UDC 512.5

Zhencai Shen (College Sci., China Agricultur. Univ., Beijing, China),Yingyi Chen (College Inform. and Elec. Eng., China Agricultur. Univ., Beijing, China),Shirong Li (Guangxi Univ., China)

ON THE DERIVED NORM OF A FINITE GROUP*

про похідну норму скінченної групи

Given a finite group G, we define a subgroup CS(G) as the intersection of the normalizers of all subgroups of the derived subgroup of G. Let $CS_0 = 1$. We define $CS_{i+1}(G)/CS_i(G) = CS(G/CS_i(G))$ for $i \ge 1$. By $CS_{\infty}(G)$ we denote the terminal term of the upper series. It is proved that the derived subgroup G' is nilpotent if and only if $G = CS_{\infty}(G)$. In particular, we obtain the following result: if all elements of odd prime order of G are in CS(G), then G is solvable.

Для заданої групи G її підгрупу CS(G) визначено як перетин нормалізаторів усіх підгруп похідної підгрупи G. Нехай $CS_0 = 1$. Визначимо $CS_{i+1}(G)/CS_i(G) = CS(G/CS_i(G))$ для $i \ge 1$. Позначимо останній член верхнього ряду через $CS_{\infty}(G)$. Доведено, що похідна підгрупа G є нільпотентною тоді і тільки тоді, коли $G = CS_{\infty}(G)$. Зокрема, ми отримали такий результат: якщо всі елементи непарного простого порядку в G належать CS(G), то G є розв'язною.

1. Introduction. Let G be a finite group (all groups considered in this paper are finite). The notation and terminology used in this paper are standard, as in [9, 10, 12]. It is known that if the derived subgroup G' of G normalizes each subgroup of G, then G is nilpotent [2]. Naturally, as a dual problem, one can ask that what can be said about the finite groups G satisfying the following condition: G normalizes all subgroups of the derived subgroup G' of G? Note that R. Baer and H. Wielandt in 1934 and 1958, respectively, introduced the following concepts: N(G) denote the intersection of the normalizers of all subgroups of G and $\omega(G)$ denote the intersection of the normalizers of all subnormal subgroups of G. Those concepts were investigated by many authors, for example, see [1, 2, 4-6, 8, 11, 13, 14, 18-26]. In the note we give an answer to the above question. In fact, we shall study this question in a more general way. First of all, we give the following definition.

Definition 1.1. Let G be a finite group. CS(G) to be the intersection of the normalizers of all subgroups of the derived subgroup of G. That is,

$$CS(G) = \bigcap_{H \le G'} N_G(H).$$

Obviously, CS(G) is a characteristic subgroup of G.

Definition 1.2. For a finite group G, there exists a series of normal subgroups

$$1 = CS_0(G) \le CS_1(G) \le CS_2(G) \le \dots \le CS_n(G) \le \dots$$

satisfying $CS_{i+1}(G)/CS_i(G) = CS(G/CS_i(G))$ for i = 0, 1, 2, ... and $CS_n(G) = CS_{n+1}(G)$ for some integer $n \ge 1$. Write $CS_{\infty}(G)$ for the terminal term of the upper series.

Remark. Fortunately, we find Group Theorists Chernikov and Subbotin proposed the above problem in [15-17], when we investigate that what can be said about the finite group G satisfying G = CS(G) and $G = CS_{\infty}(G)$. So we think the above idea and problem are belong to Chernikov and Subbotin.

^{*} This paper was supported by the Natural Science Foundation of China (No. 11301532,11401116).

 $[\]textcircled{O}$ ZHENCAI SHEN, YINGYI CHEN, SHIRONG LI, 2016

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 8

In the memory of Group Theorist Chernikov, we give the following definition.

Definition 1.3. A finite group G is called a CS-group (Chernikov–Subbotin-group) if G == CS(G), that is, all subgroups of derived subgroup of G are normal in G.

Throughout the paper, we denote by \mathcal{F}_{dn} the class of finite groups G with G' nilpotent. It is wellknown that \mathcal{F}_{dn} is a saturated formation containing all supersoluble groups. The group G = [N]Hmeans a semidirect product of a normal subgroup N and a complement subgroup H. Moreover, H_G is the normal core of the subgroup H in G.

2. Preliminaries. First, we give two examples on CS(G) as remarks. Example 2.1 indicates that the subgroup CS(G) may be nonnilpotent. Example 2.2 shows that CS(G) < G is possible when G is a nilpotent group.

