centralizes \Omega 1(P ) and \Omega 2(P ), and
thus centralizes P. Since CG(P ) \leq Fp(G) by [12, p. 269] (Theorem 9.3.1),

M \prime \leq Fp(G).

Now G = Fp(G)M, it follows that G\prime \leq Fp(G). Therefore, G\prime is p-nilpotent. Hence G\prime is nilpotent.
Theorem 5.4. Let G be a finite group. If all elements of G of order of prime or 4 are in CS(G),

then
(i) G is solvable;
(ii) lp(G) \leq 1 for every prime p,

(iii) G\prime is nilpotent, in particular, the Fitting length of G is bounded by 2.
Proof. This follows from Theorems 5.1 – 5.3.
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