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A TAUBERIAN THEOREM
FOR THE POWER-SERIES SUMMABILITY METHOD

TEOPEMA TAYBEPA
IS METOAY NNIICYMOBYBAHHA CTEIIEHEBHUX PA/IB

We introduce a one-sided Tauberian condition in terms of the weighted general control modulo oscillatory behavior of
integer order m with m > 1 for the power-series summability method.

BBeneHo opHOCTOpOHHIO YMOBY Taybepa B TepMiHaX BaroBOro 3arajbHOTO YHPaBIiHHS IO MOIYJIIO KOJMBHOI HOBEIIHKH
HOPSAAKY m, e m > 1, JUI MeToxy IiICYMOBYBaHHS CTETICHEBHX PSIiB.

1. Introduction and preliminaries. Let u = (u,) be a sequence of real numbers. Assume that
p = (pn) be a sequence of nonnegative numbers with py > 0,

Pn::Zpk—>oo as n — 00,

and

:Zpkxk<oo for 0<x <.

The nth weighted mean of (u,,) is defined by

(1) Zpkuk

A sequence (u,) is said to be summable by the weighted mean method determined by the
sequence p, in short, (N, p) summable to a finite number s if
(D () =
nh_)ngoa p(u) =s. (1)
If p,, = 1 for all nonnegative n, then (N, p) summability method reduces to Cesaro summability
method.
If Z pkukx is convergent for 0 < x < 1 and

1 [e.e]
lim —— upz® = s, 2
H‘P“f)kzopk k (2)
we say that (u,) is summable to s by the power series method (J, p) and we write u,, — s (J,p).
If p, = 1 for all nonnegative n, then the (J,p) summability method reduces to Abel summability
method.
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1702 U. TOTUR, 1. CANAK

The sequence Au = (Awu,), which is the backward difference of (u,), is defined by Au, =
= Uy — Up—1 for n > 1 and Aug = wug. For any nonnegative integer m, we define A, u, =
= A(Ap—1un) = Ap—1(Auy,) with Agu, = u, and (nA)pu, = nA(RA)pm—1u,) =
= (nA)m—1(nAuy,) with (nA)ou, = uy, and (nA)ju, = nAu, = n(u, — Up—1).

A sequence (uy,) of real numbers is called totally monotone if A,,u, > 0 for nonnegative
integers m and n.

The difference between w,, and aq(q{,),(u) which is called the weighted Kronecker identity is given
by

(u) = VO (Auw), 3)

1

1 n
where V,{0)(Au) := B zk:l Pi_1 Ay, (see [1]).

For each integer m > 0, we define o\ (u) and V™) (Au) by

and
LS~ (me)
— > oV (Au), m>1,
VM (Au) = Lt v
,Sf)p) (Au), m=0,
respectively.

For a sequence u = (u,) and any integer m > 1, the identities

P, m —
A0 () = Vi (A @
and
o) (P ;‘1Av,§jgl)(m)> _b ;_1AVr§Z})(Au) (5)

are given in [2].
The weighted classical control modulo of (u,,) is defined by
Pn—l

0
wn,%(u): o Au,,

and the weighted general control modulo of the oscillatory behavior of integer order m with m > 1

of (uy,) is defined by
i) (u) = wi ™D (w) — o) (@™ (w)).

n, n,p

We remark that the notation w1 above stands for the result of application of the operator () to
the sequence (w™ 1(u)). For a sequence u = (u,) and any nonnegative integer m, we define
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A TAUBERIAN THEOREM FOR THE POWER-SERIES SUMMABILITY METHOD 1703

<Pn—1A) Uy = <Pn—1A> (Pn—lAun> _

Pn Pn
P, P,
_1In lA << n 1A> Un)
Pn Pn m—1
P P, P, P,
with < n 1A> Uy, = U, and n 1A> Uy = —2 1Aun = tnl (up, — up—1). The different
DPn 0 Pn 1 Pn
writing of the weighted general control modulo of the oscillatory behav10r of integer order m with

m > 1 of (uy,) is obtained in [2] by

wwaOZI(RP1A> V=D Au). (6)

_ P -
wnty () = Vi (Al D)) = —== A0 () (@ (u).

Throughout this work, the symbols u,, = o(1) and u,, = O(1) mean that (u,,) converges to zero and
(uy,) is bounded, respectively. The symbol [An]| denotes the integral part of the product An.