Example 2.1. Assume that $G = S_3$. Then CS(G) = G is nonnilpotent.

Example 2.2. As Aut $(Q_8) \cong S_4$ and $D_8 \leq S_4$, we have the semidirect product $G = [Q_8]D_8$. Then G is a 2-group of order 2^6 and CS(G) < G.

Proof. Indeed, the derived subgroup A of D_8 is a subgroup of order 2, the action of A on Q_8 is faithful, so nonnormal in G. Thus CS(G) < G.

The case that CS(G) = 1 is possible for a solvable group G. For instance, the symmetry group S_4 of four letters satisfies $CS(S_4) = 1$.

The following basic properties of the subgroup CS(G) are required in this paper.

Proposition 2.1. If $M \leq G$, then $M \cap CS(G) \leq CS(M)$. **Proof.** Clearly, $CS(G) = \bigcap_{H \leq G'} N_G(H) \leq \bigcap_{H \leq M'} N_G(H)$. So $M \cap CS(G) \leq CS(G)$ $\leq M \bigcap_{H \leq M'} N_G(H) = \bigcap_{H \leq M'} N_M(H) = CS(M).$ **Proposition 2.2.** Let $N \leq G$. Then $CS(G)N/N \leq CS(G/N)$. **Proof.** Clear.

Proposition 2.3. Let $G = A \times B$ and (|A|, |B|) = 1. Then $CS(G) = CS(A) \times CS(B)$.

Proof. Let H be any subgroup of G' and let π be the set of primes dividing the order of A. Then A is a normal Hall π -subgroup of G and B is a normal Hall π' -subgroup of G. So $H \cap A'$ is a normal Hall π -subgroup of H and $H \cap B'$ is a normal Hall π' -subgroup of H. Since $G' = A' \times B'$, we have

$$H = (H \cap A') \times (H \cap B').$$

Thus

$$N_G(H) = N_G((H \cap A')(H \cap B')) =$$
$$= N_G((H \cap A')) \cap N_G((H \cap B')) =$$
$$= (N_A(H \cap A') \times B) \cap (A \times N_B(H \cap B')) =$$
$$= N_A((H \cap A')) \times N_B((H \cap B')).$$

Now the result follows.

Lemma 2.1 (R. Baer [3, p. 159], Corollary 2). The following properties of the group G are equivalent:

(i) $G \in \mathcal{F}_{dn}$;

(ii) every homomorphic image of G induces in each of its minimal normal subgroups is a cyclic group of automorphisms;

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 8

ON THE DERIVED NORM OF A FINITE GROUP

(iii) if M is a maximal subgroup of G, then M/M_G is cyclic;

(iv) if M is a maximal subgroup of G, then M/M_G is Abelian;

(v) $(G/\Phi(G)) \in \mathcal{F}_{dn}$.

3. CS-groups. The following facts are clear from Definition 1.3.

Proposition 3.1. (i) The subgroups of a CS-group are CS-groups.

(ii) The quotient groups of a CS-group are CS-groups.

Theorem 3.1. If G is a finite nilpotent group, then G is a CS-group if and only if all Sylow subgroups of G are CS-groups.

The following Theorems 3.2 and 3.3 are belonged to Subbotin [15].

Theorem 3.2 (Subbotin [15]). If G is a CS-group, then the following statements are true:

(i) G is supersolvable;

(ii) G' is Abelian.

For the readers convenience, we give a new simple proof.

Proof. (i) Is obvious. We only need to prove (ii). Let x be in G'. Since by hypothesis, every subgroup of G' is normal in G, the cyclic group $\langle x \rangle$ is normal, and thus $G/C_G(x)$ is embedded in $Aut(\langle x \rangle)$, which is Abelian. Then G' centralizes x, and hence every element of G' is central in G'.

Theorem 3.3 (Subbotin [15]). If G is a nonnilpotent group, then G is a CS-group if and only if the following conditions hold:

1) G can be represented as the semidirect product $G = [G^{\mathcal{N}}]B$, where $G^{\mathcal{N}}$ is the nilpotent residual of G and Abelian, each subgroup of which is normal in G, and B is a nilpotent CS-group;

2) the derived subgroup B' of B is normal in G and its order is coprime with the order of $G^{\mathcal{N}}$.

4. $CS_{\infty}(G)$ and \mathcal{F}_{dn} -groups. As consequence of Theorem 3.2, we have the following proposition.

Proposition 4.1. For any finite group G, the subgroup $CS_{\infty}(G)$ is solvable.

We can now characterize \mathcal{F}_{dn} -groups.

Proposition 4.2. Let G be a finite group. Then the following statements are equivalent:

(i) G is an \mathcal{F}_{dn} -group;

(ii) G/CS(G) is an \mathcal{F}_{dn} -group.

Proof. (i) \Rightarrow (ii). Clear.

(ii) \Rightarrow (i). We use induction on the order of G. If CS(G) = 1, then nothing needs to be shown. Suppose that CS(G) > 1. Thus we can find a minimal normal subgroup N of G such that $N \leq CS(G)$. By Proposition 4.1, CS(G) is solvable, so N is an elementary Abelian p-group for some prime p.

Assume that $N \leq \Phi(G)$, the Frattini subgroup of G, then by Proposition 2.2, $CS(G)/N \leq CS(G/N)$. It follows that (G/N)/CS(G/N) is in \mathcal{F}_{dn} because $G/CS(G) \in \mathcal{F}_{dn}$. We thus have that G/N satisfies the condition of the theorem. By induction, (G/N)' = G'N/N is nilpotent. As $N \leq \Phi(G)$, it follows by (Huppert, 1967, III, Satz 3.5) that G'N is nilpotent and hence G', which gives $G \in \mathcal{F}_{dn}$, as desired.

Assume now that $N \not\subseteq \Phi(G)$, then there is a maximal subgroup M of G such that G = NM with $N \bigcap M = 1$. By Proposition 2.1, $M \cap CS(G) \leq CS(M)$. Thus, by hypothesis that $G/CS(G) \in \mathcal{F}_{dn}$, and as $G/CS(G) \cong M/(CS(G) \cap M)$, we have $M/CS(M) \in \mathcal{F}_{dn}$. Hence M satisfies the condition. By induction, M' is nilpotent. Now, $N \leq CS(G)$ and CS(G) normalizes all subgroups of G'. Thus N normalizes M', it follows that $G' \leq N \times M'$. Since M' is nilpotent, we conclude that G' is nilpotent, as desired.

Theorem 4.1. Let G be a finite group. Then the following statements are equivalent:

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 8

(i) $G \in \mathcal{F}_{dn}$; (ii) $G/CS_{\infty}(G)$ is an \mathcal{F}_{dn} -group; (iii) $G = CS_{\infty}(G)$. **Proof.** (i) \Longrightarrow (ii). Clear.

(ii) \Longrightarrow (iii). We first show the following simple fact: If X > 1 is an \mathcal{F}_{dn} -group, then CS(X) > 1. In fact, we may let $X' \neq 1$. Then we have $CS(X) = \bigcap_{H \leq X'} N_X(H) \geq Z(X') > 1$. The fact follows. Using this fact and noting that $CS(G/CS_{\infty}(G)) = CS_{\infty}(G)$, we deduce $G = CS_{\infty}(G)$.

(iii) \Longrightarrow (i). As $CS_{\infty}(G/CS(G)) = CS_{\infty}(G)/CS(G)$, by induction, $(G/CS(G)) \in \mathcal{F}_{dn}$. It follows from Proposition 4.2 that $G \in \mathcal{F}_{dn}$.

5. Applications. Gaschütz and N. Itô proved that if all minimal subgroups of a group G are normal (which are called PN-groups), then G is soluble and the Fitting length of G is at most 3 (see [10, p. 436] (Satz 5.7) or [7]). In this section, the following dual problem is considered: study the finite groups all of whose minimal subgroups normalize every subgroup of the derived subgroup of G.

Theorem 5.1. Let G be a p-solvable group. Suppose that all elements of G of order p are in CS(G). If p = 2, in addition, all elements of G of order 4 are in CS(G). Then the $l_p(G) \le 1$.

Proof. We use induction on |G|. Clearly, $G/O_{p'}(G)$ satisfies the hypothesis and $l_p(G/O_{p'}(G) = l_p(G))$. We may assume that $O_{p'}(G) = 1$.