A sequence (uy,) is said to be slowly decreasing if
lim liminf min (ug —u,) >0 (7)
A—=1+ n—00 n<k<[An]

or, equivalently,

lim liminf min (u, —ug) > 0.
A—=1— n—00 [An]<k<n

The condition (7) is satisfied if there exists a constant C' > 0 such that

P,
"L Auy, > ~C
Pn
with ]_:Lp” = O(1). Indeed, we can estimate as follows. For any k& > n, we have
n—1

k
D PR UEECD o R o ER I
j=n+1 ]n—i—l - j=n ’] n

whence we conclude that
liminf min (ug — u,) > —C(A —1), A> 1
n—00 n<k<[An]

Letting A\ — 17, the inequality (7) follows immediately. Note that we use C' to denote a constant

possibly different at each occurrence.
A sequence (uy,) is slowly increasing if and only if the sequence (—u,,) is slowly decreasing (see

[3]). An equivalent definition of a slowly increasing sequence is given as follows

A sequence (uy,,) is said to be slowly increasing if
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lim i - <0. 8
O P B (e ) ®

The condition (8) is reformulated as follows:

lim limsup max (up —ug) <O0.
A=1l— pooo [An]<k<n

A sequence u = (uy,) is slowly oscillating if

lim limsup max |ug — uy| =0 9)

or, equivalently,

lim limsup max |uy, —ug| =0.
A=1- oo [Mn]<k<n

A sequence (uy,) is said to be slowly oscillating if and only if (u,,) is both slowly increasing and
slowly decreasing (see [3]).

It is clear from the Cauchy criterion that every convergent sequence is slowly oscillating, but
the converse of this statement is not always true. For example, the sequence (log(n + 1)) is not
convergent, but it is slowly oscillating (here, the logarithm is to the natural base e):

To justify (9), let A > 1 and n < k < [An]. It follows from

k+1

uk—unzlog(k+1)—log(n+1)zlogn+1

that

limsup max |ug — uy| < log .
n—oo n<k§[)\n}
Letting A\ — 17 gives (9).
One can easily show that the sequences (sinlog(n+1)) and (coslog(n+1)) are slowly oscillating
sequences. To justify (9), let A > 1 and n < k < [An]. It follows from

|sinlog(k + 1) — sinlog(n + 1)| < kon

n

that

limsup max |sinlog(k+ 1) —sinlog(n+1)| < A —1.
n—oo n<k<[An]
Letting A — 17 gives (9).
Similarly, it can be shown that (coslog(n + 1)) is slowly oscillating.
2. History of classical theory. The (N, p) and (J,p) summability methods are regular. In other
words if the limit
lim u, = s (10)
n—oo
exists, then both (1) and (2) also exist. However, the converses are not always true. Notice that (1)
or (2) may imply (10) under certain conditions, which are called Tauberian conditions. Any theorem
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A TAUBERIAN THEOREM FOR THE POWER-SERIES SUMMABILITY METHOD 1705

which states that convergence of sequences follows from the (IV, p) summability method or the (.J, p)
summability method with some Tauberian conditions is said to be a Tauberian theorem.
Hardy [4] proved that if
w® (u) = 0(1)

n,p

and (1) exists, then (u,) converges.

Canak and Totur [1] obtained the following one-sided Tauberian theorem for the weighted mean
method of summability.

Theorem 1. Let

P P
1 < liminf —— <limsup —— < o0 for A>1, (1)
n—00 n n—oo Pn
o n : P,
1 < lim inf < limsup < 00 for 0< A<, (12)
oo n—00  LAn]
and
NPn
=0(1). 1
P — o) (13)
If (uy) is (N, p) summable to s and
wnl,j);(u) > -C

for some C > 0, then (uy) converges to s.

Later, Totur and Canak [2] proved the next theorem which is an extension of Hardy’s Tauberian
theorem for the weighted mean method of summability.

Theorem 2. If (uy,) is (N,p) summable to s and

for some nonnegative integer m, (u,) converges to s.

Tietz [5] obtained some classical Tauberian theorems which are analogous to Hardy — Littlewood’s
theorem [6] and Schmidt’s theorem [7] for the power series method of summability.

Theorem 3 [5]. Let

P
1< =™ 51 when 1< 2 —1(n— o0). (14)
P, n

If (uy,) is (J,p) summable to s and
wip(u) = ~C

Sor some C > 0 (or (uy,) is slowly decreasing), then (uy,) converges to s.
Ishiguro [8] showed that (1) implies the limit (2) and obtained some Tauberian theorems which
state that the (N, p) summability of (u,) follows from the (.J, p) summability of (u,).
Tietz and Trautner [9] obtained the limit (1) from the existence of the limit (2) under the conditions
Uy > —C for some C' > 0 and (14).
Mikhalin [10] proved that if (u,,) is (J,p) summable to s and
oD (w0 (u) > -C

n7p
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for some C' > 0, the condition (14) holds and <Zn> is totally monotone, then (u,) is (N,p)

n
summable to s.