Let P be a Sylow p-subgroup of CS(G). By Theorem 4.1, CS(G)' is nilpotent. Thus $O_{p'}(G) = 1$ implies CS(G)' is a p-group, and hence P is normal in G. Also $F_p(G) = O_{p',p}(G) = O_p(G)$. As G is p-solvable by the condition, by [12, p. 269] (Theorem 9.3.1), we know

$$C_G(O_p(G)) \le O_p(G).$$

We now claim that G is q-nilpotent for any prime $q \neq p$. Otherwise, there exists a prime q such that G is non-q-nilpotent. Then there exists a subgroup K with the following properties: K is non-q-nilpotent but all proper subgroups of K are q-nilpotent. By a theorem of Itô [12, p. 296] (Theorem 10.3.3), K = [Q]R, where Q is a normal q-subgroup, $\exp(Q) = p$ or 4, and R is a cyclic r-subgroup, the prime $r \neq q$. Consider the subgroup

$$M = O_p(G)Q.$$

Let p > 2. By above, $\Omega_1(G_p) \le P \le O_p(G)$, so $\Omega_1(G_p) = \Omega_1(O_p(G))$. Then $\Omega_1(O_p(G)) \le G$. Since $Q = K' \le G'$, it follows that $\Omega_1(O_p(G))$ normalizes Q and $[Q, \Omega_1(O_p(G))] = 1$. By [10, p. 437] (5.12), we get $[Q, O_p(G)] = 1$. Thus $Q \le C_G(O_p(G))$. As $C_G(O_p(G)) \le O_p(G)$ and Q is a p'-group, Q must be 1, a contradiction. Similar for the case when p = 2.

Now let $G_{q'}$ denote the normal q-complement of G for every prime $q \neq p$. Then $G_p \leq G_{q'}$ and G_p is the intersection of all $G_{q'}$, hence $G_p \leq G$, of course, $l_p(G) = 1$.

Theorem 5.2. Let G be a finite group. If all elements of odd prime order of G are in CS(G), then G is solvable.

Proof. By induction, every proper subgroup of G is solvable, so we can assume G' = G, and thus every subgroup of G is normalized by all elements of odd prime order. We can assume that G is not a 2-group, so let p be an odd prime divisor of |G|. I argue that G has a normal p-complement, and this will be a contradiction since G' = G. By a theorem of Frobenius, it suffices to show that if a subgroup X of order not divisible by p normalizes a p-subgroup P in G, then X centralizes P. To prove that X centralizes P, it suffices to show that X centralizes every element y in P of prime

ISSN 1027-3190. Укр. мат. журн., 2016, т. 68, № 8

1040

ON THE DERIVED NORM OF A FINITE GROUP

order. But y normalizes every subgroup, so $[y, X] \le X$. Also $[y, X] \le [P, X] \le P$, and thus [y, X] is trivial, as wanted.

Theorem 5.3. Let G be a finite group. If all elements of prime order or order 4 of G are in CS(G), then G' is nilpotent, in particular, the Fitting length of G is bounded by 2.

Proof. Let p be any prime dividing |G| and let P be a Sylow p-subgroup of G. As G is solvable, hence p-solvable. According to Theorem 5.1, we have $F_p(G) = O_{p',p}(G) = O_{p'}(G)P$, the maximal normal p-nilpotent subgroup of G. Nextly, by Frattini argument $G = N_G(P)O_{p'}(G)$. On the other hand, by Schur–Zassensaus's theorem [12, p. 253] (Theorem 9.1.2), $N_G(P) = [P]M$, where M is a Hall p'-subgroup of $N_G(P)$ and hence $G = F_p(G)M$.

By hypothesis, $\Omega_1(P)$ and $\Omega_2(P)$ normalize M'. Hence M' centralizes $\Omega_1(P)$ and $\Omega_2(P)$, and thus centralizes P. Since $C_G(P) \leq F_p(G)$ by [12, p. 269] (Theorem 9.3.1),

$$M' \leq F_p(G).$$

Now $G = F_p(G)M$, it follows that $G' \leq F_p(G)$. Therefore, G' is p-nilpotent. Hence G' is nilpotent.

Theorem 5.4. Let G be a finite group. If all elements of G of order of prime or 4 are in CS(G), then

(i) G is solvable;

(ii) $l_p(G) \leq 1$ for every prime p,

(iii) G' is nilpotent, in particular, the Fitting length of G is bounded by 2.

Proof. This follows from Theorems 5.1 - 5.3.