A number of authors such as Tietz [11], Kratz and Stadtmiiller [12], Tietz and Zeller [13], Canak
and Totur [14, 15] have studied Tauberian theorems for the (N, p) and (.J,p) summability methods.

3. Main result. In this paper our aim is to obtain convergence of (u,) from the existence of
(2) and one-sided boundedness of the weighted general control modulo of the oscillatory behavior
of integer order m with m > 1 with respect to a sequence satisfying some certain conditions. The
main theorem extends Tietz’s Tauberian theorem for the (J,p) summability method. Further, we
have Hardy — Littlewood’s Tauberian theorem for Abel summability method as a corollary.

Theorem 4. Let (p,,) satisfy the conditions (11), (12) and (13) and let <£n) be totally mono-

n

tone. If (uy) is (J,p) summable to s and

wi™ (u) > — M, (15)

for some nonnegative sequence M = (M,,) and some nonnegative integer m such that A = (Ay,) is

slowly oscillating where A,, = Zn . ij
i=1 Pj_1

The following corollaries of Theorem 4 are obvious.

Corollary 1. Let (py,) satisfy the conditions (11), (12) and (13) and let <];n> be totally mono-

M; for n > 1 and Ay = 0, then (u,) converges to s.

tone. If (uy,) is (J,p) summable to s and

w™(u) > —C

n?p

Jor some C > 0 and some nonnegative integer m, then (uy) converges to s.
To prove that Corollary 1 follows from Theorem 4, we need to show that the sequence (a,)

defined by a, = Z: . Ppk for n > 1 and ag = 0 is slowly oscillating. To justify that (a,) is
= k—1

slowly oscillating, let A > 1 and n < k < [An]. By (13), we have

b Di P k—n

—a,| = J < - <
lak — an| | PA_I_C"g ‘_C< - )
j=n+1 J

whence we conclude that
limsup max |a —a,| < C(A—1).
n—oo TL<I€§[)\TL]
Letting A — 17 shows that (a,,) is slowly oscillating.
Corollary 2. If (uy,) is Abel summable to s and
w™ (u) > -C

n,1l

for some C' > 0 and some nonnegative integer m, then (uy) converges to s.
Corollary 2 is given by Canak et al. [17].
Corollary 3. If (uy,) is Abel summable to s and

wno% (U) > -C

)

for some C > 0, then (uy,) converges to s.
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4. Lemmas. For the proof of the main theorem in the next section we need the following
lemmas.

Lemma 1. For each integer m with m > 1,

m—1
=S (M) av ) aw),
=0 J Pn P

where (m - 1> _ (m—1)(m —.2) c.(m —j).
J 7!
Proof. We do the proof by induction. For m = 1, we have

P, P,
o L Auy, — VO(Au) = TIAV,ng(Au) =

=§0: () LAV (Aw)

Pn

wiM (u) =

n7p

by (4) and (5). Assume the observation is true for m = k. That is, assume that

k—1
W) = 3 (-1 ("" ; 1) Pl Ay ). (16)

We must show that the observation is true for m = k + 1. That is, we must show that

k
n—1 i
WD) = 37 (-1 <) Pt Av ).
=0 "
By definition,
WD () = 0 () — o) @ (w).

n,p

By (16),

k—1
(k—1\ P
(k+1) — —1) ( > n— IA‘/(]) A
n,p ( ) ':0( ) j Dn ( )

<

-1

—> -1y <k i 1) DELAVG (A).

= Pn

Letting j + 1 = ¢ in the second sum. Using this substitution

k—1 p '
(k+1 Z < » )HAVAQ(AuH—
_ Pn
7=0
k k—1\P
R AUY AR Bl v4©))
+;( 1) <11> o AV (Au). (17)
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In the second sum of (17) we rename the index of summation j, split the first term off in the first
sum and the last term in the second sum of (17), we get

k-1
k—1 —
k n—1 n—1
wﬁ,il)(u):(—1)0< . ) - AV (Aw) +j§—1 ( > o AV (Au)+

k—1
=1\ Pact \10) ke (F I Past g
+F1 <J_ 1) - AVI(Aw) +(-0F (T LAV (Au).