References

- 1. Baer R. Der Kern eine charakteristische Untergruppe // Compos. Math. 1934. 1. P. 254-283.
- 2. Baer R. Norm and hypernorm // Publ. Math. Debrecen. 1956. 4. P. 347-356.
- 3. Baer R. Classes of finite groups and their properties // Ill. J. Math. 1957. 1. P. 115-187.
- Baer R. Zentrum und Kern von Gruppen mit Elementen unendlicher Ordnung // Compos. Math. 1935. 2. P. 247–249.
- Beidleman J. C., Heineken H., Newell M. Center and norm // Bull. Austral. Math. Soc. 2004. 69, № 3. -P. 457-464.
- 6. Bryce R. A., Cossey J. The Wielandt subgroup of a finite solvable group // J. London Math. Soc. 1989. 40, № 2. P. 244–256.
- 7. Buckley J. Finite groups whose minimal subgroups are normal // Math. Z. 1970. 116, № 1. S. 15-17.
- 8. Camina A. R. The Wielandt length of finite groups // J. Algebra. 1970. 15. P. 142-148.
- 9. Gorenstein D. Finite groups. New York: Chelsea, 1980.
- 10. Huppert B. Endliche Gruppen I. Berlin etc.: Springer-Verlag, 1967.
- 11. Miller G. A., Moreno H. C. Non-abelian groups in which every subgroup is abelian // Trans. Amer. Math. Soc. 1903. 4. P. 398–404.
- 12. Robinson D. J. S. A course in the theory of groups. New York: Springer-Verlag, 1982.
- 13. Schenkman E. On the norm of a group // Ill. J. Math. 1960. 4. P. 150–152.
- 14. Wielandt H. Über der Normalisator der Subnormalen Untergruppen // Math. Z. 1958. 69, № 5. S. 463–465.
- Subbotin I. J. Finite groups in which each subgroup of the commutant is normal // Mat. Zametki. 1972. 12. P. 739–746.
- Subbotin I. J. Finite p-groups in which every subgroup of the commutant is invariant // Dop. Akad. Nauk Ukr. RSR. Ser. A. – 1974. – P. 1072 – 1074.
- 17. Subbotin I. J. Infinite finitely generated groups in which every subgroup of the commutant is invariant (in Russian) // Ukr. Mat. Zh. 1975. 27, № 3. P. 406–411.
- Cernikov S. N. Infinite non-abelian groups in which all infinite non-abelian subgroups are invariant (in Russian) // Ukr. Mat. Zh. - 1971. - 23, № 5. - P. 604-628.

ZHENCAI SHEN, YINGYI CHEN, SHIRONG LI

- 19. Mahnev A. A. Finite metahamiltonian groups // Ural. Gos. Univ. Mat. Zap. 1976. 10. P. 60 75.
- 20. Nagrebeckii V. T. Finite non-nilpotent groups any non-abelian subgroup of which is normal // Ural. Gos. Univ. Mat. Zap. 1967. 6. P. 80-88.
- 21. Nagrebeckii V. T. Finite groups in which any non-nilpotent subgroups is invariant // Ural. Gos. Univ. Mat. Zap. 1968. 7. P. 45-49.
- 22. Romalis G. M., Sesekin N. F. Meta-hamiltonian groups // Ural. Gos. Univ. Mat. Zap. 1966. 5. P. 101-106.
- 23. Liman F. N. On groups with a minimality condition for noninvariant abelian *p*-subgroups (in Russian) // Ukr. Mat. Zh. 2005. 57, № 2. P. 265–270 (transl. in Ukr. Math. J. 2005. 57, № 2. P. 316–322).
- 24. *Liman F. M., Lukashova T. D.* On infinite groups with given properties of the norm of infinite subgroups (in Ukrainian) // Ukr. Mat. Zh. – 2001. – **53**, No. 5. – P. 625–630 (transl. in Ukr. Math. J. – 2001. – **53**, № 5. – P. 719–725).
- 25. Liman F. N. Groups in which all infinite abelian p-subgroups are normal (in Ukrainian) // Ukr. Mat. Zh. 1992. –
 44, № 6. P. 796–800 (transl. in Ukr. Math. J. 1992. 44, № 6. P. 718–721).
- 26. *Lukashova T. D.* On the noncyclic norm of infinite locally finite groups // Ukr. Mat. Zh. 2002. 54, № 3. P. 342–348 (transl. in Ukr. Math. J. 2002. 54, № 3. P. 421–428).

Received 25.01.13, after revision – 01.03.15