Thus, we obtain

k—1\FP,—
k n—1
i) = 1 (F ) Bt avan

e [(451) (500)] Bavipans

k—1\ P—

-1 -1
Since <k . > + <k . > = <k>, the last identity can be written
J J J

E—1\P,_
Wi (u) = (—1)0< 0 >1AV,§33(Au)+

Pn

k—1
+3 (—1)f (k> EAV,SQ(AU)—F
1 J DPn ’

k—1\ P,_
k n—1 k
+(~1) ( )AVn(’p)(Au):

Pn

=3"(-1 ( ) LAV (Aw).
= Pn
Thus, we conclude that Lemma 1 is true for every positive integer m.

Lemma 2. Let (py,) satisfy the condition (13). If (uy) is slowly decreasing, then Vn(go) (Au) >

> —C for some C > 0 and (a,(},}),(u)) is slowly decreasing.
Proof. In[10, p. 568], it is shown that if (u,) is slowly decreasing and the condition (13) holds
true for all nonnegative integer n, then there exist a constant D defined by the inequality

P’IL

1§ <1+p;+1>pn+l SD

n

for all nonnegative integer n and numbers a > 0, b > 0 for which

o0y~ ot = PP [ (e ap) ) a)

n
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for all nonnegative integers m and n with m > n > 0. In (18), if m and n are replaced by n and
n — 1, respectively, we get

P,
(1) s Pn| n__ .
Aoy, ) (u) > P [ a <ln P lnD> b] . (19)
. . P, .
Multiplying both sides of (19) by , we have

P P, P,

0 _ In-1 1 n—1 n
V,&p) (Au) = 7]% Ao,(m),(u) > B [—a <ln P In D> — b} . (20)

Taking the fact that the right-hand side of the inequality (20) tends to aln D — b as n — oo and (13)
into consideration, we obtain
V9 (Au) > -C

for some C > 0.

P,_
It easily follows from the identity V,E?I,)(Au) = LIAJSJ),(U) that (oélg(u)) is slowly decreas-
p
ing. !
Baron and Tietz [16] obtained the following result stating that if a sequence is summable to a finite
number by the power series method (.J, p), then the sequence of its weighted means is summable to
the same finite number by the power series method (./, p) under a certain condition.

Lemma 3 [16, p. 17]. Let <§)n> be totally monotone. If (uy) is (J,p) summable to s, then

n
(J,glz,(u)) is (J,p) summable to s.
The difference between a sequence and the sequence of its weighted means is given as follows:
Lemma 4 [1]. Let u = (uy,) be a sequence of real numbers.

(i) For A > 1 and sufficiently large n,

[An]
P>\n 1 1
tn = o) = =2 (o, () = 03w = 5 3 pan = un)
n n n n k=n+1

(1) For 0 < X < 1 and sufficiently large n,

n

P, 1
_ ;1) — [An] (1) _ @ § _
Un — O »P(u) - P, — P[)\n] (O—"vp(u) U[An],p(u)) + P, — P[)\n] 5 ]+1pk(un uk)
c=[An

5. Proof of Theorem 4. Using the fact that the slow oscillation of (A,) implies the slow
increase of (A,,), we obtain that (—A,,) is slowly decreasing. Then, we have

ViD(A(=4)) = =0 (M) = =Cy

for some C7 > 0 by Lemma 2. Taking the weighted mean of both sides of (15), we obtain

o (W) > ~afl)

(M) > —C,

n,p -

for some C; > 0. By (6), we have the following identity:
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o0 (™ (1)) = o) <P SN 1><w<m—1><u>>> = Bact @) (y0m1 (),

n 7p n 7p pn n 7p

P, . .
Then, we obtain lAaﬁfz);(w(m_l)(u)) > —( for some C7 > 0. Since (uy,) is (J,p) summable

n
to s, we get, by using the weighted Kronecker identity (3),

(2 (™Y (w))) is (J, p) summable to 0

for each nonnegative integer m by Lemma 3. If we apply Theorem 3 to the sequence (U%), (W™D (w))),

we obtain Jﬁ?}, (W™D (u)) = o(1). It follows from the weighted Kronecker identity (3) applied to the

sequence (o4 (w™=D(u))) that we have o s (w™ (1)) = oia(w™ D (w)) — o't (WMD) (u)). It

follows that ngl),(w(m_l)(u)) > —(C for some Cy > 0. Similarly, from the identity aﬁ%(w(m) (u)) =
P, P,_ _ .

= A (WMD) (), we have TlAJ%),(w(m 2) (1)) > —C3 for some Cs > 0. Since (u,)

)
n n

is (J, ) summable to s, then (aff%(cu(mfl)(u))) is (J,p) summable to 0. By Theorem 3, we get

22)( ~D(u)) = o(1). Continuing in this way, we obtain
2)(,,(0 1
oy () = Vi) (Au) = o(1). @21

By Lemma 1, we have from (15)
Pn—l

o AVO (Au) > — (M, + Cp)

for some Cy > 0. Applying Lemma 4 (i) to (VTEPP)(AU)), we get

(Au) — V<1>(Au)) -

n,p

P
O (Aw) — VO (Au) = —al_ ()
ViR ~ V(A = (v
)
3 AV - VY(Aw) -
P — Py k.p P
[An] k=n-+1

Pian) (v“)

=P - P, — v _
= B — B VoA Vi (Aw)

[An]

k
e X Y AV <

P[/\n] n k=n+1 j=n+1
o ()
S )

[An] k

Z Pk Z ij M +CO)
J

k=n+1 j=n+1"J71

P)[)\n] )
for some C > 0 and from this we obtain

P)\n
VO(au) - Vi (au) < o (Vi (au) = VD (aw) +
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k n
bj by
4+ max M; — M; | +
n<k<[An] Zl -Pj—l J ]Z:; f)j—l I

o)

for some constant C'. Taking lim sup of both sides of the inequality above as n — oo, we have

lim sup (Vn(go)(Au) - V,g})(Au)) <

P
n—00

P
< limsup Bl gy sup (V(l) (Au) — Vé?(Au)) +

n—00 [An] — Pn n—00 [Anl.p
k D n i
li E M, — E I M; CA—-1 22
* lrrzn—>sol<1>p n<r£gf§\n] P J ot Pj_4q i ( ) (22)

for some C' > 0.
Since the first term on the right-hand side of the inequality (22) vanishes by (21), we get

lim sup (VTE%)(Au) — VTSQ (Au)) <

n—oo

P . pj
2 P
j:l

P

Mj —l—C()\—l)

n—oo n<k§ [)\TL]

k
<limsup max

for some C > 0.
Taking the limit of both sides as A — 17 and using the slow oscillation of (A,,), we obtain

lim sup (ngQ(Au) — V,SD) (Au)) <0.

n—oo

From Lemma 4 (ii), we have

Pian) (1)
Vi (Au) Vi (Au) = 55— o (Vi aw) - V) (Aw) +
1 n
BN O (Ay) — VO
—|—Pn ~ P pr(Vap (Au) = Vi D (Au)) >
k=[An]+1

Pian) 1
~ Py — Py <V”’p (Aw) V[A"LP(AU’)) +

n

e L m Y AV

Po=Fom (e 5

P
> o (vi(aw) - V) (Aw) -

n,p An],p
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1712 U. TOTUR, 1. CANAK

Z pkz DI (M; + Co)

A"]k D41 j=k+1 P

for some Cj > 0 and from this we obtain

P)\n

n

Dbj pj
— M; — M —
z -3

_c (n—M>

for some constant C. Taking lim inf of both sides of the inequality above as n — oo, we get

lim inf (v,gfg(m - v (AU)) >

n—oo

P,
> lim inf L R T Y (Vn(}p)(Au) - V(ITB} p(Au)) -

- P
—1i Pj M LM | —C(1—-) 23
msup mex |3 5T Zp_l U @3

for some C' > 0. Since the first term on the right-hand side of the inequality (23) vanishes by (21),
we have

lim inf (v,gf;g(m) -V (AU)) >

n—oo

P by
> —1li M; — M; | -C(1-X
>l \ 2 p ML B M) SO0
for some C > 0.
Taking the limit of both sides as A — 1~ and using the slow oscillation of (A4,,), we obtain
lim inf <VTESD) (Au) — Vé}p)(Au)) > 0.

n—oo

Finally, by (18) and (21), it follows that
lim V%) (Au) = 0. (24)

n—o0

Since (uy) is (J,p) summable to s, then (a,%(u)) is (J,p) summable to s by Lemma 3. By (4),

we have
Pn—l

Pn
Taking (24) and (25) into consideration, we obtain
AoV (W) 2 ~C
for some constant C'. By Theorem 3, (aglz))(u)) converges to s. It follows from the weighted

Kronecker identity (3) that (u,,) converges to s.

AD(r(w)) =

n,p

Aol (u) = V9 (Aw). (25)

n,
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